1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00

misched: API for minimum vs. expected latency.

Minimum latency determines per-cycle scheduling groups.
Expected latency determines critical path and cost.

llvm-svn: 158021
This commit is contained in:
Andrew Trick 2012-06-05 21:11:27 +00:00
parent 14cfbf6563
commit 24cce40009
11 changed files with 276 additions and 139 deletions

View File

@ -272,6 +272,9 @@ namespace llvm {
unsigned Depth; // Node depth.
unsigned Height; // Node height.
public:
unsigned TopReadyCycle; // Cycle relative to start when node is ready.
unsigned BotReadyCycle; // Cycle relative to end when node is ready.
const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
const TargetRegisterClass *CopySrcRC;
@ -287,7 +290,7 @@ namespace llvm {
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
SchedulingPref(Sched::None),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
CopyDstRC(NULL), CopySrcRC(NULL) {}
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
/// SUnit - Construct an SUnit for post-regalloc scheduling to represent
/// a MachineInstr.
@ -301,7 +304,7 @@ namespace llvm {
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
SchedulingPref(Sched::None),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
CopyDstRC(NULL), CopySrcRC(NULL) {}
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
/// SUnit - Construct a placeholder SUnit.
SUnit()
@ -314,7 +317,7 @@ namespace llvm {
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
SchedulingPref(Sched::None),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
CopyDstRC(NULL), CopySrcRC(NULL) {}
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
/// setNode - Assign the representative SDNode for this SUnit.
/// This may be used during pre-regalloc scheduling.
@ -552,12 +555,6 @@ namespace llvm {
///
virtual void computeLatency(SUnit *SU) = 0;
/// ComputeOperandLatency - Override dependence edge latency using
/// operand use/def information
///
virtual void computeOperandLatency(SUnit *, SUnit *,
SDep&) const { }
/// ForceUnitLatencies - Return true if all scheduling edges should be given
/// a latency value of one. The default is to return false; schedulers may
/// override this as needed.

View File

@ -291,11 +291,15 @@ namespace llvm {
///
virtual void computeLatency(SUnit *SU);
/// computeOperandLatency - Override dependence edge latency using
/// computeOperandLatency - Return dependence edge latency using
/// operand use/def information
///
virtual void computeOperandLatency(SUnit *Def, SUnit *Use,
SDep& dep) const;
/// FindMin may be set to get the minimum vs. expected latency. Minimum
/// latency is used for scheduling groups, while expected latency is for
/// instruction cost and critical path.
virtual unsigned computeOperandLatency(SUnit *Def, SUnit *Use,
const SDep& dep,
bool FindMin = false) const;
/// schedule - Order nodes according to selected style, filling
/// in the Sequence member.

View File

@ -214,6 +214,12 @@ public:
/// class. The latency is the maximum completion time for any stage
/// in the itinerary.
///
/// InstrStages override the itinerary's MinLatency property. In fact, if the
/// stage latencies, which may be zero, are less than MinLatency,
/// getStageLatency returns a value less than MinLatency.
///
/// If no stages exist, MinLatency is used. If MinLatency is invalid (<0),
/// then it defaults to one cycle.
unsigned getStageLatency(unsigned ItinClassIndx) const {
// If the target doesn't provide itinerary information, use a simple
// non-zero default value for all instructions. Some target's provide a
@ -222,7 +228,7 @@ public:
// stage). This is different from beginStage == endStage != 0, which could
// be used for zero-latency pseudo ops.
if (isEmpty() || Itineraries[ItinClassIndx].FirstStage == 0)
return 1;
return (Props.MinLatency < 0) ? 1 : Props.MinLatency;
// Calculate the maximum completion time for any stage.
unsigned Latency = 0, StartCycle = 0;

