mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
bug 263:
- encode/decode target triple and dependent libraries bug 401: - fix encoding/decoding of FP values to be little-endian only bug 402: - initial (compatible) cut at 24-bit types instead of 32-bit - reduce size of block headers by 50% Other: - cleanup Writer by consolidating to one compilation unit, rem. other files - use a std::vector instead of std::deque so the buffer can be allocated in multiples of 64KByte chunks rather than in multiples of some smaller (default) number. llvm-svn: 15210
This commit is contained in:
parent
4b76a409e5
commit
3043e82af5
@ -156,24 +156,79 @@ inline void BytecodeReader::read_data(void *Ptr, void *End) {
|
||||
|
||||
/// Read a float value in little-endian order
|
||||
inline void BytecodeReader::read_float(float& FloatVal) {
|
||||
/// FIXME: This is a broken implementation! It reads
|
||||
/// it in a platform-specific endianess. Need to make
|
||||
/// it little endian always.
|
||||
read_data(&FloatVal, &FloatVal+1);
|
||||
if (hasPlatformSpecificFloatingPoint) {
|
||||
read_data(&FloatVal, &FloatVal+1);
|
||||
} else {
|
||||
/// FIXME: This isn't optimal, it has size problems on some platforms
|
||||
/// where FP is not IEEE.
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} FloatUnion;
|
||||
FloatUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24);
|
||||
At+=sizeof(uint32_t);
|
||||
FloatVal = FloatUnion.f;
|
||||
}
|
||||
}
|
||||
|
||||
/// Read a double value in little-endian order
|
||||
inline void BytecodeReader::read_double(double& DoubleVal) {
|
||||
/// FIXME: This is a broken implementation! It reads
|
||||
/// it in a platform-specific endianess. Need to make
|
||||
/// it little endian always.
|
||||
read_data(&DoubleVal, &DoubleVal+1);
|
||||
if (hasPlatformSpecificFloatingPoint) {
|
||||
read_data(&DoubleVal, &DoubleVal+1);
|
||||
} else {
|
||||
/// FIXME: This isn't optimal, it has size problems on some platforms
|
||||
/// where FP is not IEEE.
|
||||
union {
|
||||
double d;
|
||||
uint64_t i;
|
||||
} DoubleUnion;
|
||||
DoubleUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24) |
|
||||
(uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
|
||||
(uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56);
|
||||
At+=sizeof(uint64_t);
|
||||
DoubleVal = DoubleUnion.d;
|
||||
}
|
||||
}
|
||||
|
||||
/// Read a block header and obtain its type and size
|
||||
inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
|
||||
Type = read_uint();
|
||||
Size = read_uint();
|
||||
if ( hasLongBlockHeaders ) {
|
||||
Type = read_uint();
|
||||
Size = read_uint();
|
||||
switch (Type) {
|
||||
case BytecodeFormat::Reserved_DoNotUse :
|
||||
error("Reserved_DoNotUse used as Module Type?");
|
||||
Type = BytecodeFormat::Module; break;
|
||||
case BytecodeFormat::Module:
|
||||
Type = BytecodeFormat::ModuleBlockID; break;
|
||||
case BytecodeFormat::Function:
|
||||
Type = BytecodeFormat::FunctionBlockID; break;
|
||||
case BytecodeFormat::ConstantPool:
|
||||
Type = BytecodeFormat::ConstantPoolBlockID; break;
|
||||
case BytecodeFormat::SymbolTable:
|
||||
Type = BytecodeFormat::SymbolTableBlockID; break;
|
||||
case BytecodeFormat::ModuleGlobalInfo:
|
||||
Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
|
||||
case BytecodeFormat::GlobalTypePlane:
|
||||
Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
|
||||
case BytecodeFormat::InstructionList:
|
||||
Type = BytecodeFormat::InstructionListBlockID; break;
|
||||
case BytecodeFormat::CompactionTable:
|
||||
Type = BytecodeFormat::CompactionTableBlockID; break;
|
||||
case BytecodeFormat::BasicBlock:
|
||||
/// This block type isn't used after version 1.1. However, we have to
|
||||
/// still allow the value in case this is an old bc format file.
|
||||
/// We just let its value creep thru.
