mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
Remove ETForest.
llvm-svn: 37765
This commit is contained in:
parent
e67385d712
commit
28d2851f39
@ -9,9 +9,7 @@
|
||||
//
|
||||
// This file defines the following classes:
|
||||
// 1. DominatorTree: Represent dominators as an explicit tree structure.
|
||||
// 2. ETForest: Efficient data structure for dominance comparisons and
|
||||
// nearest-common-ancestor queries.
|
||||
// 3. DominanceFrontier: Calculate and hold the dominance frontier for a
|
||||
// 2. DominanceFrontier: Calculate and hold the dominance frontier for a
|
||||
// function.
|
||||
//
|
||||
// These data structures are listed in increasing order of complexity. It
|
||||
@ -23,7 +21,6 @@
|
||||
#ifndef LLVM_ANALYSIS_DOMINATORS_H
|
||||
#define LLVM_ANALYSIS_DOMINATORS_H
|
||||
|
||||
#include "llvm/Analysis/ET-Forest.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include <set>
|
||||
|
||||
@ -347,170 +344,6 @@ template <> struct GraphTraits<DominatorTree*>
|
||||
};
|
||||
|
||||
|
||||
//===-------------------------------------
|
||||
/// ET-Forest Class - Class used to construct forwards and backwards
|
||||
/// ET-Forests
|
||||
///
|
||||
class ETForestBase : public DominatorBase {
|
||||
public:
|
||||
ETForestBase(intptr_t ID, bool isPostDom)
|
||||
: DominatorBase(ID, isPostDom), Nodes(),
|
||||
DFSInfoValid(false), SlowQueries(0) {}
|
||||
|
||||
virtual void releaseMemory() { reset(); }
|
||||
|
||||
typedef std::map<BasicBlock*, ETNode*> ETMapType;
|
||||
|
||||
// FIXME : There is no need to make this interface public.
|
||||
// Fix predicate simplifier.
|
||||
void updateDFSNumbers();
|
||||
|
||||
/// dominates - Return true if A dominates B.
|
||||
///
|
||||
inline bool dominates(BasicBlock *A, BasicBlock *B) {
|
||||
if (A == B)
|
||||
return true;
|
||||
|
||||
ETNode *NodeA = getNode(A);
|
||||
ETNode *NodeB = getNode(B);
|
||||
|
||||
if (DFSInfoValid)
|
||||
return NodeB->DominatedBy(NodeA);
|
||||
else {
|
||||
// If we end up with too many slow queries, just update the
|
||||
// DFS numbers on the theory that we are going to keep querying.
|
||||
SlowQueries++;
|
||||
if (SlowQueries > 32) {
|
||||
updateDFSNumbers();
|
||||
return NodeB->DominatedBy(NodeA);
|
||||
}
|
||||
return NodeB->DominatedBySlow(NodeA);
|
||||
}
|
||||
}
|
||||
|
||||
// dominates - Return true if A dominates B. This performs the
|
||||
// special checks necessary if A and B are in the same basic block.
|
||||
bool dominates(Instruction *A, Instruction *B);
|
||||
|
||||
/// properlyDominates - Return true if A dominates B and A != B.
|
||||
///
|
||||
bool properlyDominates(BasicBlock *A, BasicBlock *B) {
|
||||
return dominates(A, B) && A != B;
|
||||
}
|
||||
|
||||
/// isReachableFromEntry - Return true if A is dominated by the entry
|
||||
/// block of the function containing it.
|
||||
const bool isReachableFromEntry(BasicBlock* A);
|
||||
|
||||
/// Return the nearest common dominator of A and B.
|
||||
BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const {
|
||||
ETNode *NodeA = getNode(A);
|
||||
ETNode *NodeB = getNode(B);
|
||||
|
||||
ETNode *Common = NodeA->NCA(NodeB);
|
||||
if (!Common)
|
||||
return NULL;
|
||||
return Common->getData<BasicBlock>();
|
||||
}
|
||||
|
||||
/// Return the immediate dominator of A.
|
||||
BasicBlock *getIDom(BasicBlock *A) const {
|
||||
ETNode *NodeA = getNode(A);
|
||||
if (!NodeA) return 0;
|
||||
const ETNode *idom = NodeA->getFather();
|
||||
return idom ? idom->getData<BasicBlock>() : 0;
|
||||
}
|
||||
|
||||
void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
|
||||
ETNode *NodeA = getNode(A);
|
||||
if (!NodeA) return;
|
||||
const ETNode* son = NodeA->getSon();
|
||||
|
||||
if (!son) return;
|
||||
children.push_back(son->getData<BasicBlock>());
|
||||
|
||||
const ETNode* brother = son->getBrother();
|
||||
while (brother != son) {
|
||||
children.push_back(brother->getData<BasicBlock>());
|
||||
brother = brother->getBrother();
|
||||
}
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<DominatorTree>();
|
||||
}
|
||||
//===--------------------------------------------------------------------===//
|
||||
// API to update Forest information based on modifications
|
||||
// to the CFG...
