1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00

NewGVN: Move leaders around properly to ensure we have a canonical dominating leader. Fixes PR 31613.

Summary:
This is a testcase where phi node cycling happens, and because we do
not order the leaders by domination or anything similar, the leader
keeps changing.

Using std::set for the members is too expensive, and we actually don't
need them sorted all the time, only at leader changes.

We could keep both a set and a vector, and keep them mostly sorted and
resort as necessary, or use a set and a fibheap, but all of this seems
premature.

After running some statistics, we are able to avoid the vast majority
of sorting by keeping a "next leader" field.  Most congruence classes only have
leader changes once or twice during GVN.

Reviewers: davide

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D28594

llvm-svn: 291968
This commit is contained in:
Daniel Berlin 2017-01-13 22:40:01 +00:00
parent 775e6533ac
commit 2710b40fb3
2 changed files with 224 additions and 40 deletions

View File

@ -81,6 +81,10 @@ STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
STATISTIC(NumGVNMaxIterations,
"Maximum Number of iterations it took to converge GVN");
STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
STATISTIC(NumGVNAvoidedSortedLeaderChanges,
"Number of avoided sorted leader changes");
//===----------------------------------------------------------------------===//
// GVN Pass
@ -139,6 +143,10 @@ struct CongruenceClass {
// This is used so we can detect store equivalence changes properly.
int StoreCount = 0;
// The most dominating leader after our current leader, because the member set
// is not sorted and is expensive to keep sorted all the time.
std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
: ID(ID), RepLeader(Leader), DefiningExpr(E) {}
@ -320,8 +328,8 @@ private:
// Templated to allow them to work both on BB's and BB-edges.
template <class T>
Value *lookupOperandLeader(Value *, const User *, const T &) const;
void performCongruenceFinding(Value *, const Expression *);
void moveValueToNewCongruenceClass(Value *, CongruenceClass *,
void performCongruenceFinding(Instruction *, const Expression *);
void moveValueToNewCongruenceClass(Instruction *, CongruenceClass *,
CongruenceClass *);
// Reachability handling.
void updateReachableEdge(BasicBlock *, BasicBlock *);
@ -1056,20 +1064,43 @@ void NewGVN::markLeaderChangeTouched(CongruenceClass *CC) {
// Move a value, currently in OldClass, to be part of NewClass
// Update OldClass for the move (including changing leaders, etc)
void NewGVN::moveValueToNewCongruenceClass(Value *V, CongruenceClass *OldClass,
void NewGVN::moveValueToNewCongruenceClass(Instruction *I,
CongruenceClass *OldClass,
CongruenceClass *NewClass) {
DEBUG(dbgs() << "New congruence class for " << V << " is " << NewClass->ID
DEBUG(dbgs() << "New congruence class for " << I << " is " << NewClass->ID
<< "\n");
OldClass->Members.erase(V);
NewClass->Members.insert(V);
if (isa<StoreInst>(V)) {
if (I == OldClass->NextLeader.first)
OldClass->NextLeader = {nullptr, ~0U};
// The new instruction and new class leader may either be siblings in the
// dominator tree, or the new class leader should dominate the new member
// instruction. We simply check that the member instruction does not properly
// dominate the new class leader.
assert(
!isa<Instruction>(NewClass->RepLeader) || !NewClass->RepLeader ||
I == NewClass->RepLeader ||
!DT->properlyDominates(
I->getParent(),
cast<Instruction>(NewClass->RepLeader)->getParent()) &&
"New class for instruction should not be dominated by instruction");
if (NewClass->RepLeader != I) {
auto DFSNum = InstrDFS.lookup(I);
if (DFSNum < NewClass->NextLeader.second)
NewClass->NextLeader = {I, DFSNum};
}
OldClass->Members.erase(I);
NewClass->Members.insert(I);
if (isa<StoreInst>(I)) {
--OldClass->StoreCount;
assert(OldClass->StoreCount >= 0);
++NewClass->StoreCount;
assert(NewClass->StoreCount > 0);
}
ValueToClass[V] = NewClass;
ValueToClass[I] = NewClass;
// See if we destroyed the class or need to swap leaders.
if (OldClass->Members.empty() && OldClass != InitialClass) {
if (OldClass->DefiningExpr) {
@ -1078,25 +1109,48 @@ void NewGVN::moveValueToNewCongruenceClass(Value *V, CongruenceClass *OldClass,
<< " from table\n");
ExpressionToClass.erase(OldClass->DefiningExpr);
}
} else if (OldClass->RepLeader == V) {
} else if (OldClass->RepLeader == I) {
// When the leader changes, the value numbering of
// everything may change due to symbolization changes, so we need to
// reprocess.
OldClass->RepLeader = *(OldClass->Members.begin());
