1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00

[ARM][ParallelDSP] Change the search for smlads

Two functional changes have been made here:
- Now search up from any add instruction to find the chains of
  operations that we may turn into a smlad. This allows the
  generation of a smlad which doesn't accumulate into a phi.
- The search function has been corrected to stop it falsely searching
  up through an invalid path.
    
The bulk of the changes have been making the Reduction struct a class
and making it more C++y with getters and setters.

Differential Revision: https://reviews.llvm.org/D61780

llvm-svn: 365740
This commit is contained in:
Sam Parker 2019-07-11 07:47:50 +00:00
parent bca59d7f71
commit 29f96962d8
3 changed files with 470 additions and 253 deletions

View File

@ -48,7 +48,7 @@ DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
namespace {
struct OpChain;
struct BinOpChain;
struct Reduction;
class Reduction;
using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
using ReductionList = SmallVector<Reduction, 8>;
@ -79,10 +79,8 @@ namespace {
unsigned size() const { return AllValues.size(); }
};
// 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
// 'Reduction' contains the phi-node and accumulator statement from where we
// start pattern matching, and 'BinOpChain' the multiplication
// instructions that are candidates for parallel execution.
// 'BinOpChain' holds the multiplication instructions that are candidates
// for parallel execution.
struct BinOpChain : public OpChain {
ValueList LHS; // List of all (narrow) left hand operands.
ValueList RHS; // List of all (narrow) right hand operands.
@ -97,15 +95,70 @@ namespace {
bool AreSymmetrical(BinOpChain *Other);
};
struct Reduction {
PHINode *Phi; // The Phi-node from where we start
// pattern matching.
Instruction *AccIntAdd; // The accumulating integer add statement,
// i.e, the reduction statement.
OpChainList MACCandidates; // The MAC candidates associated with
// this reduction statement.
PMACPairList PMACPairs;
Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
/// Represent a sequence of multiply-accumulate operations with the aim to
/// perform the multiplications in parallel.
class Reduction {
Instruction *Root = nullptr;
Value *Acc = nullptr;
OpChainList Muls;
PMACPairList MulPairs;
SmallPtrSet<Instruction*, 4> Adds;
public:
Reduction() = delete;
Reduction (Instruction *Add) : Root(Add) { }
/// Record an Add instruction that is a part of the this reduction.
void InsertAdd(Instruction *I) { Adds.insert(I); }
/// Record a BinOpChain, rooted at a Mul instruction, that is a part of
/// this reduction.
void InsertMul(Instruction *I, ValueList &LHS, ValueList &RHS) {
Muls.push_back(make_unique<BinOpChain>(I, LHS, RHS));
}
/// Add the incoming accumulator value, returns true if a value had not
/// already been added. Returning false signals to the user that this
/// reduction already has a value to initialise the accumulator.
bool InsertAcc(Value *V) {
if (Acc)
return false;
Acc = V;
return true;
}
/// Set two BinOpChains, rooted at muls, that can be executed as a single
/// parallel operation.
void AddMulPair(BinOpChain *Mul0, BinOpChain *Mul1) {
MulPairs.push_back(std::make_pair(Mul0, Mul1));
}
/// Return true if enough mul operations are found that can be executed in
/// parallel.
bool CreateParallelPairs();
/// Return the add instruction which is the root of the reduction.
Instruction *getRoot() { return Root; }
/// Return the incoming value to be accumulated. This maybe null.
Value *getAccumulator() { return Acc; }
/// Return the set of adds that comprise the reduction.
SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; }
/// Return the BinOpChain, rooted at mul instruction, that comprise the
/// the reduction.
OpChainList &getMuls() { return Muls; }
/// Return the BinOpChain, rooted at mul instructions, that have been
/// paired for parallel execution.
