1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00

[NFC][llvm-exegesis] Refactor ResolvedSchedClass & friends

Summary:
`ResolvedSchedClass` will need to be used outside of `Analysis`
(before `InstructionBenchmarkClustering` even), therefore promote
it into a non-private top-level class, and while there also
move all of the functions that are only called by `ResolvedSchedClass`
into that same new file.

Reviewers: courbet, gchatelet

Reviewed By: courbet

Subscribers: mgorny, tschuett, mgrang, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59993

llvm-svn: 357259
This commit is contained in:
Roman Lebedev 2019-03-29 14:24:27 +00:00
parent c8cd0349fd
commit 2f7e688f4f
7 changed files with 323 additions and 247 deletions

View File

@ -20,16 +20,6 @@ namespace exegesis {
static const char kCsvSep = ',';
static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo &STI,
unsigned SchedClassId,
const llvm::MCInst &MCI) {
const auto &SM = STI.getSchedModel();
while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
SchedClassId =
STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
return SchedClassId;
}
namespace {
enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
@ -150,9 +140,9 @@ void Analysis::printInstructionRowCsv(const size_t PointId,
OS << kCsvSep;
assert(!Point.Key.Instructions.empty());
const llvm::MCInst &MCI = Point.keyInstruction();
const unsigned SchedClassId = resolveSchedClassId(
*SubtargetInfo_, InstrInfo_->get(MCI.getOpcode()).getSchedClass(), MCI);
unsigned SchedClassId;
std::tie(SchedClassId, std::ignore) = ResolvedSchedClass::resolveSchedClassId(
*SubtargetInfo_, *InstrInfo_, MCI);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
const llvm::MCSchedClassDesc *const SCDesc =
SubtargetInfo_->getSchedModel().getSchedClassDesc(SchedClassId);
@ -239,11 +229,11 @@ Analysis::makePointsPerSchedClass() const {
// FIXME: we should be using the tuple of classes for instructions in the
// snippet as key.
const llvm::MCInst &MCI = Point.keyInstruction();
unsigned SchedClassId = InstrInfo_->get(MCI.getOpcode()).getSchedClass();
const bool WasVariant = SchedClassId && SubtargetInfo_->getSchedModel()
.getSchedClassDesc(SchedClassId)
->isVariant();
SchedClassId = resolveSchedClassId(*SubtargetInfo_, SchedClassId, MCI);
unsigned SchedClassId;
bool WasVariant;
std::tie(SchedClassId, WasVariant) =
ResolvedSchedClass::resolveSchedClassId(*SubtargetInfo_, *InstrInfo_,
MCI);
const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
if (IndexIt == SchedClassIdToIndex.end()) {
// Create a new entry.
@ -347,92 +337,6 @@ void Analysis::printSchedClassClustersHtml(
OS << "</table>";
}
// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
// P0 P06 P016
// uOp1 1 (1) (1)
// uOp2 1 (1)
// uOp3 1 (1)
// =============================
// 1 3 3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
// {ProcResIdx=1, Cycles=1} // P0
// {ProcResIdx=7, Cycles=3} // P06
// {ProcResIdx=10, Cycles=3} // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
const llvm::MCSubtargetInfo &STI) {
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
const auto &SM = STI.getSchedModel();
const unsigned NumProcRes = SM.getNumProcResourceKinds();
// This assumes that the ProcResDescs are sorted in topological order, which
// is guaranteed by the tablegen backend.
llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
*const WPREnd = STI.getWriteProcResEnd(&SCDesc);
WPR != WPREnd; ++WPR) {
const llvm::MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR->ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
} else {
// This is a ProcResGroup. First see if it contributes any cycles or if
// it has cycles just from subunits.
float RemainingCycles = WPR->Cycles;
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
RemainingCycles -= ProcResUnitUsage[*SubResIdx];
}
if (RemainingCycles < 0.01f) {
// The ProcResGroup contributes no cycles of its own.
continue;
}
// The ProcResGroup contributes `RemainingCycles` cycles of its own.
Result.push_back({WPR->ProcResourceIdx,
static_cast<uint16_t>(std::round(RemainingCycles))});
// Spread the remaining cycles over all subunits.
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
}
}
}
return Result;
}
Analysis::ResolvedSchedClass::ResolvedSchedClass(
const llvm::MCSubtargetInfo &STI, unsigned ResolvedSchedClassId,
bool WasVariant)
: SchedClassId(ResolvedSchedClassId), SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
WasVariant(WasVariant),
NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
IdealizedProcResPressure(computeIdealizedProcResPressure(
STI.getSchedModel(), NonRedundantWriteProcRes)) {
assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
"ResolvedSchedClass should never be variant");
}
void Analysis::SchedClassCluster::addPoint(
size_t PointId, const InstructionBenchmarkClustering &Clustering) {
PointIds.push_back(PointId);
@ -737,117 +641,5 @@ llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
return llvm::Error::success();
}
// Distributes a pressure budget as evenly as possible on the provided subunits
// given the already existing port pressure distribution.
//
// The algorithm is as follows: while there is remaining pressure to
// distribute, find the subunits with minimal pressure, and distribute
// remaining pressure equally up to the pressure of the unit with
// second-to-minimal pressure.
// For example, let's assume we want to distribute 2*P1256
// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
// DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
// 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
// RemainingPressure = 2.0
// We sort the subunits by pressure:
// Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
// We'll first start by the subunits with minimal pressure, which are at
// the beginning of the sorted array. In this example there is one (P2).
// The subunit with second-to-minimal pressure is the next one in the
// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
// from the budget.
// Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.9
// We repeat this process: distribute 0.2 pressure on each of the minimal
// P2 and P1, decrease budget by 2*0.2:
// Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.5
// There are no second-to-minimal subunits so we just share the remaining
// budget (1.5 cycles) equally:
// Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
// RemainingPressure = 0.0
// We stop as there is no remaining budget to distribute.
void distributePressure(float RemainingPressure,
llvm::SmallVector<uint16_t, 32> Subunits,
llvm::SmallVector<float, 32> &DensePressure) {
// Find the number of subunits with minimal pressure (they are at the
// front).
llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
return DensePressure[A] < DensePressure[B];
});
const auto getPressureForSubunit = [&DensePressure,
&Subunits](size_t I) -> float & {
return DensePressure[Subunits[I]];
};
size_t NumMinimalSU = 1;
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
++NumMinimalSU;
}
while (RemainingPressure > 0.0f) {
if (NumMinimalSU == Subunits.size()) {
// All units are minimal, just distribute evenly and be done.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Distribute the remaining pressure equally.
const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
assert(MinimalPressure < SecondToMinimalPressure);
const float Increment = SecondToMinimalPressure - MinimalPressure;
if (RemainingPressure <= NumMinimalSU * Increment) {
// There is not enough remaining pressure.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Bump all minimal pressure subunits to `SecondToMinimalPressure`.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) = SecondToMinimalPressure;
RemainingPressure -= SecondToMinimalPressure;
}
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
++NumMinimalSU;
}
}
}
std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
const llvm::MCSchedModel &SM,
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
// DensePressure[I] is the port pressure for Proc Resource I.
llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
const llvm::MCWriteProcResEntry &B) {
return A.ProcResourceIdx < B.ProcResourceIdx;
});
for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
// Get units for the entry.
const llvm::MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR.ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
} else {
// This is a ProcResGroup.
llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
ProcResDesc->SubUnitsIdxBegin +
ProcResDesc->NumUnits);
distributePressure(WPR.Cycles, Subunits, DensePressure);
}
}
// Turn dense pressure into sparse pressure by removing zero entries.
std::vector<std::pair<uint16_t, float>> Pressure;
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
if (DensePressure[I] > 0.0f)
Pressure.emplace_back(I, DensePressure[I]);
}
return Pressure;
}
} // namespace exegesis
} // namespace llvm