View File

@ -668,18 +668,36 @@ public:
return Opcode <= TargetOpcode::COPY;
}
virtual int getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const = 0;
/// getOperandLatency - Compute and return the use operand latency of a given
/// pair of def and use.
/// In most cases, the static scheduling itinerary was enough to determine the
/// operand latency. But it may not be possible for instructions with variable
/// number of defs / uses.
///
/// This is a raw interface to the itinerary that may be directly overriden by
/// a target. Use computeOperandLatency to get the best estimate of latency.
virtual int getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const;
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI,
unsigned UseIdx) const;
virtual int getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const = 0;
/// computeOperandLatency - Compute and return the latency of the given data
/// dependent def and use. DefMI must be a valid def. UseMI may be NULL for
/// an unknown use. If the subtarget allows, this may or may not need to call
/// getOperandLatency().
///
/// FindMin may be set to get the minimum vs. expected latency. Minimum
/// latency is used for scheduling groups, while expected latency is for
/// instruction cost and critical path.
unsigned computeOperandLatency(const InstrItineraryData *ItinData,
const TargetRegisterInfo *TRI,
const MachineInstr *DefMI,
const MachineInstr *UseMI,
unsigned Reg, bool FindMin) const;
/// getOutputLatency - Compute and return the output dependency latency of a
/// a given pair of defs which both target the same register. This is usually
@ -693,13 +711,17 @@ public:
/// getInstrLatency - Compute the instruction latency of a given instruction.
/// If the instruction has higher cost when predicated, it's returned via
/// PredCost.
virtual int getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost = 0) const;
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost = 0) const;
virtual int getInstrLatency(const InstrItineraryData *ItinData,
SDNode *Node) const = 0;
/// Return the default expected latency for a def based on it's opcode.
unsigned defaultDefLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI) const;
/// isHighLatencyDef - Return true if this opcode has high latency to its
/// result.
virtual bool isHighLatencyDef(int opc) const { return false; }