PMACPairList &getMulPairs() { return MulPairs; }
/// To finalise, replace the uses of the root with the intrinsic call.
void UpdateRoot(Instruction *SMLAD) {
Root->replaceAllUsesWith(SMLAD);
}
};
class WidenedLoad {
@ -133,25 +186,25 @@ namespace {
const DataLayout *DL;
Module *M;
std::map<LoadInst*, LoadInst*> LoadPairs;
SmallPtrSet<LoadInst*, 4> OffsetLoads;
std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
template<unsigned>
bool IsNarrowSequence(Value *V, ValueList &VL);
bool RecordMemoryOps(BasicBlock *BB);
bool InsertParallelMACs(Reduction &Reduction);
void InsertParallelMACs(Reduction &Reduction);
bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
IntegerType *LoadTy);
void CreateParallelMACPairs(Reduction &R);
Instruction *CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0,
SmallVectorImpl<LoadInst*> &VecLd1,
Instruction *Acc, bool Exchange,
Instruction *InsertAfter);
bool CreateParallelPairs(Reduction &R);
/// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
/// Dual performs two signed 16x16-bit multiplications. It adds the
/// products to a 32-bit accumulate operand. Optionally, the instruction can
/// exchange the halfwords of the second operand before performing the
/// arithmetic.
bool MatchSMLAD(Function &F);
bool MatchSMLAD(Loop *L);
public:
static char ID;
@ -201,11 +254,8 @@ namespace {
return false;
}
// We need a preheader as getIncomingValueForBlock assumes there is one.
if (!TheLoop->getLoopPreheader()) {
LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
return false;
}
if (!TheLoop->getLoopPreheader())
InsertPreheaderForLoop(L, DT, LI, nullptr, true);
Function &F = *Header->getParent();
M = F.getParent();
@ -242,7 +292,7 @@ namespace {
return false;
}
bool Changes = MatchSMLAD(F);
bool Changes = MatchSMLAD(L);
return Changes;
}
};
@ -275,6 +325,51 @@ bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
return true;
}
// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
// instructions, which is set to 16. So here we should collect all i8 and i16
// narrow operations.
// TODO: we currently only collect i16, and will support i8 later, so that's
// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
template<unsigned MaxBitWidth>
bool ARMParallelDSP::IsNarrowSequence(Value *V, ValueList &VL) {
ConstantInt *CInt;
if (match(V, m_ConstantInt(CInt))) {
// TODO: if a constant is used, it needs to fit within the bit width.
return false;
}
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
Value *Val, *LHS, *RHS;
if (match(V, m_Trunc(m_Value(Val)))) {
if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
return IsNarrowSequence<MaxBitWidth>(Val, VL);
} else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
// TODO: we need to implement sadd16/sadd8 for this, which enables to
// also do the rewrite for smlad8.ll, but it is unsupported for now.
return false;
} else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
return false;
if (match(Val, m_Load(m_Value()))) {
auto *Ld = cast<LoadInst>(Val);
// Check that these load could be paired.
if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld))
return false;
VL.push_back(Val);
VL.push_back(I);
return true;
}
}
return false;
}
/// Iterate through the block and record base, offset pairs of loads which can
/// be widened into a single load.
bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
@ -342,6 +437,7 @@ bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) &&
SafeToPair(Base, Offset)) {
LoadPairs[Base] = Offset;
OffsetLoads.insert(Offset);
break;
}
}
@ -357,15 +453,150 @@ bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
return LoadPairs.size() > 1;
}
void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) {
OpChainList &Candidates = R.MACCandidates;
PMACPairList &PMACPairs = R.PMACPairs;
const unsigned Elems = Candidates.size();
// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
// multiplications.
// To use SMLAD:
// 1) we first need to find integer add then look for this pattern:
//
// acc0 = ...
// ld0 = load i16
// sext0 = sext i16 %ld0 to i32
// ld1 = load i16
// sext1 = sext i16 %ld1 to i32
// mul0 = mul %sext0, %sext1
// ld2 = load i16
// sext2 = sext i16 %ld2 to i32
// ld3 = load i16
// sext3 = sext i16 %ld3 to i32
// mul1 = mul i32 %sext2, %sext3
// add0 = add i32 %mul0, %acc0
// acc1 = add i32 %add0, %mul1
//
// Which can be selected to:
//
// ldr r0
// ldr r1
// smlad r2, r0, r1, r2
//
// If constants are used instead of loads, these will need to be hoisted
// out and into a register.