View File

@ -15,6 +15,7 @@
#define LLVM_TOOLS_LLVM_EXEGESIS_ANALYSIS_H
#include "Clustering.h"
#include "SchedClassResolution.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
@ -51,19 +52,6 @@ public:
private:
using ClusterId = InstructionBenchmarkClustering::ClusterId;
// An llvm::MCSchedClassDesc augmented with some additional data.
struct ResolvedSchedClass {
ResolvedSchedClass(const llvm::MCSubtargetInfo &STI,
unsigned ResolvedSchedClassId, bool WasVariant);
const unsigned SchedClassId;
const llvm::MCSchedClassDesc *const SCDesc;
const bool WasVariant; // Whether the original class was variant.
const llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
NonRedundantWriteProcRes;
const std::vector<std::pair<uint16_t, float>> IdealizedProcResPressure;
};
// Represents the intersection of a sched class and a cluster.
class SchedClassCluster {
public:
@ -137,13 +125,6 @@ private:
const bool AnalysisDisplayUnstableOpcodes_;
};
// Computes the idealized ProcRes Unit pressure. This is the expected
// distribution if the CPU scheduler can distribute the load as evenly as
// possible.
std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
const llvm::MCSchedModel &SM,
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS);
} // namespace exegesis
} // namespace llvm

View File

@ -28,8 +28,9 @@ add_library(LLVMExegesis
MCInstrDescView.cpp
PerfHelper.cpp
RegisterAliasing.cpp
SnippetGenerator.cpp
RegisterValue.cpp
SchedClassResolution.cpp
SnippetGenerator.cpp
Target.cpp
Uops.cpp
)

