1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00

Make code layout more consistent.

llvm-svn: 9426
This commit is contained in:
Misha Brukman 2003-10-23 17:39:37 +00:00
parent b11e17cfc8
commit 22e5a5848b
3 changed files with 267 additions and 326 deletions

View File

@ -19,13 +19,13 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/Constant.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "Support/STLExtras.h"
#include "Config/alloca.h"
@ -35,102 +35,82 @@
//------------------------------------------------------------------------
void
InstrTreeNode::dump(int dumpChildren, int indent) const
{
InstrTreeNode::dump(int dumpChildren, int indent) const {
dumpNode(indent);
if (dumpChildren)
{
if (LeftChild)
LeftChild->dump(dumpChildren, indent+1);
if (RightChild)
RightChild->dump(dumpChildren, indent+1);
}
if (dumpChildren) {
if (LeftChild)
LeftChild->dump(dumpChildren, indent+1);
if (RightChild)
RightChild->dump(dumpChildren, indent+1);
}
}
InstructionNode::InstructionNode(Instruction* I)
: InstrTreeNode(NTInstructionNode, I),
codeIsFoldedIntoParent(false)
: InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false)
{
opLabel = I->getOpcode();
// Distinguish special cases of some instructions such as Ret and Br
//
if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue())
{
opLabel = RetValueOp; // ret(value) operation
}
if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
opLabel = RetValueOp; // ret(value) operation
}
else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
{
opLabel = BrCondOp; // br(cond) operation
} else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
opLabel = SetCCOp; // common label for all SetCC ops
} else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
opLabel = AllocaN; // Alloca(ptr, N) operation
} else if (opLabel == Instruction::GetElementPtr &&
cast<GetElementPtrInst>(I)->hasIndices()) {
opLabel = opLabel + 100; // getElem with index vector
} else if (opLabel == Instruction::Xor &&
BinaryOperator::isNot(I)) {
opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
: BNotOp; // bitwise Not operator
} else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
opLabel == Instruction::Xor) {
// Distinguish bitwise operators from logical operators!
if (I->getType() != Type::BoolTy)
opLabel = opLabel + 100; // bitwise operator
} else if (opLabel == Instruction::Cast) {
const Type *ITy = I->getType();
switch(ITy->getPrimitiveID())
{
opLabel = BrCondOp; // br(cond) operation
}
else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT)
{
opLabel = SetCCOp; // common label for all SetCC ops
}
else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0)
{
opLabel = AllocaN; // Alloca(ptr, N) operation
}
else if (opLabel == Instruction::GetElementPtr &&
cast<GetElementPtrInst>(I)->hasIndices())
{
opLabel = opLabel + 100; // getElem with index vector
}
else if (opLabel == Instruction::Xor &&
BinaryOperator::isNot(I))
{
opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
: BNotOp; // bitwise Not operator
}
else if (opLabel == Instruction::And ||
opLabel == Instruction::Or ||
opLabel == Instruction::Xor)
{
// Distinguish bitwise operators from logical operators!
if (I->getType() != Type::BoolTy)
opLabel = opLabel + 100; // bitwise operator
}
else if (opLabel == Instruction::Cast)
{
const Type *ITy = I->getType();
switch(ITy->getPrimitiveID())
{
case Type::BoolTyID: opLabel = ToBoolTy; break;
case Type::UByteTyID: opLabel = ToUByteTy; break;
case Type::SByteTyID: opLabel = ToSByteTy; break;
case Type::UShortTyID: opLabel = ToUShortTy; break;
case Type::ShortTyID: opLabel = ToShortTy; break;
case Type::UIntTyID: opLabel = ToUIntTy; break;
case Type::IntTyID: opLabel = ToIntTy; break;
case Type::ULongTyID: opLabel = ToULongTy; break;
case Type::LongTyID: opLabel = ToLongTy; break;
case Type::FloatTyID: opLabel = ToFloatTy; break;
case Type::DoubleTyID: opLabel = ToDoubleTy; break;
case Type::ArrayTyID: opLabel = ToArrayTy; break;
case Type::PointerTyID: opLabel = ToPointerTy; break;
default:
// Just use `Cast' opcode otherwise. It's probably ignored.
