1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00

[PR16756] Add SSAUpdaterBulk.

Summary:
SSAUpdater is a bottleneck in a number of passes, and one of the reasons
is that it performs a lot of unnecessary computations (DT/IDF) over and
over again. This patch adds a new SSAUpdaterBulk that uses existing DT
and avoids recomputing IDF when possible.

Reviewers: dberlin, davide, MatzeB

Subscribers: llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D44282

llvm-svn: 329643
This commit is contained in:
Michael Zolotukhin 2018-04-09 23:37:20 +00:00
parent 32ef43e9ba
commit 1dd78e7f0f
5 changed files with 461 additions and 0 deletions

View File

@ -0,0 +1,91 @@
//===- SSAUpdaterBulk.h - Unstructured SSA Update Tool ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SSAUpdaterBulk class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERBULK_H
#define LLVM_TRANSFORMS_UTILS_SSAUPDATERBULK_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/PredIteratorCache.h"
namespace llvm {
class BasicBlock;
class PHINode;
template <typename T> class SmallVectorImpl;
class Type;
class Use;
class Value;
class DominatorTree;
/// Helper class for SSA formation on a set of values defined in multiple
/// blocks.
///
/// This is used when code duplication or another unstructured transformation
/// wants to rewrite a set of uses of one value with uses of a set of values.
/// The update is done only when RewriteAllUses is called, all other methods are
/// used for book-keeping. That helps to share some common computations between
/// updates of different uses (which is not the case when traditional SSAUpdater
/// is used).
class SSAUpdaterBulk {
struct RewriteInfo {
DenseMap<BasicBlock *, Value *> Defines;
SmallPtrSet<Use *, 4> Uses;
StringRef Name;
Type *Ty;
RewriteInfo(){};
RewriteInfo(StringRef &N, Type *T) : Name(N), Ty(T){};
};
DenseMap<unsigned, RewriteInfo> Rewrites;
PredIteratorCache PredCache;
Value *computeValueAt(BasicBlock *BB, RewriteInfo &R, DominatorTree *DT);
public:
explicit SSAUpdaterBulk(){};
SSAUpdaterBulk(const SSAUpdaterBulk &) = delete;
SSAUpdaterBulk &operator=(const SSAUpdaterBulk &) = delete;
~SSAUpdaterBulk(){};
/// Add a new variable to the SSA rewriter. This needs to be called before
/// AddAvailableValue or AddUse calls.
void AddVariable(unsigned Var, StringRef Name, Type *Ty);
/// Indicate that a rewritten value is available in the specified block with
/// the specified value.
void AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V);
/// Record a use of the symbolic value. This use will be updated with a
/// rewritten value when RewriteAllUses is called.
void AddUse(unsigned Var, Use *U);
/// Return true if the SSAUpdater already has a value for the specified
/// variable in the specified block.
bool HasValueForBlock(unsigned Var, BasicBlock *BB);
/// Perform all the necessary updates, including new PHI-nodes insertion and
/// the requested uses update.
///
/// The function requires dominator tree DT, which is used for computing
/// locations for new phi-nodes insertions. If a nonnull pointer to a vector
/// InsertedPHIs is passed, all the new phi-nodes will be added to this
/// vector.
void RewriteAllUses(DominatorTree *DT,
SmallVectorImpl<PHINode *> *InsertedPHIs = nullptr);
};
} // end namespace llvm
#endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERBULK_H

View File

@ -44,6 +44,7 @@ add_llvm_library(LLVMTransformUtils
PromoteMemoryToRegister.cpp
StripGCRelocates.cpp
SSAUpdater.cpp
SSAUpdaterBulk.cpp
SanitizerStats.cpp
SimplifyCFG.cpp
SimplifyIndVar.cpp