|
||||
break;
|
||||
default:
|
||||
error("Invalid module type found: " + utostr(Type));
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
Size = read_uint();
|
||||
Type = Size & 0x1F; // mask low order five bits
|
||||
Size >>= 5; // get rid of five low order bits, leaving high 27
|
||||
}
|
||||
BlockStart = At;
|
||||
if (At + Size > BlockEnd)
|
||||
error("Attempt to size a block past end of memory");
|
||||
@ -216,6 +271,9 @@ inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
|
||||
/// @see sanitizeTypeId
|
||||
inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
|
||||
TypeId = read_vbr_uint();
|
||||
if ( !has32BitTypes )
|
||||
if ( TypeId == 0x00FFFFFF )
|
||||
TypeId = read_vbr_uint();
|
||||
return sanitizeTypeId(TypeId);
|
||||
}
|
||||
|
||||
@ -1504,7 +1562,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
|
||||
read_block(Type, Size);
|
||||
|
||||
switch (Type) {
|
||||
case BytecodeFormat::ConstantPool:
|
||||
case BytecodeFormat::ConstantPoolBlockID:
|
||||
if (!InsertedArguments) {
|
||||
// Insert arguments into the value table before we parse the first basic
|
||||
// block in the function, but after we potentially read in the
|
||||
@ -1516,7 +1574,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
|
||||
ParseConstantPool(FunctionValues, FunctionTypes, true);
|
||||
break;
|
||||
|
||||
case BytecodeFormat::CompactionTable:
|
||||
case BytecodeFormat::CompactionTableBlockID:
|
||||
ParseCompactionTable();
|
||||
break;
|
||||
|
||||
@ -1534,7 +1592,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
|
||||
break;
|
||||
}
|
||||
|
||||
case BytecodeFormat::InstructionList: {
|
||||
case BytecodeFormat::InstructionListBlockID: {
|
||||
// Insert arguments into the value table before we parse the instruction
|
||||
// list for the function, but after we potentially read in the compaction
|
||||
// table.
|
||||
@ -1549,7 +1607,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
|
||||
break;
|
||||
}
|
||||
|
||||
case BytecodeFormat::SymbolTable:
|
||||
case BytecodeFormat::SymbolTableBlockID:
|
||||
ParseSymbolTable(F, &F->getSymbolTable());
|
||||
break;
|
||||
|
||||
@ -1784,13 +1842,28 @@ void BytecodeReader::ParseModuleGlobalInfo() {
|
||||
error("Invalid function type (type type) found");
|
||||
}
|
||||
|
||||
if (hasInconsistentModuleGlobalInfo)
|
||||
align32();
|
||||
|
||||
// Now that the function signature list is set up, reverse it so that we can
|
||||
// remove elements efficiently from the back of the vector.
|
||||
std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
|
||||
|
||||
// If this bytecode format has dependent library information in it ..
|
||||
if (!hasNoDependentLibraries) {
|
||||
// Read in the number of dependent library items that follow
|
||||
unsigned num_dep_libs = read_vbr_uint();
|
||||
std::string dep_lib;
|
||||
while( num_dep_libs-- ) {
|
||||
dep_lib = read_str();
|
||||
TheModule->linsert(dep_lib);
|
||||
}
|
||||
|
||||
// Read target triple and place into the module
|
||||
std::string triple = read_str();
|
||||
TheModule->setTargetTriple(triple);
|
||||
}
|
||||
|
||||
if (hasInconsistentModuleGlobalInfo)
|
||||
align32();
|
||||
|
||||
// This is for future proofing... in the future extra fields may be added that
|
||||
// we don't understand, so we transparently ignore them.
|
||||
//
|
||||
@ -1820,6 +1893,10 @@ void BytecodeReader::ParseVersionInfo() {
|
||||
hasExplicitPrimitiveZeros = false;
|
||||
hasRestrictedGEPTypes = false;
|
||||
hasTypeDerivedFromValue = false;
|
||||
hasLongBlockHeaders = false;
|
||||
hasPlatformSpecificFloatingPoint = false;
|
||||
has32BitTypes = false;
|
||||
hasNoDependentLibraries = false;
|
||||
|
||||
switch (RevisionNum) {
|
||||
case 0: // LLVM 1.0, 1.1 release version
|
||||
@ -1827,6 +1904,7 @@ void BytecodeReader::ParseVersionInfo() {
|
||||
hasInconsistentModuleGlobalInfo = true;
|
||||
hasExplicitPrimitiveZeros = true;
|
||||
|
||||
|
||||
// FALL THROUGH
|
||||
case 1: // LLVM 1.2 release version
|
||||
// LLVM 1.2 added explicit support for emitting strings efficiently.
|
||||
@ -1846,7 +1924,35 @@ void BytecodeReader::ParseVersionInfo() {
|
||||
hasTypeDerivedFromValue = true;
|
||||
|
||||
// FALL THROUGH
|
||||
case 2: // LLVM 1.3 release version
|
||||
|
||||
case 2: /// 1.2.5 (mid-release) version
|
||||
|
||||
/// LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
|
||||
/// especially for small files where the 8 bytes per block is a large fraction
|
||||
/// of the total block size. In LLVM 1.3, the block type and length are
|
||||
/// compressed into a single 32-bit unsigned integer. 27 bits for length, 5
|
||||
/// bits for block type.