|
||||
|
||||
/// addNewBlock - Add a new block to the CFG, with the specified immediate
|
||||
/// dominator.
|
||||
///
|
||||
void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
|
||||
|
||||
/// setImmediateDominator - Update the immediate dominator information to
|
||||
/// change the current immediate dominator for the specified block
|
||||
/// to another block. This method requires that BB for NewIDom
|
||||
/// already have an ETNode, otherwise just use addNewBlock.
|
||||
///
|
||||
void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
|
||||
/// print - Convert to human readable form
|
||||
///
|
||||
virtual void print(std::ostream &OS, const Module* = 0) const;
|
||||
void print(std::ostream *OS, const Module* M = 0) const {
|
||||
if (OS) print(*OS, M);
|
||||
}
|
||||
virtual void dump();
|
||||
protected:
|
||||
/// getNode - return the (Post)DominatorTree node for the specified basic
|
||||
/// block. This is the same as using operator[] on this class.
|
||||
///
|
||||
inline ETNode *getNode(BasicBlock *BB) const {
|
||||
ETMapType::const_iterator i = Nodes.find(BB);
|
||||
return (i != Nodes.end()) ? i->second : 0;
|
||||
}
|
||||
|
||||
inline ETNode *operator[](BasicBlock *BB) const {
|
||||
return getNode(BB);
|
||||
}
|
||||
|
||||
void reset();
|
||||
ETMapType Nodes;
|
||||
bool DFSInfoValid;
|
||||
unsigned int SlowQueries;
|
||||
|
||||
};
|
||||
|
||||
//==-------------------------------------
|
||||
/// ETForest Class - Concrete subclass of ETForestBase that is used to
|
||||
/// compute a forwards ET-Forest.
|
||||
|
||||
class ETForest : public ETForestBase {
|
||||
public:
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
|
||||
ETForest() : ETForestBase((intptr_t)&ID, false) {}
|
||||
|
||||
BasicBlock *getRoot() const {
|
||||
assert(Roots.size() == 1 && "Should always have entry node!");
|
||||
return Roots[0];
|
||||
}
|
||||
|
||||
virtual bool runOnFunction(Function &F) {
|
||||
reset(); // Reset from the last time we were run...
|
||||
DominatorTree &DT = getAnalysis<DominatorTree>();
|
||||
Roots = DT.getRoots();
|
||||
calculate(DT);
|
||||
return false;
|
||||
}
|
||||
|
||||
void calculate(const DominatorTree &DT);
|
||||
// FIXME : There is no need to make getNodeForBlock public. Fix
|
||||
// predicate simplifier.
|
||||
ETNode *getNodeForBlock(BasicBlock *BB);
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DominanceFrontierBase - Common base class for computing forward and inverse
|
||||
/// dominance frontiers for a function.
|
||||
|
@ -1,312 +0,0 @@
|
||||
//===- llvm/Analysis/ET-Forest.h - ET-Forest implementation -----*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was written by Daniel Berlin from code written by Pavel Nejedy, and
|
||||
// is distributed under the University of Illinois Open Source License. See
|
||||
// LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the following classes:
|
||||
// 1. ETNode: A node in the ET forest.
|
||||
// 2. ETOccurrence: An occurrence of the node in the splay tree
|
||||
// storing the DFS path information.
|
||||
//
|
||||
// The ET-forest structure is described in:
|
||||
// D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
|
||||
// J. G'omput. System Sci., 26(3):362 381, 1983.
|
||||
//
|
||||
// Basically, the ET-Forest is storing the dominator tree (ETNode),
|
||||
// and a splay tree containing the depth first path information for
|
||||
// those nodes (ETOccurrence). This enables us to answer queries
|
||||
// about domination (DominatedBySlow), and ancestry (NCA) in
|
||||
// logarithmic time, and perform updates to the information in
|
||||
// logarithmic time.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_ETFOREST_H
|
||||
#define LLVM_ANALYSIS_ETFOREST_H
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
|
||||
namespace llvm {
|
||||
class ETNode;
|
||||
|
||||
/// ETOccurrence - An occurrence for a node in the et tree
|
||||
///
|
||||
/// The et occurrence tree is really storing the sequences you get from
|
||||
/// doing a DFS over the ETNode's. It is stored as a modified splay
|
||||
/// tree.
|
||||
/// ET occurrences can occur at multiple places in the ordering depending
|
||||
/// on how many ET nodes have it as their father. To handle
|
||||
/// this, they are separate from the nodes.