View File

@ -21,8 +21,9 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@ -394,6 +395,12 @@ public:
return RegionCriticalPSets;
}
/// getIssueWidth - Return the max instructions per scheduling group.
///
unsigned getIssueWidth() const {
return InstrItins ? InstrItins->Props.IssueWidth : 1;
}
protected:
void initRegPressure();
void updateScheduledPressure(std::vector<unsigned> NewMaxPressure);
@ -787,13 +794,16 @@ class ConvergingScheduler : public MachineSchedStrategy {
/// MinReadyCycle - Cycle of the soonest available instruction.
unsigned MinReadyCycle;
// Remember the greatest min operand latency.
unsigned MaxMinLatency;
/// Pending queues extend the ready queues with the same ID and the
/// PendingFlag set.
SchedBoundary(unsigned ID, const Twine &Name):
Available(ID, Name+".A"),
Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
CheckPending(false), HazardRec(0), CurrCycle(0), IssueCount(0),
MinReadyCycle(UINT_MAX) {}
MinReadyCycle(UINT_MAX), MaxMinLatency(0) {}
~SchedBoundary() { delete HazardRec; }
@ -805,6 +815,8 @@ class ConvergingScheduler : public MachineSchedStrategy {
void bumpCycle();
void bumpNode(SUnit *SU, unsigned IssueWidth);
void releasePending();
void removeReady(SUnit *SU);
@ -868,25 +880,53 @@ void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
}
void ConvergingScheduler::releaseTopNode(SUnit *SU) {
Top.releaseNode(SU, SU->getDepth());
if (SU->isScheduled)
return;
for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
unsigned Latency =
DAG->computeOperandLatency(I->getSUnit(), SU, *I, /*FindMin=*/true);
#ifndef NDEBUG
Top.MaxMinLatency = std::max(Latency, Top.MaxMinLatency);
#endif
if (SU->TopReadyCycle < PredReadyCycle + Latency)
SU->TopReadyCycle = PredReadyCycle + Latency;
}
Top.releaseNode(SU, SU->TopReadyCycle);
}
void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
Bot.releaseNode(SU, SU->getHeight());
if (SU->isScheduled)
return;
assert(SU->getInstr() && "Scheduled SUnit must have instr");
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
unsigned Latency =
DAG->computeOperandLatency(SU, I->getSUnit(), *I, /*FindMin=*/true);
#ifndef NDEBUG
Bot.MaxMinLatency = std::max(Latency, Bot.MaxMinLatency);
#endif
if (SU->BotReadyCycle < SuccReadyCycle + Latency)
SU->BotReadyCycle = SuccReadyCycle + Latency;
}
Bot.releaseNode(SU, SU->BotReadyCycle);
}
void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
unsigned ReadyCycle) {
if (SU->isScheduled)
return;
if (ReadyCycle < MinReadyCycle)
MinReadyCycle = ReadyCycle;
// Check for interlocks first. For the purpose of other heuristics, an
// instruction that cannot issue appears as if it's not in the ReadyQueue.
if (HazardRec->isEnabled()
&& HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard)
if (ReadyCycle > CurrCycle
|| (HazardRec->isEnabled() && (HazardRec->getHazardType(SU)
!= ScheduleHazardRecognizer::NoHazard)))
Pending.push(SU);
else
Available.push(SU);
@ -900,10 +940,11 @@ void ConvergingScheduler::SchedBoundary::bumpCycle() {
unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
if (!HazardRec->isEnabled()) {
// Bypass lots of virtual calls in case of long latency.
// Bypass HazardRec virtual calls.
CurrCycle = NextCycle;
}
else {
// Bypass getHazardType calls in case of long latency.
for (; CurrCycle != NextCycle; ++CurrCycle) {
if (isTop())
HazardRec->AdvanceCycle();
@ -917,6 +958,26 @@ void ConvergingScheduler::SchedBoundary::bumpCycle() {
<< CurrCycle << '\n');
}
/// Move the boundary of scheduled code by one SUnit.
void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU,
unsigned IssueWidth) {
// Update the reservation table.
if (HazardRec->isEnabled()) {
if (!isTop() && SU->isCall) {
// Calls are scheduled with their preceding instructions. For bottom-up
// scheduling, clear the pipeline state before emitting.
HazardRec->Reset();
}
HazardRec->EmitInstruction(SU);
}
// Check the instruction group size limit.
++IssueCount;
if (IssueCount == IssueWidth) {
DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
bumpCycle();
}
}
/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
void ConvergingScheduler::SchedBoundary::releasePending() {
@ -928,7 +989,7 @@ void ConvergingScheduler::SchedBoundary::releasePending() {
// so, add them to the available queue.
for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
SUnit *SU = *(Pending.begin()+i);
unsigned ReadyCycle = isTop() ? SU->getHeight() : SU->getDepth();
unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
if (ReadyCycle < MinReadyCycle)
MinReadyCycle = ReadyCycle;
@ -965,7 +1026,8 @@ SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
releasePending();
for (unsigned i = 0; Available.empty(); ++i) {
assert(i <= HazardRec->getMaxLookAhead() && "permanent hazard"); (void)i;
assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
"permanent hazard"); (void)i;
bumpCycle();
releasePending();
}
@ -1205,27 +1267,15 @@ SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
/// Update the scheduler's state after scheduling a node. This is the same node
/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
/// it's state based on the current cycle before MachineSchedStrategy.
/// it's state based on the current cycle before MachineSchedStrategy does.
void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
// Update the reservation table.
if (IsTopNode && Top.HazardRec->isEnabled()) {
Top.HazardRec->EmitInstruction(SU);
if (Top.HazardRec->atIssueLimit()) {
DEBUG(dbgs() << "*** Max instrs at cycle " << Top.CurrCycle << '\n');
Top.bumpCycle();
}
if (IsTopNode) {
SU->TopReadyCycle = Top.CurrCycle;
Top.bumpNode(SU, DAG->getIssueWidth());
}
else if (Bot.HazardRec->isEnabled()) {
if (SU->isCall) {
// Calls are scheduled with their preceding instructions. For bottom-up
// scheduling, clear the pipeline state before emitting.
Bot.HazardRec->Reset();
}
Bot.HazardRec->EmitInstruction(SU);
if (Bot.HazardRec->atIssueLimit()) {
DEBUG(dbgs() << "*** Max instrs at cycle " << Bot.CurrCycle << '\n');
Bot.bumpCycle();
}
else {
SU->BotReadyCycle = Bot.CurrCycle;
Bot.bumpNode(SU, DAG->getIssueWidth());
}
}