DEBUG(dbgs() << "Leader change!\n");
++NumGVNLeaderChanges;
// We don't need to sort members if there is only 1, and we don't care about
// sorting the initial class because everything either gets out of it or is
// unreachable.
if (OldClass->Members.size() == 1 || OldClass == InitialClass) {
OldClass->RepLeader = *(OldClass->Members.begin());
} else if (OldClass->NextLeader.first) {
++NumGVNAvoidedSortedLeaderChanges;
OldClass->RepLeader = OldClass->NextLeader.first;
OldClass->NextLeader = {nullptr, ~0U};
} else {
++NumGVNSortedLeaderChanges;
// TODO: If this ends up to slow, we can maintain a dual structure for
// member testing/insertion, or keep things mostly sorted, and sort only
// here, or ....
std::pair<Value *, unsigned> MinDFS = {nullptr, ~0U};
for (const auto X : OldClass->Members) {
auto DFSNum = InstrDFS.lookup(X);
if (DFSNum < MinDFS.second)
MinDFS = {X, DFSNum};
}
OldClass->RepLeader = MinDFS.first;
}
markLeaderChangeTouched(OldClass);
}
}
// Perform congruence finding on a given value numbering expression.
void NewGVN::performCongruenceFinding(Value *V, const Expression *E) {
ValueToExpression[V] = E;
void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
ValueToExpression[I] = E;
// This is guaranteed to return something, since it will at least find
// INITIAL.
CongruenceClass *VClass = ValueToClass[V];
assert(VClass && "Should have found a vclass");
CongruenceClass *IClass = ValueToClass[I];
assert(IClass && "Should have found a IClass");
// Dead classes should have been eliminated from the mapping.
assert(!VClass->Dead && "Found a dead class");
assert(!IClass->Dead && "Found a dead class");
CongruenceClass *EClass;
if (const auto *VE = dyn_cast<VariableExpression>(E)) {
@ -1118,13 +1172,13 @@ void NewGVN::performCongruenceFinding(Value *V, const Expression *E) {
NewClass->RepLeader =
lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent());
} else {
NewClass->RepLeader = V;
NewClass->RepLeader = I;
}
assert(!isa<VariableExpression>(E) &&
"VariableExpression should have been handled already");
EClass = NewClass;
DEBUG(dbgs() << "Created new congruence class for " << *V
DEBUG(dbgs() << "Created new congruence class for " << *I
<< " using expression " << *E << " at " << NewClass->ID
<< " and leader " << *(NewClass->RepLeader) << "\n");
DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n");
@ -1140,36 +1194,31 @@ void NewGVN::performCongruenceFinding(Value *V, const Expression *E) {
assert(!EClass->Dead && "We accidentally looked up a dead class");
}
}
bool ClassChanged = VClass != EClass;
bool LeaderChanged = LeaderChanges.erase(V);
bool ClassChanged = IClass != EClass;
bool LeaderChanged = LeaderChanges.erase(I);
if (ClassChanged || LeaderChanged) {
DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E
<< "\n");
if (ClassChanged)
moveValueToNewCongruenceClass(V, VClass, EClass);
markUsersTouched(V);
if (auto *I = dyn_cast<Instruction>(V)) {
if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
// If this is a MemoryDef, we need to update the equivalence table. If
// we determined the expression is congruent to a different memory
// state, use that different memory state. If we determined it didn't,
// we update that as well. Right now, we only support store
// expressions.
if (!isa<MemoryUse>(MA) && isa<StoreExpression>(E) &&
EClass->Members.size() != 1) {
auto *DefAccess = cast<StoreExpression>(E)->getDefiningAccess();
setMemoryAccessEquivTo(MA, DefAccess != MA ? DefAccess : nullptr);
} else {
setMemoryAccessEquivTo(MA, nullptr);
}
markMemoryUsersTouched(MA);
moveValueToNewCongruenceClass(I, IClass, EClass);
markUsersTouched(I);
if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
// If this is a MemoryDef, we need to update the equivalence table. If
// we determined the expression is congruent to a different memory
// state, use that different memory state. If we determined it didn't,
// we update that as well. Right now, we only support store
// expressions.
if (!isa<MemoryUse>(MA) && isa<StoreExpression>(E) &&
EClass->Members.size() != 1) {
auto *DefAccess = cast<StoreExpression>(E)->getDefiningAccess();
setMemoryAccessEquivTo(MA, DefAccess != MA ? DefAccess : nullptr);
} else {
setMemoryAccessEquivTo(MA, nullptr);
}
markMemoryUsersTouched(MA);
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(V)) {
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
// There is, sadly, one complicating thing for stores. Stores do not
// produce values, only consume them. However, in order to make loads and
// stores value number the same, we ignore the value operand of the store.