|
||||
hasLongBlockHeaders = true;
|
||||
|
||||
/// LLVM 1.2 and earlier wrote floating point values in a platform specific
|
||||
/// bit ordering. This was fixed in LLVM 1.3, but we still need to be backwards
|
||||
/// compatible.
|
||||
hasPlatformSpecificFloatingPoint = true;
|
||||
|
||||
/// LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
|
||||
/// this has been reduced to vbr_uint24. It shouldn't make much difference
|
||||
/// since we haven't run into a module with > 24 million types, but for safety
|
||||
/// the 24-bit restriction has been enforced in 1.3 to free some bits in
|
||||
/// various places and to ensure consistency.
|
||||
has32BitTypes = true;
|
||||
|
||||
/// LLVM 1.2 and earlier did not provide a target triple nor a list of
|
||||
/// libraries on which the bytecode is dependent. LLVM 1.3 provides these
|
||||
/// features, for use in future versions of LLVM.
|
||||
hasNoDependentLibraries = true;
|
||||
|
||||
// FALL THROUGH
|
||||
case 3: // LLVM 1.3 release version
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -1870,7 +1976,7 @@ void BytecodeReader::ParseModule() {
|
||||
|
||||
// Read into instance variables...
|
||||
ParseVersionInfo();
|
||||
align32(); /// FIXME: Is this redundant? VI is first and 4 bytes!
|
||||
align32();
|
||||
|
||||
bool SeenModuleGlobalInfo = false;
|
||||
bool SeenGlobalTypePlane = false;
|
||||
@ -1881,7 +1987,7 @@ void BytecodeReader::ParseModule() {
|
||||
|
||||
switch (Type) {
|
||||
|
||||
case BytecodeFormat::GlobalTypePlane:
|
||||
case BytecodeFormat::GlobalTypePlaneBlockID:
|
||||
if (SeenGlobalTypePlane)
|
||||
error("Two GlobalTypePlane Blocks Encountered!");
|
||||
|
||||
@ -1889,22 +1995,22 @@ void BytecodeReader::ParseModule() {
|
||||
SeenGlobalTypePlane = true;
|
||||
break;
|
||||
|
||||
case BytecodeFormat::ModuleGlobalInfo:
|
||||
case BytecodeFormat::ModuleGlobalInfoBlockID:
|
||||
if (SeenModuleGlobalInfo)
|
||||
error("Two ModuleGlobalInfo Blocks Encountered!");
|
||||
ParseModuleGlobalInfo();
|
||||
SeenModuleGlobalInfo = true;
|
||||
break;
|
||||
|
||||
case BytecodeFormat::ConstantPool:
|
||||
case BytecodeFormat::ConstantPoolBlockID:
|
||||
ParseConstantPool(ModuleValues, ModuleTypes,false);
|
||||
break;
|
||||
|
||||
case BytecodeFormat::Function:
|
||||
case BytecodeFormat::FunctionBlockID:
|
||||
ParseFunctionLazily();
|
||||
break;
|
||||
|
||||
case BytecodeFormat::SymbolTable:
|
||||
case BytecodeFormat::SymbolTableBlockID:
|
||||
ParseSymbolTable(0, &TheModule->getSymbolTable());
|
||||
break;
|
||||
|
||||
@ -1967,14 +2073,16 @@ void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
|
||||
error("Invalid bytecode signature: " + utostr(Sig));
|
||||
}
|
||||
|
||||
|
||||
// Tell the handler we're starting a module
|
||||
if (Handler) Handler->handleModuleBegin(ModuleID);
|
||||
|
||||
// Get the module block and size and verify
|
||||
// Get the module block and size and verify. This is handled specially
|
||||
// because the module block/size is always written in long format. Other
|
||||
// blocks are written in short format so the read_block method is used.
|
||||
unsigned Type, Size;
|
||||
read_block(Type, Size);
|
||||
if (Type != BytecodeFormat::Module) {
|
||||
Type = read_uint();
|
||||
Size = read_uint();
|
||||
if (Type != BytecodeFormat::ModuleBlockID) {
|
||||
error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
|
||||
+ utostr(Size));
|
||||
}
|
||||
|
@ -56,6 +56,7 @@ public:
|
||||
/// @name Types
|
||||
/// @{
|
||||
public:
|
||||
|
||||
/// @brief A convenience type for the buffer pointer
|
||||
typedef const unsigned char* BufPtr;
|
||||
|
||||
@ -268,6 +269,36 @@ private:
|
||||
/// from Value style of bytecode file is being read.