|
||||
///
|
||||
class ETOccurrence {
|
||||
public:
|
||||
ETOccurrence(ETNode *n): OccFor(n), Parent(NULL), Left(NULL), Right(NULL),
|
||||
Depth(0), Min(0), MinOccurrence(this) {};
|
||||
|
||||
void setParent(ETOccurrence *n) {
|
||||
assert(n != this && "Trying to set parent to ourselves");
|
||||
Parent = n;
|
||||
}
|
||||
|
||||
// Add D to our current depth
|
||||
void setDepthAdd(int d) {
|
||||
Min += d;
|
||||
Depth += d;
|
||||
}
|
||||
|
||||
// Reset our depth to D
|
||||
void setDepth(int d) {
|
||||
Min += d - Depth;
|
||||
Depth = d;
|
||||
}
|
||||
|
||||
// Set Left to N
|
||||
void setLeft(ETOccurrence *n) {
|
||||
assert(n != this && "Trying to set our left to ourselves");
|
||||
Left = n;
|
||||
if (n)
|
||||
n->setParent(this);
|
||||
}
|
||||
|
||||
// Set Right to N
|
||||
void setRight(ETOccurrence *n) {
|
||||
assert(n != this && "Trying to set our right to ourselves");
|
||||
Right = n;
|
||||
if (n)
|
||||
n->setParent(this);
|
||||
}
|
||||
|
||||
// Splay us to the root of the tree
|
||||
void Splay(void);
|
||||
|
||||
// Recompute the minimum occurrence for this occurrence.
|
||||
void recomputeMin(void) {
|
||||
ETOccurrence *themin = Left;
|
||||
|
||||
// The min may be our Right, too.
|
||||
if (!themin || (Right && themin->Min > Right->Min))
|
||||
themin = Right;
|
||||
|
||||
if (themin && themin->Min < 0) {
|
||||
Min = themin->Min + Depth;
|
||||
MinOccurrence = themin->MinOccurrence;
|
||||
} else {
|
||||
Min = Depth;
|
||||
MinOccurrence = this;
|
||||
}
|
||||
}
|
||||
private:
|
||||
friend class ETNode;
|
||||
|
||||
// Node we represent
|
||||
ETNode *OccFor;
|
||||
|
||||
// Parent in the splay tree
|
||||
ETOccurrence *Parent;
|
||||
|
||||
// Left Son in the splay tree
|
||||
ETOccurrence *Left;
|
||||
|
||||
// Right Son in the splay tree
|
||||
ETOccurrence *Right;
|
||||
|
||||
// Depth of the node is the sum of the depth on the path to the
|
||||
// root.
|
||||
int Depth;
|
||||
|
||||
// Subtree occurrence's minimum depth
|
||||
int Min;
|
||||
|
||||
// Subtree occurrence with minimum depth
|
||||
ETOccurrence *MinOccurrence;
|
||||
};
|
||||
|
||||
|
||||
class ETNode {
|
||||
public:
|
||||
ETNode(void *d) : data(d), DFSNumIn(-1), DFSNumOut(-1),
|
||||
Father(NULL), Left(NULL),
|
||||
Right(NULL), Son(NULL), ParentOcc(NULL) {
|
||||
RightmostOcc = new ETOccurrence(this);
|
||||
};
|
||||
|
||||
// This does *not* maintain the tree structure.
|
||||
// If you want to remove a node from the forest structure, use
|
||||
// removeFromForest()
|
||||
~ETNode() {
|
||||
delete RightmostOcc;
|
||||
delete ParentOcc;
|
||||
}
|
||||
|
||||
void removeFromForest() {
|
||||
// Split us away from all our sons.
|
||||
while (Son)
|
||||
Son->Split();
|
||||
|
||||
// And then split us away from our father.
|
||||
if (Father)
|
||||
Father->Split();
|
||||
}
|
||||
|
||||
// Split us away from our parents and children, so that we can be
|
||||
// reparented. NB: setFather WILL NOT DO WHAT YOU WANT IF YOU DO NOT
|
||||
// SPLIT US FIRST.
|
||||
void Split();
|
||||
|
||||
// Set our parent node to the passed in node
|
||||
void setFather(ETNode *);
|
||||
|
||||
// Nearest Common Ancestor of two et nodes.
|
||||
ETNode *NCA(ETNode *);
|
||||
|
||||
// Return true if we are below the passed in node in the forest.
|
||||
bool Below(ETNode *);
|
||||
/*
|
||||
Given a dominator tree, we can determine whether one thing
|
||||
dominates another in constant time by using two DFS numbers:
|
||||
|
||||
1. The number for when we visit a node on the way down the tree
|
||||
2. The number for when we visit a node on the way back up the tree
|
||||
|
||||
You can view these as bounds for the range of dfs numbers the
|
||||
nodes in the subtree of the dominator tree rooted at that node
|
||||
will contain.