View File

@ -0,0 +1,135 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -basicaa -newgvn -S | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
;; Both of these tests are tests of phi nodes that end up all equivalent to each other
;; Without proper leader ordering, we will end up cycling the leader between all of them and never converge.
define void @foo() {
; CHECK-LABEL: @foo(
; CHECK-NEXT: bb:
; CHECK-NEXT: br label [[BB1:%.*]]
; CHECK: bb1:
; CHECK-NEXT: [[TMP:%.*]] = phi i32 [ 0, [[BB:%.*]] ], [ 1, [[BB18:%.*]] ]
; CHECK-NEXT: br label [[BB2:%.*]]
; CHECK: bb2:
; CHECK-NEXT: br label [[BB4:%.*]]
; CHECK: bb4:
; CHECK-NEXT: br i1 undef, label [[BB18]], label [[BB7:%.*]]
; CHECK: bb7:
; CHECK-NEXT: br label [[BB9:%.*]]
; CHECK: bb9:
; CHECK-NEXT: br i1 undef, label [[BB2]], label [[BB11:%.*]]
; CHECK: bb11:
; CHECK-NEXT: br i1 undef, label [[BB16:%.*]], label [[BB14:%.*]]
; CHECK: bb14:
; CHECK-NEXT: br label [[BB4]]
; CHECK: bb16:
; CHECK-NEXT: br label [[BB7]]
; CHECK: bb18:
; CHECK-NEXT: br label [[BB1]]
;
bb:
br label %bb1
bb1: ; preds = %bb18, %bb
%tmp = phi i32 [ 0, %bb ], [ 1, %bb18 ]
br label %bb2
bb2: ; preds = %bb9, %bb1
%tmp3 = phi i32 [ %tmp, %bb1 ], [ %tmp8, %bb9 ]
br label %bb4
bb4: ; preds = %bb14, %bb2
%tmp5 = phi i32 [ %tmp3, %bb2 ], [ %tmp15, %bb14 ]
br i1 undef, label %bb18, label %bb7
bb7: ; preds = %bb16, %bb4
%tmp8 = phi i32 [ %tmp17, %bb16 ], [ %tmp5, %bb4 ]
br label %bb9
bb9: ; preds = %bb7
br i1 undef, label %bb2, label %bb11
bb11: ; preds = %bb9
br i1 undef, label %bb16, label %bb14
bb14: ; preds = %bb11
%tmp15 = phi i32 [ %tmp8, %bb11 ]
br label %bb4
bb16: ; preds = %bb11
%tmp17 = phi i32 [ %tmp8, %bb11 ]
br label %bb7
bb18: ; preds = %bb4
br label %bb1
}
%struct.a = type {}
%struct.b = type {}
declare void @c.d.p(i64, i8*)
define void @e() {
; CHECK-LABEL: @e(
; CHECK-NEXT: [[F:%.*]] = alloca i32
; CHECK-NEXT: store i32 undef, i32* [[F]], !g !0
; CHECK-NEXT: br label [[H:%.*]]
; CHECK: h:
; CHECK-NEXT: call void @c.d.p(i64 8, i8* undef)
; CHECK-NEXT: [[I:%.*]] = load i32, i32* [[F]]
; CHECK-NEXT: [[J:%.*]] = load i32, i32* null
; CHECK-NEXT: [[K:%.*]] = icmp eq i32 [[I]], [[J]]
; CHECK-NEXT: br i1 [[K]], label [[L:%.*]], label [[Q:%.*]]
; CHECK: l:
; CHECK-NEXT: br label [[R:%.*]]
; CHECK: q:
; CHECK-NEXT: [[M:%.*]] = load [[STRUCT_A*:%.*]], [[STRUCT_A**:%.*]] null
; CHECK-NEXT: br label [[R]]
; CHECK: r:
; CHECK-NEXT: switch i32 undef, label [[N:%.*]] [
; CHECK-NEXT: i32 0, label [[S:%.*]]
; CHECK-NEXT: ]
; CHECK: s:
; CHECK-NEXT: store i32 undef, i32* [[F]], !g !0
; CHECK-NEXT: br label [[H]]
; CHECK: n:
; CHECK-NEXT: [[O:%.*]] = load [[STRUCT_A*]], [[STRUCT_A**]] null
; CHECK-NEXT: ret void
;
%f = alloca i32
store i32 undef, i32* %f, !g !0
br label %h
h: ; preds = %s, %0
call void @c.d.p(i64 8, i8* undef)
%i = load i32, i32* %f
%j = load i32, i32* null
%k = icmp eq i32 %i, %j
br i1 %k, label %l, label %q
l: ; preds = %h
br label %r
q: ; preds = %h
%m = load %struct.a*, %struct.a** null
%1 = bitcast %struct.a* %m to %struct.b*
br label %r
r: ; preds = %q, %l
switch i32 undef, label %n [
i32 0, label %s
]
s: ; preds = %r
store i32 undef, i32* %f, !g !0
br label %h
n: ; preds = %r
%o = load %struct.a*, %struct.a** null
%2 = bitcast %struct.a* %o to %struct.b*
ret void
}
!0 = !{}