mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
Checkin of new dominator calculation routines. These will be improved in
the future to do post dominators and stuff llvm-svn: 124
This commit is contained in:
parent
75057fa064
commit
2dd269d8db
239
lib/Analysis/PostDominators.cpp
Normal file
239
lib/Analysis/PostDominators.cpp
Normal file
@ -0,0 +1,239 @@
|
||||
//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
|
||||
//
|
||||
// This file provides a simple class to calculate the dominator set of a method.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/CFG.h"
|
||||
#include "llvm/Tools/STLExtras.h"
|
||||
#include <algorithm>
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Helper Template
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// set_intersect - Identical to set_intersection, except that it works on
|
||||
// set<>'s and is nicer to use. Functionally, this iterates through S1,
|
||||
// removing elements that are not contained in S2.
|
||||
//
|
||||
template <class Ty, class Ty2>
|
||||
void set_intersect(set<Ty> &S1, const set<Ty2> &S2) {
|
||||
for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) {
|
||||
const Ty &E = *I;
|
||||
++I;
|
||||
if (!S2.count(E)) S1.erase(E); // Erase element if not in S2
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorSet Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// DominatorSet ctor - Build either the dominator set or the post-dominator
|
||||
// set for a method...
|
||||
//
|
||||
cfg::DominatorSet::DominatorSet(const Method *M, bool PostDomSet)
|
||||
: Root(M->front()) {
|
||||
assert(Root && M && "Can't build dominator set of null method!");
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
|
||||
DomSetType WorkingSet;
|
||||
df_const_iterator It = df_begin(M), End = df_end(M);
|
||||
for ( ; It != End; ++It) {
|
||||
const BasicBlock *BB = *It;
|
||||
pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
|
||||
if (PI != PEnd) { // Is there SOME predecessor?
|
||||
// Loop until we get to a predecessor that has had it's dom set filled
|
||||
// in at least once. We are guaranteed to have this because we are
|
||||
// traversing the graph in DFO and have handled start nodes specially.
|
||||
//
|
||||
while (Doms[*PI].size() == 0) ++PI;
|
||||
WorkingSet = Doms[*PI];
|
||||
|
||||
for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
|
||||
DomSetType &PredSet = Doms[*PI];
|
||||
if (PredSet.size())
|
||||
set_intersect(WorkingSet, PredSet);
|
||||
}
|
||||
}
|
||||
|
||||
WorkingSet.insert(BB); // A block always dominates itself
|
||||
DomSetType &BBSet = Doms[BB];
|
||||
if (BBSet != WorkingSet) {
|
||||
BBSet.swap(WorkingSet); // Constant time operation!
|
||||
Changed = true; // The sets changed.
|
||||
}
|
||||
WorkingSet.clear(); // Clear out the set for next iteration
|
||||
}
|
||||
} while (Changed);
|
||||
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ImmediateDominators Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// calcIDoms - Calculate the immediate dominator mapping, given a set of
|
||||
// dominators for every basic block.
|
||||
void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
|
||||
// Loop over all of the nodes that have dominators... figuring out the IDOM
|
||||
// for each node...
|
||||
//
|
||||
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
|
||||
DI != DEnd; ++DI) {
|
||||
const BasicBlock *BB = DI->first;
|
||||
const DominatorSet::DomSetType &Dominators = DI->second;
|
||||
unsigned DomSetSize = Dominators.size();
|
||||
if (DomSetSize == 1) continue; // Root node... IDom = null
|
||||
|
||||
// Loop over all dominators of this node. This corresponds to looping over
|
||||
// nodes in the dominator chain, looking for a node whose dominator set is
|
||||
// equal to the current nodes, except that the current node does not exist
|
||||
// in it. This means that it is one level higher in the dom chain than the
|
||||
// current node, and it is our idom!
|
||||
//
|
||||
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
||||
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
||||
for (; I != End; ++I) { // Iterate over dominators...
|
||||
// All of our dominators should form a chain, where the number of elements
|
||||
// in the dominator set indicates what level the node is at in the chain.