|
||||
|
||||
The dominator tree is always a simple acyclic tree, so there are
|
||||
only three possible relations two nodes in the dominator tree have
|
||||
to each other:
|
||||
|
||||
1. Node A is above Node B (and thus, Node A dominates node B)
|
||||
|
||||
A
|
||||
|
|
||||
C
|
||||
/ \
|
||||
B D
|
||||
|
||||
|
||||
In the above case, DFS_Number_In of A will be <= DFS_Number_In of
|
||||
B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
|
||||
because we must hit A in the dominator tree *before* B on the walk
|
||||
down, and we will hit A *after* B on the walk back up
|
||||
|
||||
2. Node A is below node B (and thus, node B dominates node B)
|
||||
|
||||
B
|
||||
|
|
||||
A
|
||||
/ \
|
||||
C D
|
||||
|
||||
In the above case, DFS_Number_In of A will be >= DFS_Number_In of
|
||||
B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
|
||||
|
||||
This is because we must hit A in the dominator tree *after* B on
|
||||
the walk down, and we will hit A *before* B on the walk back up
|
||||
|
||||
3. Node A and B are siblings (and thus, neither dominates the other)
|
||||
|
||||
C
|
||||
|
|
||||
D
|
||||
/ \
|
||||
A B
|
||||
|
||||
In the above case, DFS_Number_In of A will *always* be <=
|
||||
DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
|
||||
DFS_Number_Out of B. This is because we will always finish the dfs
|
||||
walk of one of the subtrees before the other, and thus, the dfs
|
||||
numbers for one subtree can't intersect with the range of dfs
|
||||
numbers for the other subtree. If you swap A and B's position in
|
||||
the dominator tree, the comparison changes direction, but the point
|
||||
is that both comparisons will always go the same way if there is no
|
||||
dominance relationship.
|
||||
|
||||
Thus, it is sufficient to write
|
||||
|
||||
A_Dominates_B(node A, node B) {
|
||||
return DFS_Number_In(A) <= DFS_Number_In(B) &&
|
||||
DFS_Number_Out(A) >= DFS_Number_Out(B);
|
||||
}
|
||||
|
||||
A_Dominated_by_B(node A, node B) {
|
||||
return DFS_Number_In(A) >= DFS_Number_In(A) &&
|
||||
DFS_Number_Out(A) <= DFS_Number_Out(B);
|
||||
}
|
||||
*/
|
||||
bool DominatedBy(ETNode *other) const {
|
||||
return this->DFSNumIn >= other->DFSNumIn &&
|
||||
this->DFSNumOut <= other->DFSNumOut;
|
||||
}
|
||||
|
||||
// This method is slower, but doesn't require the DFS numbers to
|
||||
// be up to date.
|
||||
bool DominatedBySlow(ETNode *other) {
|
||||
return this->Below(other);
|
||||
}
|
||||
|
||||
void assignDFSNumber (int);
|
||||
|
||||
bool hasFather() const {
|
||||
return Father != NULL;
|
||||
}
|
||||
|
||||
// Do not let people play around with fathers.
|
||||
const ETNode *getFather() const {
|
||||
return Father;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T *getData() const {
|
||||
return static_cast<T*>(data);
|
||||
}
|
||||
|
||||
unsigned getDFSNumIn() const {
|
||||
return DFSNumIn;
|
||||
}
|
||||
|
||||
unsigned getDFSNumOut() const {
|
||||
return DFSNumOut;
|
||||
}
|
||||
|
||||
const ETNode *getSon() const {
|
||||
return Son;
|
||||
}
|
||||
|
||||
const ETNode *getBrother() const {
|
||||
return Left;
|
||||
}
|
||||
|
||||
private:
|
||||
// Data represented by the node
|
||||
void *data;
|
||||
|
||||
// DFS Numbers
|
||||
int DFSNumIn, DFSNumOut;
|
||||
|
||||
// Father
|
||||
ETNode *Father;
|
||||
|
||||
// Brothers. Node, this ends up being a circularly linked list.
|
||||
// Thus, if you want to get all the brothers, you need to stop when
|
||||
// you hit node == this again.
|
||||
ETNode *Left, *Right;
|
||||
|
||||
// First Son
|
||||
ETNode *Son;
|
||||
|
||||
// Rightmost occurrence for this node
|
||||
ETOccurrence *RightmostOcc;
|
||||
|
||||
// Parent occurrence for this node
|
||||
ETOccurrence *ParentOcc;
|
||||
};
|
||||
} // end llvm namespace
|
||||
|
||||
#endif
|
@ -805,554 +805,3 @@ void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
|
||||
void DominanceFrontierBase::dump() {
|
||||
print (llvm::cerr);
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ETOccurrence Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void ETOccurrence::Splay() {
|
||||
ETOccurrence *father;
|
||||
ETOccurrence *grandfather;
|
||||
int occdepth;
|
||||
int fatherdepth;
|
||||
|
||||
while (Parent) {
|
||||
occdepth = Depth;
|
||||
|
||||
father = Parent;
|
||||
fatherdepth = Parent->Depth;
|
||||
grandfather = father->Parent;
|
||||
|
||||
// If we have no grandparent, a single zig or zag will do.