|
||||
bool hasTypeDerivedFromValue;
|
||||
|
||||
/// LLVM 1.2 and earlier encoded block headers as two uint (8 bytes), one for
|
||||
/// the size and one for the type. This is a bit wasteful, especially for small
|
||||
/// files where the 8 bytes per block is a large fraction of the total block
|
||||
/// size. In LLVM 1.3, the block type and length are encoded into a single
|
||||
/// uint32 by restricting the number of block types (limit 31) and the maximum
|
||||
/// size of a block (limit 2^27-1=134,217,727). Note that the module block
|
||||
/// still uses the 8-byte format so the maximum size of a file can be
|
||||
/// 2^32-1 bytes long.
|
||||
bool hasLongBlockHeaders;
|
||||
|
||||
/// LLVM 1.2 and earlier wrote floating point values in a platform specific
|
||||
/// bit ordering. This was fixed in LLVM 1.3
|
||||
bool hasPlatformSpecificFloatingPoint;
|
||||
|
||||
/// LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
|
||||
/// this has been reduced to vbr_uint24. It shouldn't make much difference
|
||||
/// since we haven't run into a module with > 24 million types, but for safety
|
||||
/// the 24-bit restriction has been enforced in 1.3 to free some bits in
|
||||
/// various places and to ensure consistency. In particular, global vars are
|
||||
/// restricted to 24-bits.
|
||||
bool has32BitTypes;
|
||||
|
||||
/// LLVM 1.2 and earlier did not provide a target triple nor a list of
|
||||
/// libraries on which the bytecode is dependent. LLVM 1.3 provides these
|
||||
/// features, for use in future versions of LLVM.
|
||||
bool hasNoDependentLibraries;
|
||||
|
||||
/// LLVM 1.2 and earlier encoded the file version as part of the module block
|
||||
/// but this information may be needed to
|
||||
|
||||
/// CompactionTable - If a compaction table is active in the current function,
|
||||
/// this is the mapping that it contains.
|
||||
std::vector<const Type*> CompactionTypes;
|
||||
@ -430,6 +461,10 @@ private:
|
||||
/// @brief Read an unsigned integer with variable bit rate encoding
|
||||
inline unsigned read_vbr_uint();
|
||||
|
||||
/// @brief Read an unsigned integer of no more than 24-bits with variable
|
||||
/// bit rate encoding.
|
||||
inline unsigned read_vbr_uint24();
|
||||
|
||||
/// @brief Read an unsigned 64-bit integer with variable bit rate encoding.
|
||||
inline uint64_t read_vbr_uint64();
|
||||
|
||||
|
@ -1,220 +0,0 @@
|
||||
//===-- ConstantWriter.cpp - Functions for writing constants --------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the routines for encoding constants to a bytecode
|
||||
// stream.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "WriterInternals.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/SymbolTable.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "Support/Statistic.h"
|
||||
using namespace llvm;
|
||||
|
||||
void BytecodeWriter::outputType(const Type *T) {
|
||||
output_vbr((unsigned)T->getTypeID(), Out);
|
||||
|
||||
// That's all there is to handling primitive types...
|
||||
if (T->isPrimitiveType()) {
|
||||
return; // We might do this if we alias a prim type: %x = type int
|
||||
}
|
||||
|
||||
switch (T->getTypeID()) { // Handle derived types now.
|
||||
case Type::FunctionTyID: {
|
||||
const FunctionType *MT = cast<FunctionType>(T);
|
||||
int Slot = Table.getSlot(MT->getReturnType());
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
|
||||
// Output the number of arguments to function (+1 if varargs):
|
||||
output_vbr((unsigned)MT->getNumParams()+MT->isVarArg(), Out);
|
||||
|
||||
// Output all of the arguments...
|
||||
FunctionType::param_iterator I = MT->param_begin();
|
||||
for (; I != MT->param_end(); ++I) {
|
||||
Slot = Table.getSlot(*I);
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
// Terminate list with VoidTy if we are a varargs function...
|
||||
if (MT->isVarArg())
|
||||
output_vbr((unsigned)Type::VoidTyID, Out);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::ArrayTyID: {
|
||||
const ArrayType *AT = cast<ArrayType>(T);
|
||||
int Slot = Table.getSlot(AT->getElementType());
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
//std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl;
|
||||
|
||||
output_vbr(AT->getNumElements(), Out);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::StructTyID: {
|
||||
const StructType *ST = cast<StructType>(T);
|
||||
|
||||
// Output all of the element types...