|
||||
// We want the node immediately above us, so it will have an identical
|
||||
// dominator set, except that BB will not dominate it... therefore it's
|
||||
// dominator set size will be one less than BB's...
|
||||
//
|
||||
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
||||
IDoms[BB] = *I;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorTree Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// DominatorTree dtor - Free all of the tree node memory.
|
||||
//
|
||||
cfg::DominatorTree::~DominatorTree() {
|
||||
for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
|
||||
delete I->second;
|
||||
}
|
||||
|
||||
|
||||
cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms)
|
||||
: Root(IDoms.getRoot()) {
|
||||
assert(Root && Root->getParent() && "No method for IDoms?");
|
||||
const Method *M = Root->getParent();
|
||||
|
||||
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
|
||||
|
||||
// Iterate over all nodes in depth first order...
|
||||
for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
|
||||
const BasicBlock *BB = *I, *IDom = IDoms[*I];
|
||||
|
||||
if (IDom != 0) { // Ignore the root node and other nasty nodes
|
||||
// We know that the immediate dominator should already have a node,
|
||||
// because we are traversing the CFG in depth first order!
|
||||
//
|
||||
assert(Nodes[IDom] && "No node for IDOM?");
|
||||
Node *IDomNode = Nodes[IDom];
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cfg::DominatorTree::calculate(const DominatorSet &DS) {
|
||||
Root = DS.getRoot();
|
||||
assert(Root && Root->getParent() && "No method for IDoms?");
|
||||
const Method *M = Root->getParent();
|
||||
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
|
||||
|
||||
// Iterate over all nodes in depth first order...
|
||||
for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
|
||||
const BasicBlock *BB = *I;
|
||||
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
|
||||
unsigned DomSetSize = Dominators.size();
|
||||
if (DomSetSize == 1) continue; // Root node... IDom = null
|
||||
|
||||
// Loop over all dominators of this node. This corresponds to looping over
|
||||
// nodes in the dominator chain, looking for a node whose dominator set is
|
||||
// equal to the current nodes, except that the current node does not exist
|
||||
// in it. This means that it is one level higher in the dom chain than the
|
||||
// current node, and it is our idom! We know that we have already added
|
||||
// a DominatorTree node for our idom, because the idom must be a
|
||||
// predecessor in the depth first order that we are iterating through the
|
||||
// method.
|
||||
//
|
||||
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
||||
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
||||
for (; I != End; ++I) { // Iterate over dominators...
|
||||
// All of our dominators should form a chain, where the number of elements
|
||||
// in the dominator set indicates what level the node is at in the chain.
|
||||
// We want the node immediately above us, so it will have an identical
|
||||
// dominator set, except that BB will not dominate it... therefore it's
|
||||
// dominator set size will be one less than BB's...
|
||||
//
|
||||
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
||||
// We know that the immediate dominator should already have a node,
|
||||
// because we are traversing the CFG in depth first order!
|
||||
//
|
||||
Node *IDomNode = Nodes[*I];
|
||||
assert(Nodes[*I] && "No node for IDOM?");
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominanceFrontier Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
const cfg::DominanceFrontier::DomSetType &
|
||||
cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
|
||||
const DominatorTree::Node *Node) {
|
||||
// Loop over CFG successors to calculate DFlocal[Node]
|
||||
const BasicBlock *BB = Node->getNode();
|
||||
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
||||
|
||||
for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
||||
SI != SE; ++SI) {
|
||||
// Does Node immediately dominate this successor?