break;
}
case Type::BoolTyID: opLabel = ToBoolTy; break;
case Type::UByteTyID: opLabel = ToUByteTy; break;
case Type::SByteTyID: opLabel = ToSByteTy; break;
case Type::UShortTyID: opLabel = ToUShortTy; break;
case Type::ShortTyID: opLabel = ToShortTy; break;
case Type::UIntTyID: opLabel = ToUIntTy; break;
case Type::IntTyID: opLabel = ToIntTy; break;
case Type::ULongTyID: opLabel = ToULongTy; break;
case Type::LongTyID: opLabel = ToLongTy; break;
case Type::FloatTyID: opLabel = ToFloatTy; break;
case Type::DoubleTyID: opLabel = ToDoubleTy; break;
case Type::ArrayTyID: opLabel = ToArrayTy; break;
case Type::PointerTyID: opLabel = ToPointerTy; break;
default:
// Just use `Cast' opcode otherwise. It's probably ignored.
break;
}
}
}
void
InstructionNode::dumpNode(int indent) const
{
InstructionNode::dumpNode(int indent) const {
for (int i=0; i < indent; i++)
std::cerr << " ";
std::cerr << getInstruction()->getOpcodeName()
<< " [label " << getOpLabel() << "]" << "\n";
}
void
VRegListNode::dumpNode(int indent) const
{
VRegListNode::dumpNode(int indent) const {
for (int i=0; i < indent; i++)
std::cerr << " ";
@ -139,8 +119,7 @@ VRegListNode::dumpNode(int indent) const
void
VRegNode::dumpNode(int indent) const
{
VRegNode::dumpNode(int indent) const {
for (int i=0; i < indent; i++)
std::cerr << " ";
@ -149,8 +128,7 @@ VRegNode::dumpNode(int indent) const
}
void
ConstantNode::dumpNode(int indent) const
{
ConstantNode::dumpNode(int indent) const {
for (int i=0; i < indent; i++)
std::cerr << " ";
@ -158,9 +136,7 @@ ConstantNode::dumpNode(int indent) const
<< (int) getValue()->getValueType() << ")" << "\n";
}
void
LabelNode::dumpNode(int indent) const
{
void LabelNode::dumpNode(int indent) const {
for (int i=0; i < indent; i++)
std::cerr << " ";
@ -173,56 +149,46 @@ LabelNode::dumpNode(int indent) const
// A forest of instruction trees, usually for a single method.
//------------------------------------------------------------------------
InstrForest::InstrForest(Function *F)
{
InstrForest::InstrForest(Function *F) {
for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
buildTreeForInstruction(I);
}
}
InstrForest::~InstrForest()
{
InstrForest::~InstrForest() {
for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
}
void
InstrForest::dump() const
{
void InstrForest::dump() const {
for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
(*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
}
inline void
InstrForest::eraseRoot(InstructionNode* node)
{
inline void InstrForest::eraseRoot(InstructionNode* node) {
for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
RI != RE; ++RI)
if (*RI == node)
treeRoots.erase(RI.base()-1);
}
inline void
InstrForest::noteTreeNodeForInstr(Instruction *instr,
InstructionNode *treeNode)
{
inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
InstructionNode *treeNode) {
(*this)[instr] = treeNode;
treeRoots.push_back(treeNode); // mark node as root of a new tree
}
inline void
InstrForest::setLeftChild(InstrTreeNode *parent, InstrTreeNode *child)
{
inline void InstrForest::setLeftChild(InstrTreeNode *parent,
InstrTreeNode *child) {
parent->LeftChild = child;
child->Parent = parent;
if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
eraseRoot(instrNode); // no longer a tree root
}
inline void
InstrForest::setRightChild(InstrTreeNode *parent, InstrTreeNode *child)
{
inline void InstrForest::setRightChild(InstrTreeNode *parent,
InstrTreeNode *child) {
parent->RightChild = child;
child->Parent = parent;
if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
@ -230,26 +196,23 @@ InstrForest::setRightChild(InstrTreeNode *parent, InstrTreeNode *child)
}
InstructionNode*
InstrForest::buildTreeForInstruction(Instruction *instr)
{
InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
InstructionNode *treeNode = getTreeNodeForInstr(instr);
if (treeNode)
{
// treeNode has already been constructed for this instruction
assert(treeNode->getInstruction() == instr);
return treeNode;
}
if (treeNode) {
// treeNode has already been constructed for this instruction
assert(treeNode->getInstruction() == instr);
return treeNode;
}
// Otherwise, create a new tree node for this instruction.