|
||||
if (!grandfather) {
|
||||
setDepthAdd(fatherdepth);
|
||||
MinOccurrence = father->MinOccurrence;
|
||||
Min = father->Min;
|
||||
|
||||
// See what we have to rotate
|
||||
if (father->Left == this) {
|
||||
// Zig
|
||||
father->setLeft(Right);
|
||||
setRight(father);
|
||||
if (father->Left)
|
||||
father->Left->setDepthAdd(occdepth);
|
||||
} else {
|
||||
// Zag
|
||||
father->setRight(Left);
|
||||
setLeft(father);
|
||||
if (father->Right)
|
||||
father->Right->setDepthAdd(occdepth);
|
||||
}
|
||||
father->setDepth(-occdepth);
|
||||
Parent = NULL;
|
||||
|
||||
father->recomputeMin();
|
||||
return;
|
||||
}
|
||||
|
||||
// If we have a grandfather, we need to do some
|
||||
// combination of zig and zag.
|
||||
int grandfatherdepth = grandfather->Depth;
|
||||
|
||||
setDepthAdd(fatherdepth + grandfatherdepth);
|
||||
MinOccurrence = grandfather->MinOccurrence;
|
||||
Min = grandfather->Min;
|
||||
|
||||
ETOccurrence *greatgrandfather = grandfather->Parent;
|
||||
|
||||
if (grandfather->Left == father) {
|
||||
if (father->Left == this) {
|
||||
// Zig zig
|
||||
grandfather->setLeft(father->Right);
|
||||
father->setLeft(Right);
|
||||
setRight(father);
|
||||
father->setRight(grandfather);
|
||||
|
||||
father->setDepth(-occdepth);
|
||||
|
||||
if (father->Left)
|
||||
father->Left->setDepthAdd(occdepth);
|
||||
|
||||
grandfather->setDepth(-fatherdepth);
|
||||
if (grandfather->Left)
|
||||
grandfather->Left->setDepthAdd(fatherdepth);
|
||||
} else {
|
||||
// Zag zig
|
||||
grandfather->setLeft(Right);
|
||||
father->setRight(Left);
|
||||
setLeft(father);
|
||||
setRight(grandfather);
|
||||
|
||||
father->setDepth(-occdepth);
|
||||
if (father->Right)
|
||||
father->Right->setDepthAdd(occdepth);
|
||||
grandfather->setDepth(-occdepth - fatherdepth);
|
||||
if (grandfather->Left)
|
||||
grandfather->Left->setDepthAdd(occdepth + fatherdepth);
|
||||
}
|
||||
} else {
|
||||
if (father->Left == this) {
|
||||
// Zig zag
|
||||
grandfather->setRight(Left);
|
||||
father->setLeft(Right);
|
||||
setLeft(grandfather);
|
||||
setRight(father);
|
||||
|
||||
father->setDepth(-occdepth);
|
||||
if (father->Left)
|
||||
father->Left->setDepthAdd(occdepth);
|
||||
grandfather->setDepth(-occdepth - fatherdepth);
|
||||
if (grandfather->Right)
|
||||
grandfather->Right->setDepthAdd(occdepth + fatherdepth);
|
||||
} else { // Zag Zag
|
||||
grandfather->setRight(father->Left);
|
||||
father->setRight(Left);
|
||||
setLeft(father);
|
||||
father->setLeft(grandfather);
|
||||
|
||||
father->setDepth(-occdepth);
|
||||
if (father->Right)
|
||||
father->Right->setDepthAdd(occdepth);
|
||||
grandfather->setDepth(-fatherdepth);
|
||||
if (grandfather->Right)
|
||||
grandfather->Right->setDepthAdd(fatherdepth);
|
||||
}
|
||||
}
|
||||
|
||||
// Might need one more rotate depending on greatgrandfather.
|
||||
setParent(greatgrandfather);
|
||||
if (greatgrandfather) {
|
||||
if (greatgrandfather->Left == grandfather)
|
||||
greatgrandfather->Left = this;
|
||||
else
|
||||
greatgrandfather->Right = this;
|
||||
|
||||
}
|
||||
grandfather->recomputeMin();
|
||||
father->recomputeMin();
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ETNode implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void ETNode::Split() {
|
||||
ETOccurrence *right, *left;
|
||||
ETOccurrence *rightmost = RightmostOcc;
|
||||
ETOccurrence *parent;
|
||||
|
||||
// Update the occurrence tree first.
|
||||
RightmostOcc->Splay();
|
||||
|
||||
// Find the leftmost occurrence in the rightmost subtree, then splay
|
||||
// around it.