View File

@ -0,0 +1,243 @@
//===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SchedClassResolution.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/FormatVariadic.h"
#include <limits>
#include <unordered_set>
#include <vector>
namespace llvm {
namespace exegesis {
// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
// P0 P06 P016
// uOp1 1 (1) (1)
// uOp2 1 (1)
// uOp3 1 (1)
// =============================
// 1 3 3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
// {ProcResIdx=1, Cycles=1} // P0
// {ProcResIdx=7, Cycles=3} // P06
// {ProcResIdx=10, Cycles=3} // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
const llvm::MCSubtargetInfo &STI) {
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
const auto &SM = STI.getSchedModel();
const unsigned NumProcRes = SM.getNumProcResourceKinds();
// This assumes that the ProcResDescs are sorted in topological order, which
// is guaranteed by the tablegen backend.
llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
*const WPREnd = STI.getWriteProcResEnd(&SCDesc);
WPR != WPREnd; ++WPR) {
const llvm::MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR->ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
} else {
// This is a ProcResGroup. First see if it contributes any cycles or if
// it has cycles just from subunits.
float RemainingCycles = WPR->Cycles;
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
RemainingCycles -= ProcResUnitUsage[*SubResIdx];
}
if (RemainingCycles < 0.01f) {
// The ProcResGroup contributes no cycles of its own.
continue;
}
// The ProcResGroup contributes `RemainingCycles` cycles of its own.
Result.push_back({WPR->ProcResourceIdx,
static_cast<uint16_t>(std::round(RemainingCycles))});
// Spread the remaining cycles over all subunits.
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
}
}
}
return Result;
}
// Distributes a pressure budget as evenly as possible on the provided subunits
// given the already existing port pressure distribution.
//
// The algorithm is as follows: while there is remaining pressure to
// distribute, find the subunits with minimal pressure, and distribute
// remaining pressure equally up to the pressure of the unit with
// second-to-minimal pressure.
// For example, let's assume we want to distribute 2*P1256
// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
// DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
// 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
// RemainingPressure = 2.0
// We sort the subunits by pressure:
// Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
// We'll first start by the subunits with minimal pressure, which are at
// the beginning of the sorted array. In this example there is one (P2).
// The subunit with second-to-minimal pressure is the next one in the
// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
// from the budget.
// Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.9
// We repeat this process: distribute 0.2 pressure on each of the minimal
// P2 and P1, decrease budget by 2*0.2:
// Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.5
// There are no second-to-minimal subunits so we just share the remaining
// budget (1.5 cycles) equally:
// Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
// RemainingPressure = 0.0
// We stop as there is no remaining budget to distribute.
static void distributePressure(float RemainingPressure,
llvm::SmallVector<uint16_t, 32> Subunits,
llvm::SmallVector<float, 32> &DensePressure) {
// Find the number of subunits with minimal pressure (they are at the
// front).
llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
return DensePressure[A] < DensePressure[B];
});
const auto getPressureForSubunit = [&DensePressure,
&Subunits](size_t I) -> float & {
return DensePressure[Subunits[I]];
};
size_t NumMinimalSU = 1;
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
++NumMinimalSU;
}
while (RemainingPressure > 0.0f) {
if (NumMinimalSU == Subunits.size()) {
// All units are minimal, just distribute evenly and be done.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Distribute the remaining pressure equally.
const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
assert(MinimalPressure < SecondToMinimalPressure);
const float Increment = SecondToMinimalPressure - MinimalPressure;
if (RemainingPressure <= NumMinimalSU * Increment) {
// There is not enough remaining pressure.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Bump all minimal pressure subunits to `SecondToMinimalPressure`.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) = SecondToMinimalPressure;
RemainingPressure -= SecondToMinimalPressure;
}
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
++NumMinimalSU;
}
}
}
std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
const llvm::MCSchedModel &SM,
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
// DensePressure[I] is the port pressure for Proc Resource I.
llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
const llvm::MCWriteProcResEntry &B) {
return A.ProcResourceIdx < B.ProcResourceIdx;
});
for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
// Get units for the entry.
const llvm::MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR.ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
} else {
// This is a ProcResGroup.
llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
ProcResDesc->SubUnitsIdxBegin +
ProcResDesc->NumUnits);
distributePressure(WPR.Cycles, Subunits, DensePressure);
}
}
// Turn dense pressure into sparse pressure by removing zero entries.
std::vector<std::pair<uint16_t, float>> Pressure;
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
if (DensePressure[I] > 0.0f)
Pressure.emplace_back(I, DensePressure[I]);
}
return Pressure;
}
ResolvedSchedClass::ResolvedSchedClass(const llvm::MCSubtargetInfo &STI,
unsigned ResolvedSchedClassId,
bool WasVariant)
: SchedClassId(ResolvedSchedClassId),
SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
WasVariant(WasVariant),
NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
IdealizedProcResPressure(computeIdealizedProcResPressure(
STI.getSchedModel(), NonRedundantWriteProcRes)) {
assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
"ResolvedSchedClass should never be variant");
}
static unsigned ResolveVariantSchedClassId(const llvm::MCSubtargetInfo &STI,
unsigned SchedClassId,
const llvm::MCInst &MCI) {
const auto &SM = STI.getSchedModel();
while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
SchedClassId =
STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
return SchedClassId;
}
std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
ResolvedSchedClass::resolveSchedClassId(
const llvm::MCSubtargetInfo &SubtargetInfo,
const llvm::MCInstrInfo &InstrInfo, const llvm::MCInst &MCI) {
unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
.getSchedClassDesc(SchedClassId)
->isVariant();
SchedClassId = ResolveVariantSchedClassId(SubtargetInfo, SchedClassId, MCI);
return std::make_pair(SchedClassId, WasVariant);
}
} // namespace exegesis
} // namespace llvm

View File

@ -0,0 +1,58 @@
//===-- SchedClassResolution.h ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Analysis output for benchmark results.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_SCHEDCLASSRESOLUTION_H
#define LLVM_TOOLS_LLVM_EXEGESIS_SCHEDCLASSRESOLUTION_H
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
namespace exegesis {
// Computes the idealized ProcRes Unit pressure. This is the expected
// distribution if the CPU scheduler can distribute the load as evenly as
// possible.
std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
const llvm::MCSchedModel &SM,
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS);
// An llvm::MCSchedClassDesc augmented with some additional data.
struct ResolvedSchedClass {
ResolvedSchedClass(const llvm::MCSubtargetInfo &STI,
unsigned ResolvedSchedClassId, bool WasVariant);
static std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
resolveSchedClassId(const llvm::MCSubtargetInfo &SubtargetInfo,
const llvm::MCInstrInfo &InstrInfo,
const llvm::MCInst &MCI);
const unsigned SchedClassId;
const llvm::MCSchedClassDesc *const SCDesc;
const bool WasVariant; // Whether the original class was variant.
const llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
NonRedundantWriteProcRes;
const std::vector<std::pair<uint16_t, float>> IdealizedProcResPressure;
};
} // namespace exegesis
} // namespace llvm
#endif // LLVM_TOOLS_LLVM_EXEGESIS_SCHEDCLASSRESOLUTION_H