//
treeNode = new InstructionNode(instr);
noteTreeNodeForInstr(instr, treeNode);
if (instr->getOpcode() == Instruction::Call)
{ // Operands of call instruction
return treeNode;
}
if (instr->getOpcode() == Instruction::Call) {
// Operands of call instruction
return treeNode;
}
// If the instruction has more than 2 instruction operands,
// then we need to create artificial list nodes to hold them.
@ -285,46 +248,42 @@ InstrForest::buildTreeForInstruction(Instruction *instr)
if (includeAddressOperand || isa<Instruction>(operand) ||
isa<Constant>(operand) || isa<Argument>(operand) ||
isa<GlobalVariable>(operand))
{
// This operand is a data value
{
// This operand is a data value
// An instruction that computes the incoming value is added as a
// child of the current instruction if:
// the value has only a single use
// AND both instructions are in the same basic block.
// AND the current instruction is not a PHI (because the incoming
// value is conceptually in a predecessor block,
// even though it may be in the same static block)
//
// (Note that if the value has only a single use (viz., `instr'),
// the def of the value can be safely moved just before instr
// and therefore it is safe to combine these two instructions.)
//
// In all other cases, the virtual register holding the value
// is used directly, i.e., made a child of the instruction node.
//
InstrTreeNode* opTreeNode;
if (isa<Instruction>(operand) && operand->hasOneUse() &&
cast<Instruction>(operand)->getParent() == instr->getParent() &&
instr->getOpcode() != Instruction::PHI &&
instr->getOpcode() != Instruction::Call)
{
// Recursively create a treeNode for it.
opTreeNode = buildTreeForInstruction((Instruction*)operand);
}
else if (Constant *CPV = dyn_cast<Constant>(operand))
{
// Create a leaf node for a constant
opTreeNode = new ConstantNode(CPV);
}
else
{
// Create a leaf node for the virtual register
opTreeNode = new VRegNode(operand);
}
// An instruction that computes the incoming value is added as a
// child of the current instruction if:
// the value has only a single use
// AND both instructions are in the same basic block.
// AND the current instruction is not a PHI (because the incoming
// value is conceptually in a predecessor block,
// even though it may be in the same static block)
//
// (Note that if the value has only a single use (viz., `instr'),
// the def of the value can be safely moved just before instr
// and therefore it is safe to combine these two instructions.)
//
// In all other cases, the virtual register holding the value
// is used directly, i.e., made a child of the instruction node.
//
InstrTreeNode* opTreeNode;
if (isa<Instruction>(operand) && operand->hasOneUse() &&
cast<Instruction>(operand)->getParent() == instr->getParent() &&
instr->getOpcode() != Instruction::PHI &&
instr->getOpcode() != Instruction::Call)
{
// Recursively create a treeNode for it.
opTreeNode = buildTreeForInstruction((Instruction*)operand);
} else if (Constant *CPV = dyn_cast<Constant>(operand)) {
// Create a leaf node for a constant
opTreeNode = new ConstantNode(CPV);
} else {
// Create a leaf node for the virtual register
opTreeNode = new VRegNode(operand);
}
childArray[numChildren++] = opTreeNode;
}
childArray[numChildren++] = opTreeNode;
}
}
//--------------------------------------------------------------------
@ -338,15 +297,14 @@ InstrForest::buildTreeForInstruction(Instruction *instr)
InstrTreeNode *parent = treeNode;
if (numChildren > 2)
{
unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
assert(instrOpcode == Instruction::PHI ||
instrOpcode == Instruction::Call ||
instrOpcode == Instruction::Load ||
instrOpcode == Instruction::Store ||
instrOpcode == Instruction::GetElementPtr);
}
if (numChildren > 2) {
unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
assert(instrOpcode == Instruction::PHI ||
instrOpcode == Instruction::Call ||
instrOpcode == Instruction::Load ||
instrOpcode == Instruction::Store ||
instrOpcode == Instruction::GetElementPtr);
}
// Insert the first child as a direct child
if (numChildren >= 1)
@ -355,21 +313,19 @@ InstrForest::buildTreeForInstruction(Instruction *instr)
int n;
// Create a list node for children 2 .. N-1, if any
for (n = numChildren-1; n >= 2; n--)
{
// We have more than two children
InstrTreeNode *listNode = new VRegListNode();
setRightChild(parent, listNode);
setLeftChild(listNode, childArray[numChildren - n]);
parent = listNode;
}
for (n = numChildren-1; n >= 2; n--) {
// We have more than two children
InstrTreeNode *listNode = new VRegListNode();
setRightChild(parent, listNode);
setLeftChild(listNode, childArray[numChildren - n]);
parent = listNode;
}
// Now insert the last remaining child (if any).