//
// If loop invariants are used instead of loads, these need to be packed
// before the loop begins.
//
bool ARMParallelDSP::MatchSMLAD(Loop *L) {
// Search recursively back through the operands to find a tree of values that
// form a multiply-accumulate chain. The search records the Add and Mul
// instructions that form the reduction and allows us to find a single value
// to be used as the initial input to the accumlator.
std::function<bool(Value*, Reduction&)> Search = [&]
(Value *V, Reduction &R) -> bool {
if (Elems < 2)
return;
// If we find a non-instruction, try to use it as the initial accumulator
// value. This may have already been found during the search in which case
// this function will return false, signaling a search fail.
auto *I = dyn_cast<Instruction>(V);
if (!I)
return R.InsertAcc(V);
auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) {
switch (I->getOpcode()) {
default:
break;
case Instruction::PHI:
// Could be the accumulator value.
return R.InsertAcc(V);
case Instruction::Add: {
// Adds should be adding together two muls, or another add and a mul to
// be within the mac chain. One of the operands may also be the
// accumulator value at which point we should stop searching.
bool ValidLHS = Search(I->getOperand(0), R);
bool ValidRHS = Search(I->getOperand(1), R);
if (!ValidLHS && !ValidLHS)
return false;
else if (ValidLHS && ValidRHS) {
R.InsertAdd(I);
return true;
} else {
R.InsertAdd(I);
return R.InsertAcc(I);
}
}
case Instruction::Mul: {
Value *MulOp0 = I->getOperand(0);
Value *MulOp1 = I->getOperand(1);
if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) {
ValueList LHS;
ValueList RHS;
if (IsNarrowSequence<16>(MulOp0, LHS) &&
IsNarrowSequence<16>(MulOp1, RHS)) {
R.InsertMul(I, LHS, RHS);
return true;
}
}
return false;
}
case Instruction::SExt:
return Search(I->getOperand(0), R);
}
return false;
};
bool Changed = false;
SmallPtrSet<Instruction*, 4> AllAdds;
BasicBlock *Latch = L->getLoopLatch();
for (Instruction &I : reverse(*Latch)) {
if (I.getOpcode() != Instruction::Add)
continue;
if (AllAdds.count(&I))
continue;
const auto *Ty = I.getType();
if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
continue;
Reduction R(&I);
if (!Search(&I, R))
continue;
if (!CreateParallelPairs(R))
continue;
InsertParallelMACs(R);
Changed = true;
AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
}
return Changed;
}
bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
// Not enough mul operations to make a pair.
if (R.getMuls().size() < 2)
return false;
// Check that the muls operate directly upon sign extended loads.
for (auto &MulChain : R.getMuls()) {
// A mul has 2 operands, and a narrow op consist of sext and a load; thus
// we expect at least 4 items in this operand value list.
if (MulChain->size() < 4) {
LLVM_DEBUG(dbgs() << "Operand list too short.\n");
return false;
}
MulChain->PopulateLoads();
ValueList &LHS = static_cast<BinOpChain*>(MulChain.get())->LHS;
ValueList &RHS = static_cast<BinOpChain*>(MulChain.get())->RHS;
// Use +=2 to skip over the expected extend instructions.
for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
return false;
}
}
auto CanPair = [&](Reduction &R, BinOpChain *PMul0, BinOpChain *PMul1) {
if (!PMul0->AreSymmetrical(PMul1))
return false;
@ -391,13 +622,13 @@ void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) {
if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
PMACPairs.push_back(std::make_pair(PMul0, PMul1));
R.AddMulPair(PMul0, PMul1);
return true;
} else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
PMul1->Exchange = true;
PMACPairs.push_back(std::make_pair(PMul0, PMul1));
R.AddMulPair(PMul0, PMul1);
return true;
}
} else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
@ -407,16 +638,18 @@ void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) {
LLVM_DEBUG(dbgs() << " and swapping muls\n");
PMul0->Exchange = true;
// Only the second operand can be exchanged, so swap the muls.