View File

@ -0,0 +1,173 @@
//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdaterBulk class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
using namespace llvm;
#define DEBUG_TYPE "ssaupdaterbulk"
/// Add a new variable to the SSA rewriter. This needs to be called before
/// AddAvailableValue or AddUse calls.
void SSAUpdaterBulk::AddVariable(unsigned Var, StringRef Name, Type *Ty) {
assert(Rewrites.find(Var) == Rewrites.end() && "Variable added twice!");
RewriteInfo RI(Name, Ty);
Rewrites[Var] = RI;
}
/// Indicate that a rewritten value is available in the specified block with the
/// specified value.
void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) {
assert(Rewrites.find(Var) != Rewrites.end() && "Should add variable first!");
Rewrites[Var].Defines[BB] = V;
}
/// Record a use of the symbolic value. This use will be updated with a
/// rewritten value when RewriteAllUses is called.
void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
assert(Rewrites.find(Var) != Rewrites.end() && "Should add variable first!");
Rewrites[Var].Uses.insert(U);
}
/// Return true if the SSAUpdater already has a value for the specified variable
/// in the specified block.
bool SSAUpdaterBulk::HasValueForBlock(unsigned Var, BasicBlock *BB) {
return Rewrites.count(Var) ? Rewrites[Var].Defines.count(BB) : false;
}
// Compute value at the given block BB. We either should already know it, or we
// should be able to recursively reach it going up dominator tree.
Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R,
DominatorTree *DT) {
if (!R.Defines.count(BB)) {
if (PredCache.get(BB).size()) {
BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock();
R.Defines[BB] = computeValueAt(IDom, R, DT);
} else
R.Defines[BB] = UndefValue::get(R.Ty);
}
return R.Defines[BB];
}
/// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
/// This is basically a subgraph limited by DefBlocks and UsingBlocks.
static void
ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks,
const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
// To determine liveness, we must iterate through the predecessors of blocks
// where the def is live. Blocks are added to the worklist if we need to
// check their predecessors. Start with all the using blocks.
SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
UsingBlocks.end());
// Now that we have a set of blocks where the phi is live-in, recursively add
// their predecessors until we find the full region the value is live.
while (!LiveInBlockWorklist.empty()) {
BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
// The block really is live in here, insert it into the set. If already in
// the set, then it has already been processed.
if (!LiveInBlocks.insert(BB).second)
continue;
// Since the value is live into BB, it is either defined in a predecessor or
// live into it to. Add the preds to the worklist unless they are a
// defining block.
for (BasicBlock *P : predecessors(BB)) {
// The value is not live into a predecessor if it defines the value.
if (DefBlocks.count(P))
continue;
// Otherwise it is, add to the worklist.
LiveInBlockWorklist.push_back(P);
}
}
}
/// Helper function for finding a block which should have a value for the given
/// user. For PHI-nodes this block is the corresponding predecessor, for other
/// instructions it's their parent block.
static BasicBlock *getUserBB(Use *U) {
auto *User = cast<Instruction>(U->getUser());
if (auto *UserPN = dyn_cast<PHINode>(User))
return UserPN->getIncomingBlock(*U);
else
return User->getParent();
}
/// Perform all the necessary updates, including new PHI-nodes insertion and the
/// requested uses update.
void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT,
SmallVectorImpl<PHINode *> *InsertedPHIs) {
for (auto P : Rewrites) {
// Compute locations for new phi-nodes.
// For that we need to initialize DefBlocks from definitions in R.Defines,
// UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
// this set for computing iterated dominance frontier (IDF).
// The IDF blocks are the blocks where we need to insert new phi-nodes.
ForwardIDFCalculator IDF(*DT);
RewriteInfo &R = P.second;
SmallPtrSet<BasicBlock *, 2> DefBlocks;
for (auto Def : R.Defines)
DefBlocks.insert(Def.first);
IDF.setDefiningBlocks(DefBlocks);
SmallPtrSet<BasicBlock *, 2> UsingBlocks;
for (auto U : R.Uses)
UsingBlocks.insert(getUserBB(U));
SmallVector<BasicBlock *, 32> IDFBlocks;
SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks);
IDF.resetLiveInBlocks();
IDF.setLiveInBlocks(LiveInBlocks);
IDF.calculate(IDFBlocks);
// We've computed IDF, now insert new phi-nodes there.
SmallVector<PHINode *, 4> InsertedPHIsForVar;
for (auto FrontierBB : IDFBlocks) {
IRBuilder<> B(FrontierBB, FrontierBB->begin());
PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
R.Defines[FrontierBB] = PN;
InsertedPHIsForVar.push_back(PN);
if (InsertedPHIs)
InsertedPHIs->push_back(PN);
}
// Fill in arguments of the inserted PHIs.
for (auto PN : InsertedPHIsForVar) {
BasicBlock *PBB = PN->getParent();
for (BasicBlock *Pred : PredCache.get(PBB))
PN->addIncoming(computeValueAt(Pred, R, DT), Pred);
}
// Rewrite actual uses with the inserted definitions.
for (auto U : R.Uses) {
Value *V = computeValueAt(getUserBB(U), R, DT);
Value *OldVal = U->get();
// Notify that users of the existing value that it is being replaced.
if (OldVal != V && OldVal->hasValueHandle())
ValueHandleBase::ValueIsRAUWd(OldVal, V);
U->set(V);
}
}
}