|
||||
for (StructType::element_iterator I = ST->element_begin(),
|
||||
E = ST->element_end(); I != E; ++I) {
|
||||
int Slot = Table.getSlot(*I);
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
// Terminate list with VoidTy
|
||||
output_vbr((unsigned)Type::VoidTyID, Out);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::PointerTyID: {
|
||||
const PointerType *PT = cast<PointerType>(T);
|
||||
int Slot = Table.getSlot(PT->getElementType());
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::OpaqueTyID: {
|
||||
// No need to emit anything, just the count of opaque types is enough.
|
||||
break;
|
||||
}
|
||||
|
||||
//case Type::PackedTyID:
|
||||
default:
|
||||
std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
|
||||
<< " Type '" << T->getDescription() << "'\n";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputConstant(const Constant *CPV) {
|
||||
assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) &&
|
||||
"Shouldn't output null constants!");
|
||||
|
||||
// We must check for a ConstantExpr before switching by type because
|
||||
// a ConstantExpr can be of any type, and has no explicit value.
|
||||
//
|
||||
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
|
||||
// FIXME: Encoding of constant exprs could be much more compact!
|
||||
assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
|
||||
output_vbr(CE->getNumOperands(), Out); // flags as an expr
|
||||
output_vbr(CE->getOpcode(), Out); // flags as an expr
|
||||
|
||||
for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
|
||||
int Slot = Table.getSlot(*OI);
|
||||
assert(Slot != -1 && "Unknown constant used in ConstantExpr!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
Slot = Table.getSlot((*OI)->getType());
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
output_vbr(0U, Out); // flag as not a ConstantExpr
|
||||
}
|
||||
|
||||
switch (CPV->getType()->getTypeID()) {
|
||||
case Type::BoolTyID: // Boolean Types
|
||||
if (cast<ConstantBool>(CPV)->getValue())
|
||||
output_vbr(1U, Out);
|
||||
else
|
||||
output_vbr(0U, Out);
|
||||
break;
|
||||
|
||||
case Type::UByteTyID: // Unsigned integer types...
|
||||
case Type::UShortTyID:
|
||||
case Type::UIntTyID:
|
||||
case Type::ULongTyID:
|
||||
output_vbr(cast<ConstantUInt>(CPV)->getValue(), Out);
|
||||
break;
|
||||
|
||||
case Type::SByteTyID: // Signed integer types...
|
||||
case Type::ShortTyID:
|
||||
case Type::IntTyID:
|
||||
case Type::LongTyID:
|
||||
output_vbr(cast<ConstantSInt>(CPV)->getValue(), Out);
|
||||
break;
|
||||
|
||||
case Type::ArrayTyID: {
|
||||
const ConstantArray *CPA = cast<ConstantArray>(CPV);
|
||||
assert(!CPA->isString() && "Constant strings should be handled specially!");
|
||||
|
||||
for (unsigned i = 0; i != CPA->getNumOperands(); ++i) {
|
||||
int Slot = Table.getSlot(CPA->getOperand(i));
|
||||
assert(Slot != -1 && "Constant used but not available!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::StructTyID: {
|
||||
const ConstantStruct *CPS = cast<ConstantStruct>(CPV);
|
||||
const std::vector<Use> &Vals = CPS->getValues();
|
||||
|
||||
for (unsigned i = 0; i < Vals.size(); ++i) {
|
||||
int Slot = Table.getSlot(Vals[i]);
|
||||
assert(Slot != -1 && "Constant used but not available!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::PointerTyID:
|
||||
assert(0 && "No non-null, non-constant-expr constants allowed!");
|
||||
abort();
|
||||
|
||||
case Type::FloatTyID: { // Floating point types...
|
||||
float Tmp = (float)cast<ConstantFP>(CPV)->getValue();
|
||||
output_float(Tmp, Out);
|
||||
break;
|
||||
}
|
||||
case Type::DoubleTyID: {
|
||||
double Tmp = cast<ConstantFP>(CPV)->getValue();
|
||||
output_double(Tmp, Out);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::VoidTyID:
|
||||
case Type::LabelTyID:
|
||||
default:
|
||||
std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
|
||||
<< " type '" << *CPV->getType() << "'\n";
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputConstantStrings() {
|
||||
SlotCalculator::string_iterator I = Table.string_begin();
|
||||
SlotCalculator::string_iterator E = Table.string_end();
|
||||
if (I == E) return; // No strings to emit
|
||||
|
||||
// If we have != 0 strings to emit, output them now. Strings are emitted into
|
||||
// the 'void' type plane.