PMACPairs.push_back(std::make_pair(PMul1, PMul0));
R.AddMulPair(PMul1, PMul0);
return true;
}
}
return false;
};
OpChainList &Muls = R.getMuls();
const unsigned Elems = Muls.size();
SmallPtrSet<const Instruction*, 4> Paired;
for (unsigned i = 0; i < Elems; ++i) {
BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
BinOpChain *PMul0 = static_cast<BinOpChain*>(Muls[i].get());
if (Paired.count(PMul0->Root))
continue;
@ -424,7 +657,7 @@ void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) {
if (i == j)
continue;
BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get());
BinOpChain *PMul1 = static_cast<BinOpChain*>(Muls[j].get());
if (Paired.count(PMul1->Root))
continue;
@ -435,199 +668,67 @@ void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) {
assert(PMul0 != PMul1 && "expected different chains");
if (CanPair(PMul0, PMul1)) {
if (CanPair(R, PMul0, PMul1)) {
Paired.insert(Mul0);
Paired.insert(Mul1);
break;
}
}
}
return !R.getMulPairs().empty();
}
bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) {
Instruction *Acc = Reduction.Phi;
Instruction *InsertAfter = Reduction.AccIntAdd;
for (auto &Pair : Reduction.PMACPairs) {
void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
auto CreateSMLADCall = [&](SmallVectorImpl<LoadInst*> &VecLd0,
SmallVectorImpl<LoadInst*> &VecLd1,
Value *Acc, bool Exchange,
Instruction *InsertAfter) {
// Replace the reduction chain with an intrinsic call
IntegerType *Ty = IntegerType::get(M->getContext(), 32);
LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ?
WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty);
LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ?
WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty);
Value* Args[] = { WideLd0, WideLd1, Acc };
Function *SMLAD = nullptr;
if (Exchange)
SMLAD = Acc->getType()->isIntegerTy(32) ?
Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
else
SMLAD = Acc->getType()->isIntegerTy(32) ?
Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
++BasicBlock::iterator(InsertAfter));
Instruction *Call = Builder.CreateCall(SMLAD, Args);
NumSMLAD++;
return Call;
};
Instruction *InsertAfter = R.getRoot();
Value *Acc = R.getAccumulator();
if (!Acc)
Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n"
<< "Acc: " << *Acc << "\n");
for (auto &Pair : R.getMulPairs()) {
BinOpChain *PMul0 = Pair.first;
BinOpChain *PMul1 = Pair.second;
LLVM_DEBUG(dbgs() << "Found parallel MACs:\n"
LLVM_DEBUG(dbgs() << "Muls:\n"
<< "- " << *PMul0->Root << "\n"
<< "- " << *PMul1->Root << "\n");
Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange,
InsertAfter);
InsertAfter = Acc;
InsertAfter = cast<Instruction>(Acc);
}
if (Acc != Reduction.Phi) {
LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
Reduction.AccIntAdd->replaceAllUsesWith(Acc);
return true;
}
return false;
}
template<typename InstType, unsigned BitWidth>
bool IsExtendingLoad(Value *V) {
auto *I = dyn_cast<InstType>(V);
if (!I)
return false;
if (I->getSrcTy()->getIntegerBitWidth() != BitWidth)
return false;
return isa<LoadInst>(I->getOperand(0));
}
static void MatchParallelMACSequences(Reduction &R,
OpChainList &Candidates) {
Instruction *Acc = R.AccIntAdd;
LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n");
// Returns false to signal the search should be stopped.
std::function<bool(Value*)> Match =
[&Candidates, &Match](Value *V) -> bool {
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
switch (I->getOpcode()) {
case Instruction::Add:
if (Match(I->getOperand(0)) || (Match(I->getOperand(1))))
return true;
break;
case Instruction::Mul: {
Value *Op0 = I->getOperand(0);
Value *Op1 = I->getOperand(1);
if (IsExtendingLoad<SExtInst, 16>(Op0) &&
IsExtendingLoad<SExtInst, 16>(Op1)) {
ValueList LHS = { cast<SExtInst>(Op0)->getOperand(0), Op0 };
ValueList RHS = { cast<SExtInst>(Op1)->getOperand(0), Op1 };
Candidates.push_back(make_unique<BinOpChain>(I, LHS, RHS));
}
return false;
}
case Instruction::SExt:
return Match(I->getOperand(0));
}
return false;
};
while (Match (Acc));
LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found "
<< Candidates.size() << " candidates.\n");
}
static bool CheckMACMemory(OpChainList &Candidates) {
for (auto &C : Candidates) {
// A mul has 2 operands, and a narrow op consist of sext and a load; thus
// we expect at least 4 items in this operand value list.