View File

@ -15,5 +15,6 @@ add_llvm_unittest(UtilsTests
IntegerDivision.cpp
Local.cpp
OrderedInstructions.cpp
SSAUpdaterBulk.cpp
ValueMapperTest.cpp
)

View File

@ -0,0 +1,195 @@
//===- SSAUpdaterBulk.cpp - Unit tests for SSAUpdaterBulk -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "gtest/gtest.h"
using namespace llvm;
TEST(SSAUpdaterBulk, SimpleMerge) {
SSAUpdaterBulk Updater;
LLVMContext C;
Module M("SSAUpdaterTest", C);
IRBuilder<> B(C);
Type *I32Ty = B.getInt32Ty();
auto *F = Function::Create(FunctionType::get(B.getVoidTy(), {I32Ty}, false),
GlobalValue::ExternalLinkage, "F", &M);
// Generate a simple program:
// if:
// br i1 true, label %true, label %false
// true:
// %1 = add i32 %0, 1
// %2 = sub i32 %0, 2
// br label %merge
// false:
// %3 = add i32 %0, 3
// %4 = sub i32 %0, 4
// br label %merge
// merge:
// %5 = add i32 %1, 5
// %6 = add i32 %3, 6
// %7 = add i32 %2, %4
// %8 = sub i32 %2, %4
Argument *FirstArg = &*(F->arg_begin());
BasicBlock *IfBB = BasicBlock::Create(C, "if", F);
BasicBlock *TrueBB = BasicBlock::Create(C, "true", F);
BasicBlock *FalseBB = BasicBlock::Create(C, "false", F);
BasicBlock *MergeBB = BasicBlock::Create(C, "merge", F);
B.SetInsertPoint(IfBB);
B.CreateCondBr(B.getTrue(), TrueBB, FalseBB);
B.SetInsertPoint(TrueBB);
Value *AddOp1 = B.CreateAdd(FirstArg, ConstantInt::get(I32Ty, 1));
Value *SubOp1 = B.CreateSub(FirstArg, ConstantInt::get(I32Ty, 2));
B.CreateBr(MergeBB);
B.SetInsertPoint(FalseBB);
Value *AddOp2 = B.CreateAdd(FirstArg, ConstantInt::get(I32Ty, 3));
Value *SubOp2 = B.CreateSub(FirstArg, ConstantInt::get(I32Ty, 4));
B.CreateBr(MergeBB);
B.SetInsertPoint(MergeBB, MergeBB->begin());
auto *I1 = cast<Instruction>(B.CreateAdd(AddOp1, ConstantInt::get(I32Ty, 5)));
auto *I2 = cast<Instruction>(B.CreateAdd(AddOp2, ConstantInt::get(I32Ty, 6)));
auto *I3 = cast<Instruction>(B.CreateAdd(SubOp1, SubOp2));
auto *I4 = cast<Instruction>(B.CreateSub(SubOp1, SubOp2));
// Now rewrite uses in instructions %5, %6, %7. They need to use a phi, which
// SSAUpdater should insert into %merge.
// Intentionally don't touch %8 to see that SSAUpdater only changes
// instructions that were explicitly specified.
Updater.AddVariable(0, "a", I32Ty);
Updater.AddAvailableValue(0, TrueBB, AddOp1);
Updater.AddAvailableValue(0, FalseBB, AddOp2);
Updater.AddUse(0, &I1->getOperandUse(0));
Updater.AddUse(0, &I2->getOperandUse(0));
Updater.AddVariable(1, "b", I32Ty);
Updater.AddAvailableValue(1, TrueBB, SubOp1);
Updater.AddAvailableValue(1, FalseBB, SubOp2);
Updater.AddUse(1, &I3->getOperandUse(0));
Updater.AddUse(1, &I3->getOperandUse(1));
DominatorTree DT(*F);
Updater.RewriteAllUses(&DT);
// Check how %5 and %6 were rewritten.
PHINode *UpdatePhiA = dyn_cast_or_null<PHINode>(I1->getOperand(0));
EXPECT_NE(UpdatePhiA, nullptr);
EXPECT_EQ(UpdatePhiA->getIncomingValueForBlock(TrueBB), AddOp1);
EXPECT_EQ(UpdatePhiA->getIncomingValueForBlock(FalseBB), AddOp2);
EXPECT_EQ(UpdatePhiA, dyn_cast_or_null<PHINode>(I1->getOperand(0)));
// Check how %7 was rewritten.
PHINode *UpdatePhiB = dyn_cast_or_null<PHINode>(I3->getOperand(0));
EXPECT_EQ(UpdatePhiB->getIncomingValueForBlock(TrueBB), SubOp1);