|
||||
output_vbr(unsigned(E-I), Out);
|
||||
output_vbr(Type::VoidTyID, Out);
|
||||
|
||||
// Emit all of the strings.
|
||||
for (I = Table.string_begin(); I != E; ++I) {
|
||||
const ConstantArray *Str = *I;
|
||||
int Slot = Table.getSlot(Str->getType());
|
||||
assert(Slot != -1 && "Constant string of unknown type?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
|
||||
// Now that we emitted the type (which indicates the size of the string),
|
||||
// emit all of the characters.
|
||||
std::string Val = Str->getAsString();
|
||||
output_data(Val.c_str(), Val.c_str()+Val.size(), Out);
|
||||
}
|
||||
}
|
@ -1,348 +0,0 @@
|
||||
//===-- InstructionWriter.cpp - Functions for writing instructions --------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the routines for encoding instruction opcodes to a
|
||||
// bytecode stream.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "WriterInternals.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
typedef unsigned char uchar;
|
||||
|
||||
// outputInstructionFormat0 - Output those wierd instructions that have a large
|
||||
// number of operands or have large operands themselves...
|
||||
//
|
||||
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
|
||||
//
|
||||
static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned Type, std::deque<uchar> &Out) {
|
||||
// Opcode must have top two bits clear...
|
||||
output_vbr(Opcode << 2, Out); // Instruction Opcode ID
|
||||
output_vbr(Type, Out); // Result type
|
||||
|
||||
unsigned NumArgs = I->getNumOperands();
|
||||
output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
|
||||
isa<VAArgInst>(I)), Out);
|
||||
|
||||
if (!isa<GetElementPtrInst>(&I)) {
|
||||
for (unsigned i = 0; i < NumArgs; ++i) {
|
||||
int Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
int Slot = Table.getSlot(I->getType());
|
||||
assert(Slot != -1 && "Cast return type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
|
||||
int Slot = Table.getSlot(VAI->getArgType());
|
||||
assert(Slot != -1 && "VarArg argument type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
} else {
|
||||
int Slot = Table.getSlot(I->getOperand(0));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr(unsigned(Slot), Out);
|
||||
|
||||
// We need to encode the type of sequential type indices into their slot #
|
||||
unsigned Idx = 1;
|
||||
for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
|
||||
Idx != NumArgs; ++TI, ++Idx) {
|
||||
Slot = Table.getSlot(I->getOperand(Idx));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
|
||||
if (isa<SequentialType>(*TI)) {
|
||||
unsigned IdxId;
|
||||
switch (I->getOperand(Idx)->getType()->getTypeID()) {
|
||||
default: assert(0 && "Unknown index type!");
|
||||
case Type::UIntTyID: IdxId = 0; break;
|
||||
case Type::IntTyID: IdxId = 1; break;
|
||||
case Type::ULongTyID: IdxId = 2; break;
|
||||
case Type::LongTyID: IdxId = 3; break;
|
||||
}
|
||||
Slot = (Slot << 2) | IdxId;
|
||||
}
|
||||
output_vbr(unsigned(Slot), Out);
|
||||
}
|
||||
}
|
||||
|
||||
align32(Out); // We must maintain correct alignment!
|
||||
}
|
||||
|
||||
|
||||
// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
|
||||
// This are more annoying than most because the signature of the call does not
|
||||
// tell us anything about the types of the arguments in the varargs portion.
|
||||
// Because of this, we encode (as type 0) all of the argument types explicitly
|
||||
// before the argument value. This really sucks, but you shouldn't be using
|
||||
// varargs functions in your code! *death to printf*!
|
||||
//
|
||||
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
|
||||
//
|
||||
static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
assert(isa<CallInst>(I) || isa<InvokeInst>(I));
|
||||
// Opcode must have top two bits clear...
|
||||
output_vbr(Opcode << 2, Out); // Instruction Opcode ID
|
||||
output_vbr(Type, Out); // Result type (varargs type)
|
||||
|
||||
const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
|
||||
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
||||
unsigned NumParams = FTy->getNumParams();
|
||||
|
||||
unsigned NumFixedOperands;
|
||||
if (isa<CallInst>(I)) {
|
||||
// Output an operand for the callee and each fixed argument, then two for
|
||||
// each variable argument.
|
||||
NumFixedOperands = 1+NumParams;
|
||||
} else {
|
||||
assert(isa<InvokeInst>(I) && "Not call or invoke??");
|
||||
// Output an operand for the callee and destinations, then two for each
|
||||
// variable argument.