View File

@ -15,10 +15,10 @@ set(LLVM_LINK_COMPONENTS
add_llvm_unittest(LLVMExegesisX86Tests
AssemblerTest.cpp
AnalysisTest.cpp
BenchmarkResultTest.cpp
SnippetGeneratorTest.cpp
RegisterAliasingTest.cpp
SchedClassResolutionTest.cpp
SnippetGeneratorTest.cpp
TargetTest.cpp
)
target_link_libraries(LLVMExegesisX86Tests PRIVATE

View File

@ -1,4 +1,4 @@
//===-- AnalysisTest.cpp ---------------------------------------*- C++ -*-===//
//===-- SchedClassResolutionTest.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@ -6,7 +6,7 @@
//
//===----------------------------------------------------------------------===//
#include "Analysis.h"
#include "SchedClassResolution.h"
#include <cassert>
#include <memory>
@ -23,9 +23,9 @@ namespace {
using testing::Pair;
using testing::UnorderedElementsAre;
class AnalysisTest : public ::testing::Test {
class SchedClassResolutionTest : public ::testing::Test {
protected:
AnalysisTest() {
SchedClassResolutionTest() {
const std::string TT = "x86_64-unknown-linux";
std::string error;
const llvm::Target *const TheTarget =
@ -78,20 +78,20 @@ protected:
uint16_t P0156Idx = 0;
};
TEST_F(AnalysisTest, ComputeIdealizedProcResPressure_2P0) {
TEST_F(SchedClassResolutionTest, ComputeIdealizedProcResPressure_2P0) {
const auto Pressure =
computeIdealizedProcResPressure(STI->getSchedModel(), {{P0Idx, 2}});
EXPECT_THAT(Pressure, UnorderedElementsAre(Pair(P0Idx, 2.0)));
}
TEST_F(AnalysisTest, ComputeIdealizedProcResPressure_2P05) {
TEST_F(SchedClassResolutionTest, ComputeIdealizedProcResPressure_2P05) {
const auto Pressure =
computeIdealizedProcResPressure(STI->getSchedModel(), {{P05Idx, 2}});
EXPECT_THAT(Pressure,
UnorderedElementsAre(Pair(P0Idx, 1.0), Pair(P5Idx, 1.0)));
}
TEST_F(AnalysisTest, ComputeIdealizedProcResPressure_2P05_2P0156) {
TEST_F(SchedClassResolutionTest, ComputeIdealizedProcResPressure_2P05_2P0156) {
const auto Pressure = computeIdealizedProcResPressure(
STI->getSchedModel(), {{P05Idx, 2}, {P0156Idx, 2}});
EXPECT_THAT(Pressure,
@ -99,7 +99,8 @@ TEST_F(AnalysisTest, ComputeIdealizedProcResPressure_2P05_2P0156) {
Pair(P5Idx, 1.0), Pair(P6Idx, 1.0)));
}
TEST_F(AnalysisTest, ComputeIdealizedProcResPressure_1P1_1P05_2P0156) {
TEST_F(SchedClassResolutionTest,
ComputeIdealizedProcResPressure_1P1_1P05_2P0156) {
const auto Pressure = computeIdealizedProcResPressure(
STI->getSchedModel(), {{P1Idx, 1}, {P05Idx, 1}, {P0156Idx, 2}});
EXPECT_THAT(Pressure,