diff --git a/docs/tutorial/LangImpl2.html b/docs/tutorial/LangImpl2.html index acccd20a090..60e4f7f5e4e 100644 --- a/docs/tutorial/LangImpl2.html +++ b/docs/tutorial/LangImpl2.html @@ -801,10 +801,10 @@ course.) To build this, just compile with:
- # Compile - g++ -g -O3 toy.cpp - # Run - ./a.out +# Compile +clang++ -g -O3 toy.cpp +# Run +./a.out
Function *PrototypeAST::Codegen() { // Make the function type: double(double,double) etc. - std::vector<const Type*> Doubles(Args.size(), - Type::getDoubleTy(getGlobalContext())); + std::vector<Type*> Doubles(Args.size(), + Type::getDoubleTy(getGlobalContext())); FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false); - + Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);@@ -532,9 +532,9 @@ functions. For example:
ready> 4+5; Read top-level expression: -define double @""() { +define double @0() { entry: - ret double 9.000000e+00 + ret double 9.000000e+00 }@@ -553,13 +553,13 @@ ready> def foo(a b) a*a + 2*a*b + b*b; Read function definition: define double @foo(double %a, double %b) { entry: - %multmp = fmul double %a, %a - %multmp1 = fmul double 2.000000e+00, %a - %multmp2 = fmul double %multmp1, %b - %addtmp = fadd double %multmp, %multmp2 - %multmp3 = fmul double %b, %b - %addtmp4 = fadd double %addtmp, %multmp3 - ret double %addtmp4 + %multmp = fmul double %a, %a + %multmp1 = fmul double 2.000000e+00, %a + %multmp2 = fmul double %multmp1, %b + %addtmp = fadd double %multmp, %multmp2 + %multmp3 = fmul double %b, %b + %addtmp4 = fadd double %addtmp, %multmp3 + ret double %addtmp4 } @@ -573,10 +573,10 @@ ready> def bar(a) foo(a, 4.0) + bar(31337); Read function definition: define double @bar(double %a) { entry: - %calltmp = call double @foo(double %a, double 4.000000e+00) - %calltmp1 = call double @bar(double 3.133700e+04) - %addtmp = fadd double %calltmp, %calltmp1 - ret double %addtmp + %calltmp = call double @foo(double %a, double 4.000000e+00) + %calltmp1 = call double @bar(double 3.133700e+04) + %addtmp = fadd double %calltmp, %calltmp1 + ret double %addtmp } @@ -593,10 +593,10 @@ declare double @cos(double) ready> cos(1.234); Read top-level expression: -define double @""() { +define double @1() { entry: - %calltmp = call double @cos(double 1.234000e+00) - ret double %calltmp + %calltmp = call double @cos(double 1.234000e+00) + ret double %calltmp } @@ -609,37 +609,37 @@ entry: ready> ^D ; ModuleID = 'my cool jit' -define double @""() { +define double @0() { entry: - %addtmp = fadd double 4.000000e+00, 5.000000e+00 - ret double %addtmp + %addtmp = fadd double 4.000000e+00, 5.000000e+00 + ret double %addtmp } define double @foo(double %a, double %b) { entry: - %multmp = fmul double %a, %a - %multmp1 = fmul double 2.000000e+00, %a - %multmp2 = fmul double %multmp1, %b - %addtmp = fadd double %multmp, %multmp2 - %multmp3 = fmul double %b, %b - %addtmp4 = fadd double %addtmp, %multmp3 - ret double %addtmp4 + %multmp = fmul double %a, %a + %multmp1 = fmul double 2.000000e+00, %a + %multmp2 = fmul double %multmp1, %b + %addtmp = fadd double %multmp, %multmp2 + %multmp3 = fmul double %b, %b + %addtmp4 = fadd double %addtmp, %multmp3 + ret double %addtmp4 } define double @bar(double %a) { entry: - %calltmp = call double @foo(double %a, double 4.000000e+00) - %calltmp1 = call double @bar(double 3.133700e+04) - %addtmp = fadd double %calltmp, %calltmp1 - ret double %addtmp + %calltmp = call double @foo(double %a, double 4.000000e+00) + %calltmp1 = call double @bar(double 3.133700e+04) + %addtmp = fadd double %calltmp, %calltmp1 + ret double %addtmp } declare double @cos(double) -define double @""() { +define double @1() { entry: - %calltmp = call double @cos(double 1.234000e+00) - ret double %calltmp + %calltmp = call double @cos(double 1.234000e+00) + ret double %calltmp } @@ -670,10 +670,10 @@ our makefile/command line about which options to use:
- # Compile - g++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy - # Run - ./toy +# Compile +clang++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy +# Run +./toy
ready> 4+5; -define double @""() { +Read top-level expression: +define double @0() { entry: - ret double 9.000000e+00 + ret double 9.000000e+00 } Evaluated to 9.000000 @@ -363,16 +364,17 @@ ready> def testfunc(x y) x + y*2; Read function definition: define double @testfunc(double %x, double %y) { entry: - %multmp = fmul double %y, 2.000000e+00 - %addtmp = fadd double %multmp, %x - ret double %addtmp + %multmp = fmul double %y, 2.000000e+00 + %addtmp = fadd double %multmp, %x + ret double %addtmp } ready> testfunc(4, 10); -define double @""() { +Read top-level expression: +define double @1() { entry: - %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) - ret double %calltmp + %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) + ret double %calltmp } Evaluated to 24.000000 @@ -404,21 +406,34 @@ Read extern: declare double @cos(double) ready> sin(1.0); +Read top-level expression: +define double @2() { +entry: + ret double 0x3FEAED548F090CEE +} + Evaluated to 0.841471 ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x); Read function definition: define double @foo(double %x) { entry: - %calltmp = call double @sin(double %x) - %multmp = fmul double %calltmp, %calltmp - %calltmp2 = call double @cos(double %x) - %multmp4 = fmul double %calltmp2, %calltmp2 - %addtmp = fadd double %multmp, %multmp4 - ret double %addtmp + %calltmp = call double @sin(double %x) + %multmp = fmul double %calltmp, %calltmp + %calltmp2 = call double @cos(double %x) + %multmp4 = fmul double %calltmp2, %calltmp2 + %addtmp = fadd double %multmp, %multmp4 + ret double %addtmp } ready> foo(4.0); +Read top-level expression: +define double @3() { +entry: + %calltmp = call double @foo(double 4.000000e+00) + ret double %calltmp +} + Evaluated to 1.000000
- # Compile - g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy - # Run - ./toy +# Compile +clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy +# Run +./toy
With the code for the body of the loop complete, we just need to finish up -the control flow for it. This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop"). Based on the value of the -exit condition, it creates a conditional branch that chooses between executing -the loop again and exiting the loop. Any future code is emitted in the -"afterloop" block, so it sets the insertion position to it.
+the control flow for it. This code remembers the end block (for the phi node), +then creates the block for the loop exit ("afterloop"). Based on the value of +the exit condition, it creates a conditional branch that chooses between +executing the loop again and exiting the loop. Any future code is emitted in +the "afterloop" block, so it sets the insertion position to it.@@ -880,10 +881,10 @@ if/then/else and for expressions.. To build this example, use:@@ -505,7 +505,9 @@ defined to print out the specified value and a newline):@@ -900,9 +901,9 @@ if/then/else and for expressions.. To build this example, use: #include "llvm/Analysis/Verifier.h" #include "llvm/Analysis/Passes.h" #include "llvm/Target/TargetData.h" -#include "llvm/Target/TargetSelect.