if (C->size() < 4) {
LLVM_DEBUG(dbgs() << "Operand list too short.\n");
return false;
}
C->PopulateLoads();
ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
// Use +=2 to skip over the expected extend instructions.
for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
return false;
}
}
return true;
}
// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
// multiplications.
// To use SMLAD:
// 1) we first need to find integer add reduction PHIs,
// 2) then from the PHI, look for this pattern:
//
// acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
// ld0 = load i16
// sext0 = sext i16 %ld0 to i32
// ld1 = load i16
// sext1 = sext i16 %ld1 to i32
// mul0 = mul %sext0, %sext1
// ld2 = load i16
// sext2 = sext i16 %ld2 to i32
// ld3 = load i16
// sext3 = sext i16 %ld3 to i32
// mul1 = mul i32 %sext2, %sext3
// add0 = add i32 %mul0, %acc0
// acc1 = add i32 %add0, %mul1
//
// Which can be selected to:
//
// ldr.h r0
// ldr.h r1
// smlad r2, r0, r1, r2
//
// If constants are used instead of loads, these will need to be hoisted
// out and into a register.
//
// If loop invariants are used instead of loads, these need to be packed
// before the loop begins.
//
bool ARMParallelDSP::MatchSMLAD(Function &F) {
auto FindReductions = [&](ReductionList &Reductions) {
RecurrenceDescriptor RecDesc;
const bool HasFnNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
BasicBlock *Latch = L->getLoopLatch();
for (PHINode &Phi : Latch->phis()) {
const auto *Ty = Phi.getType();
if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
continue;
const bool IsReduction = RecurrenceDescriptor::AddReductionVar(
&Phi, RecurrenceDescriptor::RK_IntegerAdd, L, HasFnNoNaNAttr, RecDesc);
if (!IsReduction)
continue;
Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
if (!Acc)
continue;
Reductions.push_back(Reduction(&Phi, Acc));
}
return !Reductions.empty();
};
ReductionList Reductions;
if (!FindReductions(Reductions))
return false;
for (auto &R : Reductions) {
OpChainList MACCandidates;
MatchParallelMACSequences(R, MACCandidates);
if (!CheckMACMemory(MACCandidates))
continue;
R.MACCandidates = std::move(MACCandidates);
LLVM_DEBUG(dbgs() << "MAC candidates:\n";
for (auto &M : R.MACCandidates)
M->Root->dump();
dbgs() << "\n";);
}
bool Changed = false;
// Check whether statements in the basic block that write to memory alias
// with the memory locations accessed by the MAC-chains.
for (auto &R : Reductions) {
CreateParallelMACPairs(R);
Changed |= InsertParallelMACs(R);
}
return Changed;
R.UpdateRoot(cast<Instruction>(Acc));
}
LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
@ -696,43 +797,6 @@ LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
return WideLoad;
}
Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0,
SmallVectorImpl<LoadInst*> &VecLd1,
Instruction *Acc, bool Exchange,
Instruction *InsertAfter) {
LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"
<< "- " << *VecLd0[0] << "\n"
<< "- " << *VecLd0[1] << "\n"
<< "- " << *VecLd1[0] << "\n"
<< "- " << *VecLd1[1] << "\n"
<< "- " << *Acc << "\n"
<< "- Exchange: " << Exchange << "\n");
// Replace the reduction chain with an intrinsic call
IntegerType *Ty = IntegerType::get(M->getContext(), 32);
LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ?
WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty);
LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ?
WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty);
Value* Args[] = { WideLd0, WideLd1, Acc };
Function *SMLAD = nullptr;
if (Exchange)
SMLAD = Acc->getType()->isIntegerTy(32) ?
Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
else
SMLAD = Acc->getType()->isIntegerTy(32) ?
Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
++BasicBlock::iterator(InsertAfter));
CallInst *Call = Builder.CreateCall(SMLAD, Args);
NumSMLAD++;
return Call;
}
// Compare the value lists in Other to this chain.
bool BinOpChain::AreSymmetrical(BinOpChain *Other) {
// Element-by-element comparison of Value lists returning true if they are

View File

@ -451,8 +451,10 @@ for.body:
br i1 %exitcond, label %for.body, label %for.cond.cleanup
}
; TODO: I think we should be able to generate one smlad here. The search fails
; when it finds the alias.
; CHECK-LABEL: one_pair_alias
; FIXME: This tests shows we have a bug with smlad insertion
; CHECK-NOT: call i32 @llvm.arm.smlad
define i32 @one_pair_alias(i16* noalias nocapture readonly %b, i16* noalias nocapture readonly %c) {
entry:
br label %for.body

View File

@ -0,0 +1,151 @@
; RUN: opt -mtriple=thumbv7em -arm-parallel-dsp -dce -S %s -o - | FileCheck %s
; CHECK-LABEL: full_unroll
; CHECK: [[IV:%[^ ]+]] = phi i32
; CHECK: [[AI:%[^ ]+]] = getelementptr inbounds i32, i32* %a, i32 [[IV]]
; CHECK: [[BI:%[^ ]+]] = getelementptr inbounds i16*, i16** %b, i32 [[IV]]
; CHECK: [[BIJ:%[^ ]+]] = load i16*, i16** %arrayidx5, align 4
; CHECK: [[CI:%[^ ]+]] = getelementptr inbounds i16*, i16** %c, i32 [[IV]]
; CHECK: [[CIJ:%[^ ]+]] = load i16*, i16** [[CI]], align 4
; CHECK: [[BIJ_CAST:%[^ ]+]] = bitcast i16* [[BIJ]] to i32*
; CHECK: [[BIJ_LD:%[^ ]+]] = load i32, i32* [[BIJ_CAST]], align 2
; CHECK: [[CIJ_CAST:%[^ ]+]] = bitcast i16* [[CIJ]] to i32*
; CHECK: [[CIJ_LD:%[^ ]+]] = load i32, i32* [[CIJ_CAST]], align 2
; CHECK: [[BIJ_2:%[^ ]+]] = getelementptr inbounds i16, i16* [[BIJ]], i32 2
; CHECK: [[BIJ_2_CAST:%[^ ]+]] = bitcast i16* [[BIJ_2]] to i32*
; CHECK: [[BIJ_2_LD:%[^ ]+]] = load i32, i32* [[BIJ_2_CAST]], align 2
; CHECK: [[CIJ_2:%[^ ]+]] = getelementptr inbounds i16, i16* [[CIJ]], i32 2
; CHECK: [[CIJ_2_CAST:%[^ ]+]] = bitcast i16* [[CIJ_2]] to i32*
; CHECK: [[CIJ_2_LD:%[^ ]+]] = load i32, i32* [[CIJ_2_CAST]], align 2
; CHECK: [[SMLAD0:%[^ ]+]] = call i32 @llvm.arm.smlad(i32 [[CIJ_2_LD]], i32 [[BIJ_2_LD]], i32 0)
; CHECK: [[SMLAD1:%[^ ]+]] = call i32 @llvm.arm.smlad(i32 [[CIJ_LD]], i32 [[BIJ_LD]], i32 [[SMLAD0]])
; CHECK: store i32 [[SMLAD1]], i32* %arrayidx, align 4
define void @full_unroll(i32* noalias nocapture %a, i16** noalias nocapture readonly %b, i16** noalias nocapture readonly %c, i32 %N) {
entry:
%cmp29 = icmp eq i32 %N, 0
br i1 %cmp29, label %for.cond.cleanup, label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
ret void
for.body: ; preds = %entry, %for.body
%i.030 = phi i32 [ %inc12, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i.030