EXPECT_EQ(UpdatePhiB->getIncomingValueForBlock(FalseBB), SubOp2);
EXPECT_EQ(UpdatePhiB, dyn_cast_or_null<PHINode>(I3->getOperand(1)));
// Check that %8 was kept untouched.
EXPECT_EQ(I4->getOperand(0), SubOp1);
EXPECT_EQ(I4->getOperand(1), SubOp2);
}
TEST(SSAUpdaterBulk, Irreducible) {
SSAUpdaterBulk Updater;
LLVMContext C;
Module M("SSAUpdaterTest", C);
IRBuilder<> B(C);
Type *I32Ty = B.getInt32Ty();
auto *F = Function::Create(FunctionType::get(B.getVoidTy(), {I32Ty}, false),
GlobalValue::ExternalLinkage, "F", &M);
// Generate a small program with a multi-entry loop:
// if:
// %1 = add i32 %0, 1
// br i1 true, label %loopmain, label %loopstart
//
// loopstart:
// %2 = add i32 %0, 2
// br label %loopmain
//
// loopmain:
// %3 = add i32 %1, 3
// br i1 true, label %loopstart, label %afterloop
//
// afterloop:
// %4 = add i32 %2, 4
// ret i32 %0
Argument *FirstArg = &*F->arg_begin();
BasicBlock *IfBB = BasicBlock::Create(C, "if", F);
BasicBlock *LoopStartBB = BasicBlock::Create(C, "loopstart", F);
BasicBlock *LoopMainBB = BasicBlock::Create(C, "loopmain", F);
BasicBlock *AfterLoopBB = BasicBlock::Create(C, "afterloop", F);
B.SetInsertPoint(IfBB);
Value *AddOp1 = B.CreateAdd(FirstArg, ConstantInt::get(I32Ty, 1));
B.CreateCondBr(B.getTrue(), LoopMainBB, LoopStartBB);
B.SetInsertPoint(LoopStartBB);
Value *AddOp2 = B.CreateAdd(FirstArg, ConstantInt::get(I32Ty, 2));
B.CreateBr(LoopMainBB);
B.SetInsertPoint(LoopMainBB);
auto *I1 = cast<Instruction>(B.CreateAdd(AddOp1, ConstantInt::get(I32Ty, 3)));
B.CreateCondBr(B.getTrue(), LoopStartBB, AfterLoopBB);
B.SetInsertPoint(AfterLoopBB);
auto *I2 = cast<Instruction>(B.CreateAdd(AddOp2, ConstantInt::get(I32Ty, 4)));
ReturnInst *Return = B.CreateRet(FirstArg);
// Now rewrite uses in instructions %3, %4, and 'ret i32 %0'. Only %4 needs a
// new phi, others should be able to work with existing values.
// The phi for %4 should be inserted into LoopMainBB and should look like
// this:
// %b = phi i32 [ %2, %loopstart ], [ undef, %if ]
// No other rewrites should be made.
// Add use in %3.
Updater.AddVariable(0, "c", I32Ty);
Updater.AddAvailableValue(0, IfBB, AddOp1);
Updater.AddUse(0, &I1->getOperandUse(0));
// Add use in %4.
Updater.AddVariable(1, "b", I32Ty);
Updater.AddAvailableValue(1, LoopStartBB, AddOp2);
Updater.AddUse(1, &I2->getOperandUse(0));
// Add use in the return instruction.
Updater.AddVariable(2, "a", I32Ty);
Updater.AddAvailableValue(2, &F->getEntryBlock(), FirstArg);
Updater.AddUse(2, &Return->getOperandUse(0));
// Save all inserted phis into a vector.
SmallVector<PHINode *, 8> Inserted;
DominatorTree DT(*F);
Updater.RewriteAllUses(&DT, &Inserted);
// Only one phi should have been inserted.
EXPECT_EQ(Inserted.size(), 1u);
// I1 and Return should use the same values as they used before.
EXPECT_EQ(I1->getOperand(0), AddOp1);
EXPECT_EQ(Return->getOperand(0), FirstArg);
// I2 should use the new phi.
PHINode *UpdatePhi = dyn_cast_or_null<PHINode>(I2->getOperand(0));
EXPECT_NE(UpdatePhi, nullptr);
EXPECT_EQ(UpdatePhi->getIncomingValueForBlock(LoopStartBB), AddOp2);
EXPECT_EQ(UpdatePhi->getIncomingValueForBlock(IfBB), UndefValue::get(I32Ty));
}