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Support/IRBuilder.h" +#include "llvm/Support/TargetSelect.h" #include <cstdio> #include <string> #include <map> @@ -1397,7 +1398,7 @@ Value *CallExprAST::Codegen() { if (ArgsV.back() == 0) return 0; } - return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); + return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); } Value *IfExprAST::Codegen() { @@ -1546,8 +1547,8 @@ Value *ForExprAST::Codegen() { Function *PrototypeAST::Codegen() { // Make the function type: double(double,double) etc. - std::vector<const Type*> Doubles(Args.size(), - Type::getDoubleTy(getGlobalContext())); + std::vector<Type*> Doubles(Args.size(), + Type::getDoubleTy(getGlobalContext())); FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false); diff --git a/docs/tutorial/LangImpl6.html b/docs/tutorial/LangImpl6.html index 17ba301d4ab..041af3b89c2 100644 --- a/docs/tutorial/LangImpl6.html +++ b/docs/tutorial/LangImpl6.html @@ -293,8 +293,8 @@ Value *BinaryExprAST::Codegen() { Function *F = TheModule->getFunction(std::string("binary")+Op); assert(F && "binary operator not found!"); - Value *Ops[] = { L, R }; - return Builder.CreateCall(F, Ops, Ops+2, "binop"); + Value *Ops[2] = { L, R }; + return Builder.CreateCall(F, Ops, "binop"); }- # Compile - g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy - # Run - ./toy +# Compile +clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy +# Run +./toy
ready> extern printd(x); -Read extern: declare double @printd(double) +Read extern: +declare double @printd(double) + ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands. .. ready> printd(123) : printd(456) : printd(789); @@ -555,6 +557,9 @@ def binary& 6 (LHS RHS) def binary = 9 (LHS RHS) !(LHS < RHS | LHS > RHS); +# Define ':' for sequencing: as a low-precedence operator that ignores operands +# and just returns the RHS. +def binary : 1 (x y) y;
-# determine whether the specific location diverges. +# Determine whether the specific location diverges. # Solve for z = z^2 + c in the complex plane. def mandleconverger(real imag iters creal cimag) if iters > 255 | (real*real + imag*imag > 4) then @@ -603,25 +609,25 @@ def mandleconverger(real imag iters creal cimag) 2*real*imag + cimag, iters+1, creal, cimag); -# return the number of iterations required for the iteration to escape +# Return the number of iterations required for the iteration to escape def mandleconverge(real imag) mandleconverger(real, imag, 0, real, imag);
This "z = z2 + c" function is a beautiful little creature that is the basis -for computation of the Mandelbrot Set. Our -mandelconverge function returns the number of iterations that it takes -for a complex orbit to escape, saturating to 255. This is not a very useful -function by itself, but if you plot its value over a two-dimensional plane, -you can see the Mandelbrot set. Given that we are limited to using putchard -here, our amazing graphical output is limited, but we can whip together +
This "z = z2 + c
" function is a beautiful little
+creature that is the basis for computation of
+the Mandelbrot Set.
+Our mandelconverge function returns the number of iterations that it
+takes for a complex orbit to escape, saturating to 255. This is not a very
+useful function by itself, but if you plot its value over a two-dimensional
+plane, you can see the Mandelbrot set. Given that we are limited to using
+putchard here, our amazing graphical output is limited, but we can whip together
something using the density plotter above:
-# compute and plot the mandlebrot set with the specified 2 dimensional range +# Compute and plot the mandlebrot set with the specified 2 dimensional range # info. def mandelhelp(xmin xmax xstep ymin ymax ystep) for y = ymin, y < ymax, ystep in ( @@ -808,10 +814,10 @@ if/then/else and for expressions.. To build this example, use:@@ -834,9 +840,9 @@ library, although doing that will cause problems on Windows. #include "llvm/Analysis/Verifier.h" #include "llvm/Analysis/Passes.h" #include "llvm/Target/TargetData.h" -#include "llvm/Target/TargetSelect.