%arrayidx5 = getelementptr inbounds i16*, i16** %b, i32 %i.030
%0 = load i16*, i16** %arrayidx5, align 4
%arrayidx7 = getelementptr inbounds i16*, i16** %c, i32 %i.030
%1 = load i16*, i16** %arrayidx7, align 4
%2 = load i16, i16* %0, align 2
%conv = sext i16 %2 to i32
%3 = load i16, i16* %1, align 2
%conv9 = sext i16 %3 to i32
%mul = mul nsw i32 %conv9, %conv
%arrayidx6.1 = getelementptr inbounds i16, i16* %0, i32 1
%4 = load i16, i16* %arrayidx6.1, align 2
%conv.1 = sext i16 %4 to i32
%arrayidx8.1 = getelementptr inbounds i16, i16* %1, i32 1
%5 = load i16, i16* %arrayidx8.1, align 2
%conv9.1 = sext i16 %5 to i32
%mul.1 = mul nsw i32 %conv9.1, %conv.1
%add.1 = add nsw i32 %mul.1, %mul
%arrayidx6.2 = getelementptr inbounds i16, i16* %0, i32 2
%6 = load i16, i16* %arrayidx6.2, align 2
%conv.2 = sext i16 %6 to i32
%arrayidx8.2 = getelementptr inbounds i16, i16* %1, i32 2
%7 = load i16, i16* %arrayidx8.2, align 2
%conv9.2 = sext i16 %7 to i32
%mul.2 = mul nsw i32 %conv9.2, %conv.2
%add.2 = add nsw i32 %mul.2, %add.1
%arrayidx6.3 = getelementptr inbounds i16, i16* %0, i32 3
%8 = load i16, i16* %arrayidx6.3, align 2
%conv.3 = sext i16 %8 to i32
%arrayidx8.3 = getelementptr inbounds i16, i16* %1, i32 3
%9 = load i16, i16* %arrayidx8.3, align 2
%conv9.3 = sext i16 %9 to i32
%mul.3 = mul nsw i32 %conv9.3, %conv.3
%add.3 = add nsw i32 %mul.3, %add.2
store i32 %add.3, i32* %arrayidx, align 4
%inc12 = add nuw i32 %i.030, 1
%exitcond = icmp eq i32 %inc12, %N
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
; CHECK-LABEL: full_unroll_sub
; CHEC: [[IV:%[^ ]+]] = phi i32
; CHECK: [[AI:%[^ ]+]] = getelementptr inbounds i32, i32* %a, i32 [[IV]]
; CHECK: [[BI:%[^ ]+]] = getelementptr inbounds i16*, i16** %b, i32 [[IV]]
; CHECK: [[BIJ:%[^ ]+]] = load i16*, i16** [[BI]], align 4
; CHECK: [[CI:%[^ ]+]] = getelementptr inbounds i16*, i16** %c, i32 [[IV]]
; CHECK: [[CIJ:%[^ ]+]] = load i16*, i16** [[CI]], align 4
; CHECK: [[BIJ_LD:%[^ ]+]] = load i16, i16* [[BIJ]], align 2
; CHECK: [[BIJ_LD_SXT:%[^ ]+]] = sext i16 [[BIJ_LD]] to i32
; CHECK: [[CIJ_LD:%[^ ]+]] = load i16, i16* [[CIJ]], align 2
; CHECK: [[CIJ_LD_SXT:%[^ ]+]] = sext i16 [[CIJ_LD]] to i32
; CHECK: [[SUB:%[^ ]+]] = sub nsw i32 [[CIJ_LD_SXT]], [[BIJ_LD_SXT]]
; CHECK: [[BIJ_1:%[^ ]+]] = getelementptr inbounds i16, i16* [[BIJ]], i32 1
; CHECK: [[BIJ_1_LD:%[^ ]+]] = load i16, i16* [[BIJ_1]], align 2
; CHECK: [[BIJ_1_LD_SXT:%[^ ]+]] = sext i16 [[BIJ_1_LD]] to i32
; CHECK: [[CIJ_1:%[^ ]+]] = getelementptr inbounds i16, i16* [[CIJ]], i32 1
; CHECK: [[CIJ_1_LD:%[^ ]+]] = load i16, i16* [[CIJ_1]], align 2
; CHECK: [[CIJ_1_LD_SXT:%[^ ]+]] = sext i16 [[CIJ_1_LD]] to i32