|
||||
for (right = rightmost->Right; right->Left; right = right->Left);
|
||||
|
||||
right->Splay();
|
||||
|
||||
// Start splitting
|
||||
right->Left->Parent = NULL;
|
||||
parent = ParentOcc;
|
||||
parent->Splay();
|
||||
ParentOcc = NULL;
|
||||
|
||||
left = parent->Left;
|
||||
parent->Right->Parent = NULL;
|
||||
|
||||
right->setLeft(left);
|
||||
|
||||
right->recomputeMin();
|
||||
|
||||
rightmost->Splay();
|
||||
rightmost->Depth = 0;
|
||||
rightmost->Min = 0;
|
||||
|
||||
delete parent;
|
||||
|
||||
// Now update *our* tree
|
||||
|
||||
if (Father->Son == this)
|
||||
Father->Son = Right;
|
||||
|
||||
if (Father->Son == this)
|
||||
Father->Son = NULL;
|
||||
else {
|
||||
Left->Right = Right;
|
||||
Right->Left = Left;
|
||||
}
|
||||
Left = Right = NULL;
|
||||
Father = NULL;
|
||||
}
|
||||
|
||||
void ETNode::setFather(ETNode *NewFather) {
|
||||
ETOccurrence *rightmost;
|
||||
ETOccurrence *leftpart;
|
||||
ETOccurrence *NewFatherOcc;
|
||||
ETOccurrence *temp;
|
||||
|
||||
// First update the path in the splay tree
|
||||
NewFatherOcc = new ETOccurrence(NewFather);
|
||||
|
||||
rightmost = NewFather->RightmostOcc;
|
||||
rightmost->Splay();
|
||||
|
||||
leftpart = rightmost->Left;
|
||||
|
||||
temp = RightmostOcc;
|
||||
temp->Splay();
|
||||
|
||||
NewFatherOcc->setLeft(leftpart);
|
||||
NewFatherOcc->setRight(temp);
|
||||
|
||||
temp->Depth++;
|
||||
temp->Min++;
|
||||
NewFatherOcc->recomputeMin();
|
||||
|
||||
rightmost->setLeft(NewFatherOcc);
|
||||
|
||||
if (NewFatherOcc->Min + rightmost->Depth < rightmost->Min) {
|
||||
rightmost->Min = NewFatherOcc->Min + rightmost->Depth;
|
||||
rightmost->MinOccurrence = NewFatherOcc->MinOccurrence;
|
||||
}
|
||||
|
||||
delete ParentOcc;
|
||||
ParentOcc = NewFatherOcc;
|
||||
|
||||
// Update *our* tree
|
||||
ETNode *left;
|
||||
ETNode *right;
|
||||
|
||||
Father = NewFather;
|
||||
right = Father->Son;
|
||||
|
||||
if (right)
|
||||
left = right->Left;
|
||||
else
|
||||
left = right = this;
|
||||
|
||||
left->Right = this;
|
||||
right->Left = this;
|
||||
Left = left;
|
||||
Right = right;
|
||||
|
||||
Father->Son = this;
|
||||
}
|
||||
|
||||
bool ETNode::Below(ETNode *other) {
|
||||
ETOccurrence *up = other->RightmostOcc;
|
||||
ETOccurrence *down = RightmostOcc;
|
||||
|
||||
if (this == other)
|
||||
return true;
|
||||
|
||||
up->Splay();
|
||||
|
||||
ETOccurrence *left, *right;
|
||||
left = up->Left;
|
||||
right = up->Right;
|
||||
|
||||
if (!left)
|
||||
return false;
|
||||
|
||||
left->Parent = NULL;
|
||||
|
||||
if (right)
|
||||
right->Parent = NULL;
|
||||
|
||||
down->Splay();
|
||||
|
||||
if (left == down || left->Parent != NULL) {
|
||||
if (right)
|
||||
right->Parent = up;
|
||||
up->setLeft(down);
|
||||
} else {
|
||||
left->Parent = up;
|
||||
|
||||
// If the two occurrences are in different trees, put things
|
||||
// back the way they were.