View File

@ -271,10 +271,12 @@ void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
// Adjust the dependence latency using operand def/use
// information (if any), and then allow the target to
// perform its own adjustments.
const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
SDep dep(SU, SDep::Data, LDataLatency, *Alias);
if (!UnitLatencies) {
computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
unsigned Latency = computeOperandLatency(SU, UseSU, dep);
dep.setLatency(Latency);
ST.adjustSchedDependency(SU, UseSU, dep);
}
UseSU->addPred(dep);
}
@ -461,11 +463,13 @@ void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
// Create a data dependence.
//
// TODO: Handle "special" address latencies cleanly.
const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
SDep dep(DefSU, SDep::Data, DefSU->Latency, Reg);
if (!UnitLatencies) {
// Adjust the dependence latency using operand def/use information, then
// allow the target to perform its own adjustments.
computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
unsigned Latency = computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
dep.setLatency(Latency);
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
}
@ -970,8 +974,9 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
}
void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
// Compute the latency for the node.
if (!InstrItins || InstrItins->isEmpty()) {
// Compute the latency for the node. We only provide a default for missing
// itineraries. Empty itineraries still have latency properties.
if (!InstrItins) {
SU->Latency = 1;
// Simplistic target-independent heuristic: assume that loads take
@ -983,63 +988,15 @@ void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
}
}
void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
SDep& dep) const {
if (!InstrItins || InstrItins->isEmpty())
return;
unsigned ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
const SDep& dep,
bool FindMin) const {
// For a data dependency with a known register...
if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
return;
return 1;
const unsigned Reg = dep.getReg();
// ... find the definition of the register in the defining
// instruction
MachineInstr *DefMI = Def->getInstr();
int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
if (DefIdx != -1) {
const MachineOperand &MO = DefMI->getOperand(DefIdx);
if (MO.isReg() && MO.isImplicit() &&
DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
// This is an implicit def, getOperandLatency() won't return the correct
// latency. e.g.
// %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
// %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
// What we want is to compute latency between def of %D6/%D7 and use of
// %Q3 instead.
unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
if (DefMI->getOperand(Op2).isReg())
DefIdx = Op2;
}
MachineInstr *UseMI = Use->getInstr();
// For all uses of the register, calculate the maxmimum latency
int Latency = -1;
if (UseMI) {
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = UseMI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned MOReg = MO.getReg();
if (MOReg != Reg)
continue;
int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
UseMI, i);
Latency = std::max(Latency, UseCycle);
}
} else {
// UseMI is null, then it must be a scheduling barrier.
if (!InstrItins || InstrItins->isEmpty())
return;
unsigned DefClass = DefMI->getDesc().getSchedClass();
Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
}
// If we found a latency, then replace the existing dependence latency.
if (Latency >= 0)
dep.setLatency(Latency);
}
return TII->computeOperandLatency(InstrItins, TRI, Def->getInstr(),
Use->getInstr(), dep.getReg(), FindMin);
}
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {

View File

@ -98,12 +98,6 @@ namespace llvm {
///
virtual void computeLatency(SUnit *SU);
/// computeOperandLatency - Override dependence edge latency using
/// operand use/def information
///
virtual void computeOperandLatency(SUnit *Def, SUnit *Use,
SDep& dep) const { }
virtual void computeOperandLatency(SDNode *Def, SDNode *Use,
unsigned OpIdx, SDep& dep) const;

View File

@ -1046,7 +1046,7 @@ bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
return true; // Below MI
unsigned DefDist = DDI->second;
assert(Dist > DefDist && "Visited def already?");
if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
return true;
}
return false;

View File

@ -2567,12 +2567,13 @@ static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
int
ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const {
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI,
unsigned UseIdx) const {
if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
DefMI->isRegSequence() || DefMI->isImplicitDef())
DefMI->isRegSequence() || DefMI->isImplicitDef()) {
return 1;
}
if (!ItinData || ItinData->isEmpty())
return DefMI->mayLoad() ? 3 : 1;
@ -2983,14 +2984,16 @@ ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
DepMI->getNumOperands());
}
int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost) const {
unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost) const {
if (MI->isCopyLike() || MI->isInsertSubreg() ||
MI->isRegSequence() || MI->isImplicitDef())
return 1;
if (!ItinData || ItinData->isEmpty())
// Be sure to call getStageLatency for an empty itinerary in case it has a
// valid MinLatency property.
if (!ItinData)
return 1;
if (MI->isBundle()) {