; CHECK: [[MUL:%[^ ]+]] = mul nsw i32 [[CIJ_1_LD_SXT]], [[BIJ_1_LD_SXT]]
; CHECK: [[ACC:%[^ ]+]] = add nsw i32 [[MUL]], [[SUB]]
; CHECK: [[BIJ_2:%[^ ]+]] = getelementptr inbounds i16, i16* [[BIJ]], i32 2
; CHECK: [[BIJ_2_CAST:%[^ ]+]] = bitcast i16* [[BIJ_2]] to i32*
; CHECK: [[BIJ_2_LD:%[^ ]+]] = load i32, i32* [[BIJ_2_CAST]], align 2
; CHECK: [[CIJ_2:%[^ ]+]] = getelementptr inbounds i16, i16* [[CIJ]], i32 2
; CHECK: [[CIJ_2_CAST:%[^ ]+]] = bitcast i16* [[CIJ_2]] to i32*
; CHECK: [[CIJ_2_LD:%[^ ]+]] = load i32, i32* [[CIJ_2_CAST]], align 2
; CHECK: [[SMLAD0:%[^ ]+]] = call i32 @llvm.arm.smlad(i32 [[CIJ_2_LD]], i32 [[BIJ_2_LD]], i32 [[ACC]])
; CHECK: store i32 [[SMLAD0]], i32* %arrayidx, align 4
define void @full_unroll_sub(i32* noalias nocapture %a, i16** noalias nocapture readonly %b, i16** noalias nocapture readonly %c, i32 %N) {
entry:
%cmp29 = icmp eq i32 %N, 0
br i1 %cmp29, label %for.cond.cleanup, label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
ret void
for.body: ; preds = %entry, %for.body
%i.030 = phi i32 [ %inc12, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i.030
%arrayidx5 = getelementptr inbounds i16*, i16** %b, i32 %i.030
%0 = load i16*, i16** %arrayidx5, align 4
%arrayidx7 = getelementptr inbounds i16*, i16** %c, i32 %i.030
%1 = load i16*, i16** %arrayidx7, align 4
%2 = load i16, i16* %0, align 2
%conv = sext i16 %2 to i32
%3 = load i16, i16* %1, align 2
%conv9 = sext i16 %3 to i32
%sub = sub nsw i32 %conv9, %conv
%arrayidx6.1 = getelementptr inbounds i16, i16* %0, i32 1
%4 = load i16, i16* %arrayidx6.1, align 2
%conv.1 = sext i16 %4 to i32
%arrayidx8.1 = getelementptr inbounds i16, i16* %1, i32 1
%5 = load i16, i16* %arrayidx8.1, align 2
%conv9.1 = sext i16 %5 to i32
%mul.1 = mul nsw i32 %conv9.1, %conv.1
%add.1 = add nsw i32 %mul.1, %sub
%arrayidx6.2 = getelementptr inbounds i16, i16* %0, i32 2
%6 = load i16, i16* %arrayidx6.2, align 2
%conv.2 = sext i16 %6 to i32
%arrayidx8.2 = getelementptr inbounds i16, i16* %1, i32 2
%7 = load i16, i16* %arrayidx8.2, align 2
%conv9.2 = sext i16 %7 to i32
%mul.2 = mul nsw i32 %conv9.2, %conv.2
%add.2 = add nsw i32 %mul.2, %add.1
%arrayidx6.3 = getelementptr inbounds i16, i16* %0, i32 3
%8 = load i16, i16* %arrayidx6.3, align 2
%conv.3 = sext i16 %8 to i32
%arrayidx8.3 = getelementptr inbounds i16, i16* %1, i32 3
%9 = load i16, i16* %arrayidx8.3, align 2
%conv9.3 = sext i16 %9 to i32
%mul.3 = mul nsw i32 %conv9.3, %conv.3
%add.3 = add nsw i32 %mul.3, %add.2
store i32 %add.3, i32* %arrayidx, align 4
%inc12 = add nuw i32 %i.030, 1
%exitcond = icmp eq i32 %inc12, %N
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}