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Support/IRBuilder.h" +#include "llvm/Support/TargetSelect.h" #include <cstdio> #include <string> #include <map> @@ -1415,8 +1421,8 @@ Value *BinaryExprAST::Codegen() { Function *F = TheModule->getFunction(std::string("binary")+Op); assert(F && "binary operator not found!"); - Value *Ops[] = { L, R }; - return Builder.CreateCall(F, Ops, Ops+2, "binop"); + Value *Ops[2] = { L, R }; + return Builder.CreateCall(F, Ops, "binop"); } Value *CallExprAST::Codegen() { @@ -1435,7 +1441,7 @@ Value *CallExprAST::Codegen() { if (ArgsV.back() == 0) return 0; } - return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); + return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); } Value *IfExprAST::Codegen() { @@ -1584,8 +1590,8 @@ Value *ForExprAST::Codegen() { Function *PrototypeAST::Codegen() { // Make the function type: double(double,double) etc. - std::vector<const Type*> Doubles(Args.size(), - Type::getDoubleTy(getGlobalContext())); + std::vector<Type*> Doubles(Args.size(), + Type::getDoubleTy(getGlobalContext())); FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false); diff --git a/docs/tutorial/LangImpl7.html b/docs/tutorial/LangImpl7.html index b2b26bdfa07..29b920c13bc 100644 --- a/docs/tutorial/LangImpl7.html +++ b/docs/tutorial/LangImpl7.html @@ -102,19 +102,19 @@ The LLVM IR that we want for this example looks like this: define i32 @test(i1 %Condition) { entry: - br i1 %Condition, label %cond_true, label %cond_false + br i1 %Condition, label %cond_true, label %cond_false cond_true: - %X.0 = load i32* @G - br label %cond_next + %X.0 = load i32* @G + br label %cond_next cond_false: - %X.1 = load i32* @H - br label %cond_next + %X.1 = load i32* @H + br label %cond_next cond_next: - %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] - ret i32 %X.2 + %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] + ret i32 %X.2 }- # Compile - g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy - # Run - ./toy +# Compile +clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy +# Run +./toy
define i32 @example() { entry: - %X = alloca i32 ; type of %X is i32*. - ... - %tmp = load i32* %X ; load the stack value %X from the stack. - %tmp2 = add i32 %tmp, 1 ; increment it - store i32 %tmp2, i32* %X ; store it back - ... + %X = alloca i32 ; type of %X is i32*. + ... + %tmp = load i32* %X ; load the stack value %X from the stack. + %tmp2 = add i32 %tmp, 1 ; increment it + store i32 %tmp2, i32* %X ; store it back + ...@@ -196,22 +196,22 @@ example to use the alloca technique to avoid using a PHI node: define i32 @test(i1 %Condition) { entry: - %X = alloca i32 ; type of %X is i32*. - br i1 %Condition, label %cond_true, label %cond_false + %X = alloca i32 ; type of %X is i32*. + br i1 %Condition, label %cond_true, label %cond_false cond_true: - %X.0 = load i32* @G - store i32 %X.0, i32* %X ; Update X - br label %cond_next + %X.0 = load i32* @G + store i32 %X.0, i32* %X ; Update X + br label %cond_next cond_false: - %X.1 = load i32* @H - store i32 %X.1, i32* %X ; Update X - br label %cond_next + %X.1 = load i32* @H + store i32 %X.1, i32* %X ; Update X + br label %cond_next cond_next: - %X.2 = load i32* %X ; Read X - ret i32 %X.2 + %X.2 = load i32* %X ; Read X + ret i32 %X.2 } @@ -242,19 +242,19 @@ $ llvm-as < example.ll | opt -mem2reg | llvm-dis define i32 @test(i1 %Condition) { entry: - br i1 %Condition, label %cond_true, label %cond_false + br i1 %Condition, label %cond_true, label %cond_false cond_true: - %X.0 = load i32* @G - br label %cond_next + %X.0 = load i32* @G + br label %cond_next cond_false: - %X.1 = load i32* @H - br label %cond_next + %X.1 = load i32* @H + br label %cond_next cond_next: - %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] - ret i32 %X.01 + %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] + ret i32 %X.01 } @@ -542,30 +542,30 @@ recursive fib function. Before the optimization:
define double @fib(double %x) { entry: - %x1 = alloca double - store double %x, double* %x1 - %x2 = load double* %x1 - %cmptmp = fcmp ult double %x2, 3.000000e+00 - %booltmp = uitofp i1 %cmptmp to double - %ifcond = fcmp one double %booltmp, 0.000000e+00 - br i1 %ifcond, label %then, label %else + %x1 = alloca double + store double %x, double* %x1 + %x2 = load double* %x1 + %cmptmp = fcmp ult double %x2, 3.000000e+00 + %booltmp = uitofp i1 %cmptmp to double + %ifcond = fcmp one double %booltmp, 0.000000e+00 + br i1 %ifcond, label %then, label %else then: ; preds = %entry - br label %ifcont + br label %ifcont else: ; preds = %entry - %x3 = load double* %x1 - %subtmp = fsub double %x3, 1.000000e+00 - %calltmp = call double @fib(double %subtmp) - %x4 = load double* %x1 - %subtmp5 = fsub double %x4, 2.000000e+00 - %calltmp6 = call double @fib(double %subtmp5) - %addtmp = fadd double %calltmp, %calltmp6 - br label %ifcont + %x3 = load double* %x1 + %subtmp = fsub double %x3, 1.000000e+00 + %calltmp = call double @fib(double %subtmp) + %x4 = load double* %x1 + %subtmp5 = fsub double %x4, 2.000000e+00 + %calltmp6 = call double @fib(double %subtmp5) + %addtmp = fadd double %calltmp, %calltmp6 + br label %ifcont ifcont: ; preds = %else, %then - %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] - ret double %iftmp + %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] + ret double %iftmp }@@ -584,25 +584,25 @@ PHI node for it, so we still just make the PHI.
define double @fib(double %x) { entry: - %cmptmp = fcmp ult double %x, 3.000000e+00 - %booltmp = uitofp i1 %cmptmp to double - %ifcond = fcmp one double %booltmp, 0.000000e+00 - br i1 %ifcond, label %then, label %else + %cmptmp = fcmp ult double %x, 3.000000e+00 + %booltmp = uitofp i1 %cmptmp to double + %ifcond = fcmp one double %booltmp, 0.000000e+00 + br i1 %ifcond, label %then, label %else then: - br label %ifcont + br label %ifcont else: - %subtmp = fsub double %x, 1.000000e+00 - %calltmp = call double @fib(double %subtmp) - %subtmp5 = fsub double %x, 2.000000e+00 - %calltmp6 = call double @fib(double %subtmp5) - %addtmp = fadd double %calltmp, %calltmp6 - br label %ifcont + %subtmp = fsub double %x, 1.000000e+00 + %calltmp = call double @fib(double %subtmp) + %subtmp5 = fsub double %x, 2.000000e+00 + %calltmp6 = call double @fib(double %subtmp5) + %addtmp = fadd double %calltmp, %calltmp6 + br label %ifcont ifcont: ; preds = %else, %then - %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] - ret double %iftmp + %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] + ret double %iftmp }@@ -617,21 +617,21 @@ such blatent inefficiencies :).
define double @fib(double %x) { entry: - %cmptmp = fcmp ult double %x, 3.000000e+00 - %booltmp = uitofp i1 %cmptmp to double - %ifcond = fcmp ueq double %booltmp, 0.000000e+00 - br i1 %ifcond, label %else, label %ifcont + %cmptmp = fcmp ult double %x, 3.000000e+00 + %booltmp = uitofp i1 %cmptmp to double + %ifcond = fcmp ueq double %booltmp, 0.000000e+00 + br i1 %ifcond, label %else, label %ifcont else: - %subtmp = fsub double %x, 1.000000e+00 - %calltmp = call double @fib(double %subtmp) - %subtmp5 = fsub double %x, 2.000000e+00 - %calltmp6 = call double @fib(double %subtmp5) - %addtmp = fadd double %calltmp, %calltmp6 - ret double %addtmp + %subtmp = fsub double %x, 1.000000e+00 + %calltmp = call double @fib(double %subtmp) + %subtmp5 = fsub double %x, 2.000000e+00 + %calltmp6 = call double @fib(double %subtmp5) + %addtmp = fadd double %calltmp, %calltmp6 + ret double %addtmp ifcont: - ret double 1.000000e+00 + ret double 1.000000e+00 }@@ -988,10 +988,10 @@ variables and var/in support. To build this example, use:
- # Compile - g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy - # Run - ./toy +# Compile +clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy +# Run +./toy