View File

@ -249,8 +249,9 @@ private:
const MCInstrDesc &UseMCID,
unsigned UseIdx, unsigned UseAlign) const;
int getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI, unsigned *PredCost = 0) const;
unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost = 0) const;
int getInstrLatency(const InstrItineraryData *ItinData,
SDNode *Node) const;

View File

@ -61,22 +61,125 @@ TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
return 1;
}
/// Return the default expected latency for a def based on it's opcode.
unsigned TargetInstrInfo::defaultDefLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI) const {
if (DefMI->mayLoad())
return ItinData->Props.LoadLatency;
if (isHighLatencyDef(DefMI->getOpcode()))
return ItinData->Props.HighLatency;
return 1;
}
/// Both DefMI and UseMI must be valid. By default, call directly to the
/// itinerary. This may be overriden by the target.
int
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const {
if (!ItinData || ItinData->isEmpty())
return -1;
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI,
unsigned UseIdx) const {
unsigned DefClass = DefMI->getDesc().getSchedClass();
unsigned UseClass = UseMI->getDesc().getSchedClass();
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}
int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost) const {
if (!ItinData || ItinData->isEmpty())
/// computeOperandLatency - Compute and return the latency of the given data
/// dependent def and use. DefMI must be a valid def. UseMI may be NULL for an
/// unknown use. Depending on the subtarget's itinerary properties, this may or
/// may not need to call getOperandLatency().
///
/// FindMin may be set to get the minimum vs. expected latency. Minimum
/// latency is used for scheduling groups, while expected latency is for
/// instruction cost and critical path.
///
/// For most subtargets, we don't need DefIdx or UseIdx to compute min latency.
/// DefMI must be a valid definition, but UseMI may be NULL for an unknown use.
unsigned TargetInstrInfo::
computeOperandLatency(const InstrItineraryData *ItinData,
const TargetRegisterInfo *TRI,
const MachineInstr *DefMI, const MachineInstr *UseMI,
unsigned Reg, bool FindMin) const {
// Default to one cycle for missing itinerary. Empty itineraries still have
// a properties. We have one hard-coded exception for loads, to preserve
// existing behavior.
if (!ItinData)
return DefMI->mayLoad() ? 2 : 1;
// Return a latency based on the itinerary properties and defining instruction
// if possible. Some common subtargets don't require per-operand latency,
// especially for minimum latencies.
if (FindMin) {
// If MinLatency is valid, call getInstrLatency. This uses Stage latency if
// it exists before defaulting to MinLatency.
if (ItinData->Props.MinLatency >= 0)
return getInstrLatency(ItinData, DefMI);
// If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
// For empty itineraries, short-cirtuit the check and default to one cycle.
if (ItinData->isEmpty())
return 1;
}
else if(ItinData->isEmpty())
return defaultDefLatency(ItinData, DefMI);
// ...operand lookup required
// Find the definition of the register in the defining instruction.
int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
if (DefIdx != -1) {
const MachineOperand &MO = DefMI->getOperand(DefIdx);
if (MO.isReg() && MO.isImplicit() &&
DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
// This is an implicit def, getOperandLatency() won't return the correct
// latency. e.g.
// %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
// %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
// What we want is to compute latency between def of %D6/%D7 and use of
// %Q3 instead.
unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
if (DefMI->getOperand(Op2).isReg())
DefIdx = Op2;
}
// For all uses of the register, calculate the maxmimum latency
int OperLatency = -1;
// UseMI is null, then it must be a scheduling barrier.
if (!UseMI) {
unsigned DefClass = DefMI->getDesc().getSchedClass();
OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
}
else {
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = UseMI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned MOReg = MO.getReg();
if (MOReg != Reg)
continue;
int UseCycle = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, i);
OperLatency = std::max(OperLatency, UseCycle);
}
}
// If we found an operand latency, we're done.
if (OperLatency >= 0)
return OperLatency;
}
// No operand latency was found.
unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
// Expected latency is the max of the stage latency and itinerary props.
if (!FindMin)
InstrLatency = std::max(InstrLatency, defaultDefLatency(ItinData, DefMI));
return InstrLatency;
}
unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost) const {
// Default to one cycle for no itinerary. However, an "empty" itinerary may
// still have a MinLatency property, which getStageLatency checks.
if (!ItinData)
return 1;
return ItinData->getStageLatency(MI->getDesc().getSchedClass());