|
||||
if (DT[*SI]->getIDom() != Node)
|
||||
S.insert(*SI);
|
||||
}
|
||||
|
||||
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
||||
// Loop through and visit the nodes that Node immediately dominates (Node's
|
||||
// children in the IDomTree)
|
||||
//
|
||||
for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
|
||||
NI != NE; ++NI) {
|
||||
DominatorTree::Node *IDominee = *NI;
|
||||
const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
|
||||
|
||||
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
|
||||
for (; CDFI != CDFE; ++CDFI) {
|
||||
if (!Node->dominates(DT[*CDFI]))
|
||||
S.insert(*CDFI);
|
||||
}
|
||||
}
|
||||
|
||||
return S;
|
||||
}
|
239
lib/VMCore/Dominators.cpp
Normal file
239
lib/VMCore/Dominators.cpp
Normal file
@ -0,0 +1,239 @@
|
||||
//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
|
||||
//
|
||||
// This file provides a simple class to calculate the dominator set of a method.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/CFG.h"
|
||||
#include "llvm/Tools/STLExtras.h"
|
||||
#include <algorithm>
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Helper Template
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// set_intersect - Identical to set_intersection, except that it works on
|
||||
// set<>'s and is nicer to use. Functionally, this iterates through S1,
|
||||
// removing elements that are not contained in S2.
|
||||
//
|
||||
template <class Ty, class Ty2>
|
||||
void set_intersect(set<Ty> &S1, const set<Ty2> &S2) {
|
||||
for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) {
|
||||
const Ty &E = *I;
|
||||
++I;
|
||||
if (!S2.count(E)) S1.erase(E); // Erase element if not in S2
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorSet Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// DominatorSet ctor - Build either the dominator set or the post-dominator
|
||||
// set for a method...
|
||||
//
|
||||
cfg::DominatorSet::DominatorSet(const Method *M, bool PostDomSet)
|
||||
: Root(M->front()) {
|
||||
assert(Root && M && "Can't build dominator set of null method!");
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
|
||||
DomSetType WorkingSet;
|
||||
df_const_iterator It = df_begin(M), End = df_end(M);
|
||||
for ( ; It != End; ++It) {
|
||||
const BasicBlock *BB = *It;
|
||||
pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
|
||||
if (PI != PEnd) { // Is there SOME predecessor?
|
||||
// Loop until we get to a predecessor that has had it's dom set filled
|
||||
// in at least once. We are guaranteed to have this because we are
|
||||
// traversing the graph in DFO and have handled start nodes specially.
|
||||
//
|
||||
while (Doms[*PI].size() == 0) ++PI;
|
||||
WorkingSet = Doms[*PI];
|
||||
|
||||
for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
|
||||
DomSetType &PredSet = Doms[*PI];
|
||||
if (PredSet.size())
|
||||
set_intersect(WorkingSet, PredSet);
|
||||
}
|
||||
}
|
||||
|
||||
WorkingSet.insert(BB); // A block always dominates itself
|
||||
DomSetType &BBSet = Doms[BB];
|
||||
if (BBSet != WorkingSet) {
|
||||
BBSet.swap(WorkingSet); // Constant time operation!
|
||||
Changed = true; // The sets changed.
|
||||
}
|
||||
WorkingSet.clear(); // Clear out the set for next iteration
|
||||
}
|
||||
} while (Changed);
|
||||
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ImmediateDominators Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// calcIDoms - Calculate the immediate dominator mapping, given a set of
|
||||
// dominators for every basic block.
|
||||
void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
|
||||
// Loop over all of the nodes that have dominators... figuring out the IDOM
|
||||
// for each node...
|
||||
//
|
||||
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
|
||||
DI != DEnd; ++DI) {
|
||||
const BasicBlock *BB = DI->first;
|
||||
const DominatorSet::DomSetType &Dominators = DI->second;
|
||||
unsigned DomSetSize = Dominators.size();
|
||||
if (DomSetSize == 1) continue; // Root node... IDom = null
|
||||
|
||||
// Loop over all dominators of this node. This corresponds to looping over
|
||||
// nodes in the dominator chain, looking for a node whose dominator set is
|
||||
// equal to the current nodes, except that the current node does not exist
|
||||
// in it. This means that it is one level higher in the dom chain than the
|
||||
// current node, and it is our idom!
|
||||
//
|
||||
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
||||
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
||||
for (; I != End; ++I) { // Iterate over dominators...
|
||||
// All of our dominators should form a chain, where the number of elements
|
||||
// in the dominator set indicates what level the node is at in the chain.
|
||||
// We want the node immediately above us, so it will have an identical
|
||||
// dominator set, except that BB will not dominate it... therefore it's
|
||||
// dominator set size will be one less than BB's...