if (numChildren >= 2)
{
assert(n == 1);
setRightChild(parent, childArray[numChildren - 1]);
}
if (numChildren >= 2) {
assert(n == 1);
setRightChild(parent, childArray[numChildren - 1]);
}
delete [] childArray;
return treeNode;

View File

@ -14,19 +14,19 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetRegInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Function.h"
#include "llvm/iPHINode.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "Support/CommandLine.h"
#include "Support/LeakDetector.h"
using std::vector;
#include <vector>
std::vector<MachineInstr*>
FixConstantOperandsForInstr(Instruction* vmInstr, MachineInstr* minstr,
@ -66,7 +66,7 @@ namespace {
TargetMachine &Target;
void InsertCodeForPhis(Function &F);
void InsertPhiElimInstructions(BasicBlock *BB,
const vector<MachineInstr*>& CpVec);
const std::vector<MachineInstr*>& CpVec);
void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt);
void PostprocessMachineCodeForTree(InstructionNode* instrNode,
int ruleForNode, short* nts);
@ -89,9 +89,8 @@ TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
mcfi.addTemp(this);
Operands.push_back(Use(s1, this)); // s1 must be non-null
if (s2) {
if (s2)
Operands.push_back(Use(s2, this));
}
// TmpInstructions should not be garbage checked.
LeakDetector::removeGarbageObject(this);
@ -106,8 +105,10 @@ TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
{
mcfi.addTemp(this);
if (s1) { Operands.push_back(Use(s1, this)); }
if (s2) { Operands.push_back(Use(s2, this)); }
if (s1)
Operands.push_back(Use(s1, this));
if (s2)
Operands.push_back(Use(s2, this));
// TmpInstructions should not be garbage checked.
LeakDetector::removeGarbageObject(this);
@ -121,37 +122,34 @@ bool InstructionSelection::runOnFunction(Function &F)
//
InstrForest instrForest(&F);
if (SelectDebugLevel >= Select_DebugInstTrees)
{
std::cerr << "\n\n*** Input to instruction selection for function "
<< F.getName() << "\n\n" << F
<< "\n\n*** Instruction trees for function "
<< F.getName() << "\n\n";
instrForest.dump();
}
if (SelectDebugLevel >= Select_DebugInstTrees) {
std::cerr << "\n\n*** Input to instruction selection for function "
<< F.getName() << "\n\n" << F
<< "\n\n*** Instruction trees for function "
<< F.getName() << "\n\n";
instrForest.dump();
}
//
// Invoke BURG instruction selection for each tree
//
for (InstrForest::const_root_iterator RI = instrForest.roots_begin();
RI != instrForest.roots_end(); ++RI)
{
InstructionNode* basicNode = *RI;
assert(basicNode->parent() == NULL && "A `root' node has a parent?");
RI != instrForest.roots_end(); ++RI) {
InstructionNode* basicNode = *RI;
assert(basicNode->parent() == NULL && "A `root' node has a parent?");
// Invoke BURM to label each tree node with a state
burm_label(basicNode);
// Invoke BURM to label each tree node with a state
burm_label(basicNode);
if (SelectDebugLevel >= Select_DebugBurgTrees)
{
printcover(basicNode, 1, 0);
std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
printMatches(basicNode);
}
// Then recursively walk the tree to select instructions
SelectInstructionsForTree(basicNode, /*goalnt*/1);
if (SelectDebugLevel >= Select_DebugBurgTrees) {
printcover(basicNode, 1, 0);
std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
printMatches(basicNode);
}
// Then recursively walk the tree to select instructions
SelectInstructionsForTree(basicNode, /*goalnt*/1);
}
//
// Create the MachineBasicBlock records and add all of the MachineInstrs
@ -172,11 +170,10 @@ bool InstructionSelection::runOnFunction(Function &F)
// Insert phi elimination code
InsertCodeForPhis(F);
if (SelectDebugLevel >= Select_PrintMachineCode)
{
std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
MachineFunction::get(&F).dump();
}
if (SelectDebugLevel >= Select_PrintMachineCode) {