|
||||
NumFixedOperands = 3+NumParams;
|
||||
}
|
||||
output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out);
|
||||
|
||||
// The type for the function has already been emitted in the type field of the
|
||||
// instruction. Just emit the slot # now.
|
||||
for (unsigned i = 0; i != NumFixedOperands; ++i) {
|
||||
int Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
|
||||
// Output Arg Type ID
|
||||
int Slot = Table.getSlot(I->getOperand(i)->getType());
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
|
||||
// Output arg ID itself
|
||||
Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
align32(Out); // We must maintain correct alignment!
|
||||
}
|
||||
|
||||
|
||||
// outputInstructionFormat1 - Output one operand instructions, knowing that no
|
||||
// operand index is >= 2^12.
|
||||
//
|
||||
static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 1.
|
||||
// 07-02: Opcode
|
||||
// 19-08: Resulting type plane
|
||||
// 31-20: Operand #1 (if set to (2^12-1), then zero operands)
|
||||
//
|
||||
unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
|
||||
// cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
|
||||
output(Bits, Out);
|
||||
}
|
||||
|
||||
|
||||
// outputInstructionFormat2 - Output two operand instructions, knowing that no
|
||||
// operand index is >= 2^8.
|
||||
//
|
||||
static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 2.
|
||||
// 07-02: Opcode
|
||||
// 15-08: Resulting type plane
|
||||
// 23-16: Operand #1
|
||||
// 31-24: Operand #2
|
||||
//
|
||||
unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
|
||||
(Slots[0] << 16) | (Slots[1] << 24);
|
||||
// cerr << "2 " << IType << " " << Type << " " << Slots[0] << " "
|
||||
// << Slots[1] << endl;
|
||||
output(Bits, Out);
|
||||
}
|
||||
|
||||
|
||||
// outputInstructionFormat3 - Output three operand instructions, knowing that no
|
||||
// operand index is >= 2^6.
|
||||
//
|
||||
static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 3.
|
||||
// 07-02: Opcode
|
||||
// 13-08: Resulting type plane
|
||||
// 19-14: Operand #1
|
||||
// 25-20: Operand #2
|
||||
// 31-26: Operand #3
|
||||
//
|
||||
unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
|
||||
(Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
|
||||
//cerr << "3 " << IType << " " << Type << " " << Slots[0] << " "
|
||||
// << Slots[1] << " " << Slots[2] << endl;
|
||||
output(Bits, Out);
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||
assert(I.getOpcode() < 62 && "Opcode too big???");
|
||||
unsigned Opcode = I.getOpcode();
|
||||
unsigned NumOperands = I.getNumOperands();
|
||||
|
||||
// Encode 'volatile load' as 62 and 'volatile store' as 63.
|
||||
if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
|
||||
Opcode = 62;
|
||||
if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
|
||||
Opcode = 63;
|
||||
|
||||
// Figure out which type to encode with the instruction. Typically we want
|
||||
// the type of the first parameter, as opposed to the type of the instruction
|
||||
// (for example, with setcc, we always know it returns bool, but the type of
|
||||
// the first param is actually interesting). But if we have no arguments
|
||||
// we take the type of the instruction itself.
|
||||
//
|
||||
const Type *Ty;
|
||||
switch (I.getOpcode()) {
|
||||
case Instruction::Select:
|
||||
case Instruction::Malloc:
|
||||
case Instruction::Alloca:
|
||||
Ty = I.getType(); // These ALWAYS want to encode the return type
|
||||
break;
|
||||
case Instruction::Store:
|
||||
Ty = I.getOperand(1)->getType(); // Encode the pointer type...
|
||||
assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
|
||||
break;
|
||||
default: // Otherwise use the default behavior...
|
||||
Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
|
||||
break;
|
||||
}
|
||||
|
||||
unsigned Type;
|
||||
int Slot = Table.getSlot(Ty);
|
||||
assert(Slot != -1 && "Type not available!!?!");
|
||||
Type = (unsigned)Slot;
|
||||
|
||||
// Varargs calls and invokes are encoded entirely different from any other
|
||||
// instructions.
|
||||
if (const CallInst *CI = dyn_cast<CallInst>(&I)){
|
||||
const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
|
||||
return;
|
||||
}
|
||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
||||
const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (NumOperands <= 3) {
|
||||
// Make sure that we take the type number into consideration. We don't want
|
||||
// to overflow the field size for the instruction format we select.
|
||||
//
|
||||
unsigned MaxOpSlot = Type;
|
||||
unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
||||
|
||||
for (unsigned i = 0; i != NumOperands; ++i) {
|
||||
int slot = Table.getSlot(I.getOperand(i));
|
||||
assert(slot != -1 && "Broken bytecode!");
|
||||
if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
|
||||
Slots[i] = unsigned(slot);
|
||||
}
|
||||
|
||||
// Handle the special cases for various instructions...