|
||||
if (right && right->Parent != NULL)
|
||||
up->setRight(down);
|
||||
else
|
||||
up->setRight(right);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (down->Depth <= 0)
|
||||
return false;
|
||||
|
||||
return !down->Right || down->Right->Min + down->Depth >= 0;
|
||||
}
|
||||
|
||||
ETNode *ETNode::NCA(ETNode *other) {
|
||||
ETOccurrence *occ1 = RightmostOcc;
|
||||
ETOccurrence *occ2 = other->RightmostOcc;
|
||||
|
||||
ETOccurrence *left, *right, *ret;
|
||||
ETOccurrence *occmin;
|
||||
int mindepth;
|
||||
|
||||
if (this == other)
|
||||
return this;
|
||||
|
||||
occ1->Splay();
|
||||
left = occ1->Left;
|
||||
right = occ1->Right;
|
||||
|
||||
if (left)
|
||||
left->Parent = NULL;
|
||||
|
||||
if (right)
|
||||
right->Parent = NULL;
|
||||
occ2->Splay();
|
||||
|
||||
if (left == occ2 || (left && left->Parent != NULL)) {
|
||||
ret = occ2->Right;
|
||||
|
||||
occ1->setLeft(occ2);
|
||||
if (right)
|
||||
right->Parent = occ1;
|
||||
} else {
|
||||
ret = occ2->Left;
|
||||
|
||||
occ1->setRight(occ2);
|
||||
if (left)
|
||||
left->Parent = occ1;
|
||||
}
|
||||
|
||||
if (occ2->Depth > 0) {
|
||||
occmin = occ1;
|
||||
mindepth = occ1->Depth;
|
||||
} else {
|
||||
occmin = occ2;
|
||||
mindepth = occ2->Depth + occ1->Depth;
|
||||
}
|
||||
|
||||
if (ret && ret->Min + occ1->Depth + occ2->Depth < mindepth)
|
||||
return ret->MinOccurrence->OccFor;
|
||||
else
|
||||
return occmin->OccFor;
|
||||
}
|
||||
|
||||
void ETNode::assignDFSNumber(int num) {
|
||||
std::vector<ETNode *> workStack;
|
||||
std::set<ETNode *> visitedNodes;
|
||||
|
||||
workStack.push_back(this);
|
||||
visitedNodes.insert(this);
|
||||
this->DFSNumIn = num++;
|
||||
|
||||
while (!workStack.empty()) {
|
||||
ETNode *Node = workStack.back();
|
||||
|
||||
// If this is leaf node then set DFSNumOut and pop the stack
|
||||
if (!Node->Son) {
|
||||
Node->DFSNumOut = num++;
|
||||
workStack.pop_back();
|
||||
continue;
|
||||
}
|
||||
|
||||
ETNode *son = Node->Son;
|
||||
|
||||
// Visit Node->Son first
|
||||
if (visitedNodes.count(son) == 0) {
|
||||
son->DFSNumIn = num++;
|
||||
workStack.push_back(son);
|
||||
visitedNodes.insert(son);
|
||||
continue;
|
||||
}
|
||||
|
||||
bool visitChild = false;
|
||||
// Visit remaining children
|
||||
for (ETNode *s = son->Right; s != son && !visitChild; s = s->Right) {
|
||||
if (visitedNodes.count(s) == 0) {
|
||||
visitChild = true;
|
||||
s->DFSNumIn = num++;
|
||||
workStack.push_back(s);
|
||||
visitedNodes.insert(s);
|
||||
}
|
||||
}
|
||||
|
||||
if (!visitChild) {
|
||||
// If we reach here means all children are visited
|
||||
Node->DFSNumOut = num++;
|
||||
workStack.pop_back();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ETForest implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
char ETForest::ID = 0;
|
||||
static RegisterPass<ETForest>
|
||||
D("etforest", "ET Forest Construction", true);
|
||||
|
||||
void ETForestBase::reset() {
|
||||
for (ETMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
|
||||
delete I->second;
|
||||
Nodes.clear();
|
||||
}
|
||||
|
||||
void ETForestBase::updateDFSNumbers()
|
||||
{
|
||||
int dfsnum = 0;
|
||||
// Iterate over all nodes in depth first order.
|
||||
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
||||
for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
|
||||
E = df_end(Roots[i]); I != E; ++I) {
|
||||
BasicBlock *BB = *I;
|
||||
ETNode *ETN = getNode(BB);
|
||||
if (ETN && !ETN->hasFather())
|
||||
ETN->assignDFSNumber(dfsnum);
|
||||
}
|
||||
SlowQueries = 0;
|
||||
DFSInfoValid = true;
|
||||
}
|
||||
|
||||
// dominates - Return true if A dominates B. THis performs the
|
||||
// special checks necessary if A and B are in the same basic block.
|
||||
bool ETForestBase::dominates(Instruction *A, Instruction *B) {
|
||||
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
|
||||
if (BBA != BBB) return dominates(BBA, BBB);
|
||||
|
||||
// It is not possible to determine dominance between two PHI nodes
|
||||
// based on their ordering.
|
||||
if (isa<PHINode>(A) && isa<PHINode>(B))
|
||||
return false;
|
||||
|
||||
// Loop through the basic block until we find A or B.
|
||||
BasicBlock::iterator I = BBA->begin();
|
||||
for (; &*I != A && &*I != B; ++I) /*empty*/;
|
||||
|
||||
if(!IsPostDominators) {
|
||||
// A dominates B if it is found first in the basic block.
|
||||
return &*I == A;
|
||||
} else {
|
||||
// A post-dominates B if B is found first in the basic block.