std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
MachineFunction::get(&F).dump();
}
return true;
}
@ -187,8 +184,7 @@ bool InstructionSelection::runOnFunction(Function &F)
//-------------------------------------------------------------------------
void
InstructionSelection::InsertCodeForPhis(Function &F)
{
InstructionSelection::InsertCodeForPhis(Function &F) {
// for all basic blocks in function
//
MachineFunction &MF = MachineFunction::get(&F);
@ -207,12 +203,12 @@ InstructionSelection::InsertCodeForPhis(Function &F)
//
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
// insert the copy instruction to the predecessor BB
vector<MachineInstr*> mvec, CpVec;
std::vector<MachineInstr*> mvec, CpVec;
Target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PhiCpRes,
mvec);
for (vector<MachineInstr*>::iterator MI=mvec.begin();
for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
MI != mvec.end(); ++MI) {
vector<MachineInstr*> CpVec2 =
std::vector<MachineInstr*> CpVec2 =
FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target);
CpVec2.push_back(*MI);
CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
@ -221,7 +217,7 @@ InstructionSelection::InsertCodeForPhis(Function &F)
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
}
vector<MachineInstr*> mvec;
std::vector<MachineInstr*> mvec;
Target.getRegInfo().cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN),
mvec);
BB->insert(BB->begin(), mvec.begin(), mvec.end());
@ -236,7 +232,7 @@ InstructionSelection::InsertCodeForPhis(Function &F)
void
InstructionSelection::InsertPhiElimInstructions(BasicBlock *BB,
const vector<MachineInstr*>& CpVec)
const std::vector<MachineInstr*>& CpVec)
{
Instruction *TermInst = (Instruction*)BB->getTerminator();
MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
@ -304,50 +300,47 @@ InstructionSelection::SelectInstructionsForTree(InstrTreeNode* treeRoot,
// (If this is a list node, not an instruction, then skip this step).
// This function is specific to the target architecture.
//
if (treeRoot->opLabel != VRegListOp)
{
vector<MachineInstr*> minstrVec;
if (treeRoot->opLabel != VRegListOp) {
std::vector<MachineInstr*> minstrVec;
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
MachineCodeForInstruction &mvec =
MachineCodeForInstruction::get(instrNode->getInstruction());
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
}
MachineCodeForInstruction &mvec =
MachineCodeForInstruction::get(instrNode->getInstruction());
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
}
// Then, recursively compile the child nodes, if any.
//
if (nts[0])
{ // i.e., there is at least one kid
InstrTreeNode* kids[2];
int currentRule = ruleForNode;
burm_kids(treeRoot, currentRule, kids);
if (nts[0]) {
// i.e., there is at least one kid
InstrTreeNode* kids[2];
int currentRule = ruleForNode;
burm_kids(treeRoot, currentRule, kids);
// First skip over any chain rules so that we don't visit
// the current node again.
//
while (ThisIsAChainRule(currentRule))
{
currentRule = burm_rule(treeRoot->state, nts[0]);
nts = burm_nts[currentRule];
burm_kids(treeRoot, currentRule, kids);
}
// Now we have the first non-chain rule so we have found
// the actual child nodes. Recursively compile them.
//
for (unsigned i = 0; nts[i]; i++)
{
assert(i < 2);
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode)
SelectInstructionsForTree(kids[i], nts[i]);
}
// First skip over any chain rules so that we don't visit
// the current node again.
//
while (ThisIsAChainRule(currentRule)) {
currentRule = burm_rule(treeRoot->state, nts[0]);
nts = burm_nts[currentRule];
burm_kids(treeRoot, currentRule, kids);
}
// Now we have the first non-chain rule so we have found
// the actual child nodes. Recursively compile them.