|
||||
//
|
||||
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
||||
IDoms[BB] = *I;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorTree Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// DominatorTree dtor - Free all of the tree node memory.
|
||||
//
|
||||
cfg::DominatorTree::~DominatorTree() {
|
||||
for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
|
||||
delete I->second;
|
||||
}
|
||||
|
||||
|
||||
cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms)
|
||||
: Root(IDoms.getRoot()) {
|
||||
assert(Root && Root->getParent() && "No method for IDoms?");
|
||||
const Method *M = Root->getParent();
|
||||
|
||||
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
|
||||
|
||||
// Iterate over all nodes in depth first order...
|
||||
for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
|
||||
const BasicBlock *BB = *I, *IDom = IDoms[*I];
|
||||
|
||||
if (IDom != 0) { // Ignore the root node and other nasty nodes
|
||||
// We know that the immediate dominator should already have a node,
|
||||
// because we are traversing the CFG in depth first order!
|
||||
//
|
||||
assert(Nodes[IDom] && "No node for IDOM?");
|
||||
Node *IDomNode = Nodes[IDom];
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cfg::DominatorTree::calculate(const DominatorSet &DS) {
|
||||
Root = DS.getRoot();
|
||||
assert(Root && Root->getParent() && "No method for IDoms?");
|
||||
const Method *M = Root->getParent();
|
||||
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
|
||||
|
||||
// Iterate over all nodes in depth first order...
|
||||
for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
|
||||
const BasicBlock *BB = *I;
|
||||
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
|
||||
unsigned DomSetSize = Dominators.size();
|
||||
if (DomSetSize == 1) continue; // Root node... IDom = null
|
||||
|
||||
// Loop over all dominators of this node. This corresponds to looping over
|
||||
// nodes in the dominator chain, looking for a node whose dominator set is
|
||||
// equal to the current nodes, except that the current node does not exist
|
||||
// in it. This means that it is one level higher in the dom chain than the
|
||||
// current node, and it is our idom! We know that we have already added
|
||||
// a DominatorTree node for our idom, because the idom must be a
|
||||
// predecessor in the depth first order that we are iterating through the
|
||||
// method.
|
||||
//
|
||||
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
||||
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
||||
for (; I != End; ++I) { // Iterate over dominators...
|
||||
// All of our dominators should form a chain, where the number of elements
|
||||
// in the dominator set indicates what level the node is at in the chain.
|
||||
// We want the node immediately above us, so it will have an identical
|
||||
// dominator set, except that BB will not dominate it... therefore it's
|
||||
// dominator set size will be one less than BB's...
|
||||
//
|
||||
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
||||
// We know that the immediate dominator should already have a node,
|
||||
// because we are traversing the CFG in depth first order!
|
||||
//
|
||||
Node *IDomNode = Nodes[*I];
|
||||
assert(Nodes[*I] && "No node for IDOM?");
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominanceFrontier Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
const cfg::DominanceFrontier::DomSetType &
|
||||
cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
|
||||
const DominatorTree::Node *Node) {
|
||||
// Loop over CFG successors to calculate DFlocal[Node]
|
||||
const BasicBlock *BB = Node->getNode();
|
||||
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
||||
|
||||
for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
||||
SI != SE; ++SI) {
|
||||
// Does Node immediately dominate this successor?
|
||||
if (DT[*SI]->getIDom() != Node)
|
||||
S.insert(*SI);
|
||||
}
|
||||
|
||||
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
||||
// Loop through and visit the nodes that Node immediately dominates (Node's
|
||||
// children in the IDomTree)
|
||||
//
|
||||
for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
|
||||
NI != NE; ++NI) {
|
||||
DominatorTree::Node *IDominee = *NI;
|
||||
const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
|
||||
|
||||
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
|
||||
for (; CDFI != CDFE; ++CDFI) {
|
||||
if (!Node->dominates(DT[*CDFI]))
|
||||
S.insert(*CDFI);
|
||||
}
|
||||
}
|
||||
|
||||
return S;
|
||||
}
|
Loading…
Reference in New Issue
Block a user