|
||||
return &*I == B;
|
||||
}
|
||||
}
|
||||
|
||||
/// isReachableFromEntry - Return true if A is dominated by the entry
|
||||
/// block of the function containing it.
|
||||
const bool ETForestBase::isReachableFromEntry(BasicBlock* A) {
|
||||
return dominates(&A->getParent()->getEntryBlock(), A);
|
||||
}
|
||||
|
||||
// FIXME : There is no need to make getNodeForBlock public. Fix
|
||||
// predicate simplifier.
|
||||
ETNode *ETForest::getNodeForBlock(BasicBlock *BB) {
|
||||
ETNode *&BBNode = Nodes[BB];
|
||||
if (BBNode) return BBNode;
|
||||
|
||||
// Haven't calculated this node yet? Get or calculate the node for the
|
||||
// immediate dominator.
|
||||
DomTreeNode *node= getAnalysis<DominatorTree>().getNode(BB);
|
||||
|
||||
// If we are unreachable, we may not have an immediate dominator.
|
||||
if (!node || !node->getIDom())
|
||||
return BBNode = new ETNode(BB);
|
||||
else {
|
||||
ETNode *IDomNode = getNodeForBlock(node->getIDom()->getBlock());
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
BBNode = new ETNode(BB);
|
||||
BBNode->setFather(IDomNode);
|
||||
return BBNode;
|
||||
}
|
||||
}
|
||||
|
||||
void ETForest::calculate(const DominatorTree &DT) {
|
||||
assert(Roots.size() == 1 && "ETForest should have 1 root block!");
|
||||
BasicBlock *Root = Roots[0];
|
||||
Nodes[Root] = new ETNode(Root); // Add a node for the root
|
||||
|
||||
Function *F = Root->getParent();
|
||||
// Loop over all of the reachable blocks in the function...
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
|
||||
DomTreeNode* node = DT.getNode(I);
|
||||
if (node && node->getIDom()) { // Reachable block.
|
||||
BasicBlock* ImmDom = node->getIDom()->getBlock();
|
||||
ETNode *&BBNode = Nodes[I];
|
||||
if (!BBNode) { // Haven't calculated this node yet?
|
||||
// Get or calculate the node for the immediate dominator
|
||||
ETNode *IDomNode = getNodeForBlock(ImmDom);
|
||||
|
||||
// Add a new ETNode for this BasicBlock, and set it's parent
|
||||
// to it's immediate dominator.
|
||||
BBNode = new ETNode(I);
|
||||
BBNode->setFather(IDomNode);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Make sure we've got nodes around for every block
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
|
||||
ETNode *&BBNode = Nodes[I];
|
||||
if (!BBNode)
|
||||
BBNode = new ETNode(I);
|
||||
}
|
||||
|
||||
updateDFSNumbers ();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ETForestBase Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void ETForestBase::addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
|
||||
ETNode *&BBNode = Nodes[BB];
|
||||
assert(!BBNode && "BasicBlock already in ET-Forest");
|
||||
|
||||
BBNode = new ETNode(BB);
|
||||
BBNode->setFather(getNode(IDom));
|
||||
DFSInfoValid = false;
|
||||
}
|
||||
|
||||
void ETForestBase::setImmediateDominator(BasicBlock *BB, BasicBlock *newIDom) {
|
||||
assert(getNode(BB) && "BasicBlock not in ET-Forest");
|
||||
assert(getNode(newIDom) && "IDom not in ET-Forest");
|
||||
|
||||
ETNode *Node = getNode(BB);
|
||||
if (Node->hasFather()) {
|
||||
if (Node->getFather()->getData<BasicBlock>() == newIDom)
|
||||
return;
|
||||
Node->Split();
|
||||
}
|
||||
Node->setFather(getNode(newIDom));
|
||||
DFSInfoValid= false;
|
||||
}
|
||||
|
||||
void ETForestBase::print(std::ostream &o, const Module *) const {
|
||||
o << "=============================--------------------------------\n";
|
||||
o << "ET Forest:\n";
|
||||
o << "DFS Info ";
|
||||
if (DFSInfoValid)
|
||||
o << "is";
|
||||
else
|
||||
o << "is not";
|
||||
o << " up to date\n";
|
||||
|
||||
Function *F = getRoots()[0]->getParent();
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
|
||||
o << " DFS Numbers For Basic Block:";
|
||||
WriteAsOperand(o, I, false);
|
||||
o << " are:";
|
||||
if (ETNode *EN = getNode(I)) {
|
||||
o << "In: " << EN->getDFSNumIn();
|
||||
o << " Out: " << EN->getDFSNumOut() << "\n";
|
||||
} else {
|
||||
o << "No associated ETNode";
|
||||
}
|
||||
o << "\n";
|
||||
}
|
||||
o << "\n";
|
||||
}
|
||||
|
||||
void ETForestBase::dump() {
|
||||
print (llvm::cerr);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user