//
for (unsigned i = 0; nts[i]; i++) {
assert(i < 2);
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode)
SelectInstructionsForTree(kids[i], nts[i]);
}
}
// Finally, do any post-processing on this node after its children
// have been translated
@ -373,13 +366,12 @@ InstructionSelection::PostprocessMachineCodeForTree(InstructionNode* instrNode,
//
Instruction* vmInstr = instrNode->getInstruction();
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
for (unsigned i = mvec.size(); i != 0; --i)
{
vector<MachineInstr*> loadConstVec =
FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
for (unsigned i = mvec.size(); i != 0; --i) {
std::vector<MachineInstr*> loadConstVec =
FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
}
mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
}
}

View File

@ -66,17 +66,14 @@ ChooseRegOrImmed(int64_t intValue,
getImmedValue = 0;
if (canUseImmed &&
target.getInstrInfo().constantFitsInImmedField(opCode, intValue))
{
target.getInstrInfo().constantFitsInImmedField(opCode, intValue)) {
opType = isSigned? MachineOperand::MO_SignExtendedImmed
: MachineOperand::MO_UnextendedImmed;
getImmedValue = intValue;
}
else if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0)
{
opType = MachineOperand::MO_MachineRegister;
getMachineRegNum = target.getRegInfo().getZeroRegNum();
}
} else if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0) {
opType = MachineOperand::MO_MachineRegister;
getMachineRegNum = target.getRegInfo().getZeroRegNum();
}
return opType;
}
@ -158,52 +155,48 @@ FixConstantOperandsForInstr(Instruction* vmInstr,
MachineOperand::MO_VirtualRegister;
// Operand may be a virtual register or a compile-time constant
if (mop.getType() == MachineOperand::MO_VirtualRegister)
{
assert(mop.getVRegValue() != NULL);
opValue = mop.getVRegValue();
if (Constant *opConst = dyn_cast<Constant>(opValue)) {
opType = ChooseRegOrImmed(opConst, opCode, target,
(immedPos == (int)op), machineRegNum,
immedValue);
if (opType == MachineOperand::MO_VirtualRegister)
constantThatMustBeLoaded = true;
}
}
else
{
assert(mop.isImmediate());
bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
// Bit-selection flags indicate an instruction that is extracting
// bits from its operand so ignore this even if it is a big constant.
if (mop.opHiBits32() || mop.opLoBits32() ||
mop.opHiBits64() || mop.opLoBits64())
continue;
opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
opCode, target, (immedPos == (int)op),
machineRegNum, immedValue);
if (opType == MachineOperand::MO_SignExtendedImmed ||
opType == MachineOperand::MO_UnextendedImmed) {
// The optype is an immediate value
// This means we need to change the opcode, e.g. ADDr -> ADDi
unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
minstr->setOpcode(newOpcode);
}
if (opType == mop.getType())
continue; // no change: this is the most common case
if (mop.getType() == MachineOperand::MO_VirtualRegister) {
assert(mop.getVRegValue() != NULL);
opValue = mop.getVRegValue();
if (Constant *opConst = dyn_cast<Constant>(opValue)) {
opType = ChooseRegOrImmed(opConst, opCode, target,
(immedPos == (int)op), machineRegNum,
immedValue);
if (opType == MachineOperand::MO_VirtualRegister)
{
constantThatMustBeLoaded = true;
opValue = isSigned
? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
: (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
}
constantThatMustBeLoaded = true;
}
} else {
assert(mop.isImmediate());
bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
// Bit-selection flags indicate an instruction that is extracting
// bits from its operand so ignore this even if it is a big constant.
if (mop.opHiBits32() || mop.opLoBits32() ||
mop.opHiBits64() || mop.opLoBits64())
continue;
opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
opCode, target, (immedPos == (int)op),
machineRegNum, immedValue);
if (opType == MachineOperand::MO_SignExtendedImmed ||
opType == MachineOperand::MO_UnextendedImmed) {
// The optype is an immediate value
// This means we need to change the opcode, e.g. ADDr -> ADDi
unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
minstr->setOpcode(newOpcode);
}
if (opType == mop.getType())
continue; // no change: this is the most common case
if (opType == MachineOperand::MO_VirtualRegister) {
constantThatMustBeLoaded = true;
opValue = isSigned
? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
: (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
}
}
if (opType == MachineOperand::MO_MachineRegister)
minstr->SetMachineOperandReg(op, machineRegNum);
@ -250,16 +243,16 @@ FixConstantOperandsForInstr(Instruction* vmInstr,
InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
minstr->setImplicitRef(i, tmpReg);
if (isCall)
{ // find and replace the argument in the CallArgsDescriptor
unsigned i=lastCallArgNum;
while (argDesc->getArgInfo(i).getArgVal() != oldVal)
++i;
assert(i < argDesc->getNumArgs() &&
"Constant operands to a call *must* be in the arg list");
lastCallArgNum = i;
argDesc->getArgInfo(i).replaceArgVal(tmpReg);
}
if (isCall) {
// find and replace the argument in the CallArgsDescriptor
unsigned i=lastCallArgNum;
while (argDesc->getArgInfo(i).getArgVal() != oldVal)
++i;
assert(i < argDesc->getNumArgs() &&
"Constant operands to a call *must* be in the arg list");
lastCallArgNum = i;
argDesc->getArgInfo(i).replaceArgVal(tmpReg);
}
}
return MVec;