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
// Cast has to encode the destination type as the second argument in the
|
||||
// packet, or else we won't know what type to cast to!
|
||||
Slots[1] = Table.getSlot(I.getType());
|
||||
assert(Slots[1] != ~0U && "Cast return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
|
||||
Slots[1] = Table.getSlot(VANI->getArgType());
|
||||
assert(Slots[1] != ~0U && "va_next return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
||||
// We need to encode the type of sequential type indices into their slot #
|
||||
unsigned Idx = 1;
|
||||
for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
|
||||
I != E; ++I, ++Idx)
|
||||
if (isa<SequentialType>(*I)) {
|
||||
unsigned IdxId;
|
||||
switch (GEP->getOperand(Idx)->getType()->getTypeID()) {
|
||||
default: assert(0 && "Unknown index type!");
|
||||
case Type::UIntTyID: IdxId = 0; break;
|
||||
case Type::IntTyID: IdxId = 1; break;
|
||||
case Type::ULongTyID: IdxId = 2; break;
|
||||
case Type::LongTyID: IdxId = 3; break;
|
||||
}
|
||||
Slots[Idx] = (Slots[Idx] << 2) | IdxId;
|
||||
if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
|
||||
}
|
||||
}
|
||||
|
||||
// Decide which instruction encoding to use. This is determined primarily
|
||||
// by the number of operands, and secondarily by whether or not the max
|
||||
// operand will fit into the instruction encoding. More operands == fewer
|
||||
// bits per operand.
|
||||
//
|
||||
switch (NumOperands) {
|
||||
case 0:
|
||||
case 1:
|
||||
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
||||
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
if (MaxOpSlot < (1 << 8)) {
|
||||
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (MaxOpSlot < (1 << 6)) {
|
||||
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If we weren't handled before here, we either have a large number of
|
||||
// operands or a large operand index that we are referring to.
|
||||
outputInstructionFormat0(&I, Opcode, Table, Type, Out);
|
||||
}
|
@ -10,24 +10,21 @@
|
||||
// This library implements the functionality defined in llvm/Bytecode/Writer.h
|
||||
//
|
||||
// Note that this file uses an unusual technique of outputting all the bytecode
|
||||
// to a deque of unsigned char, then copies the deque to an ostream. The
|
||||
// to a vector of unsigned char, then copies the vector to an ostream. The
|
||||
// reason for this is that we must do "seeking" in the stream to do back-
|
||||
// patching, and some very important ostreams that we want to support (like
|
||||
// pipes) do not support seeking. :( :( :(
|
||||
//
|
||||
// The choice of the deque data structure is influenced by the extremely fast
|
||||
// "append" speed, plus the free "seek"/replace in the middle of the stream. I
|
||||
// didn't use a vector because the stream could end up very large and copying
|
||||
// the whole thing to reallocate would be kinda silly.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "WriterInternals.h"
|
||||
#include "llvm/Bytecode/WriteBytecodePass.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/SymbolTable.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include <cstring>
|
||||
@ -39,15 +36,720 @@ static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer");
|
||||
static Statistic<>
|
||||
BytesWritten("bytecodewriter", "Number of bytecode bytes written");
|
||||
|
||||
BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
|
||||
//===----------------------------------------------------------------------===//
|
||||
//=== Output Primitives ===//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// output - If a position is specified, it must be in the valid portion of the
|
||||
// string... note that this should be inlined always so only the relevant IF
|
||||
// body should be included.
|
||||
inline void BytecodeWriter::output(unsigned i, int pos) {
|
||||
if (pos == -1) { // Be endian clean, little endian is our friend
|
||||
Out.push_back((unsigned char)i);
|
||||
Out.push_back((unsigned char)(i >> 8));
|
||||
Out.push_back((unsigned char)(i >> 16));
|
||||
Out.push_back((unsigned char)(i >> 24));
|
||||
} else {
|
||||
Out[pos ] = (unsigned char)i;
|
||||
Out[pos+1] = (unsigned char)(i >> 8);
|
||||
Out[pos+2] = (unsigned char)(i >> 16);
|
||||
Out[pos+3] = (unsigned char)(i >> 24);
|
||||
}
|
||||
}
|
||||
|
||||
inline void BytecodeWriter::output(int i) {
|
||||
output((unsigned)i);
|
||||
}
|
||||
|
||||
/// output_vbr - Output an unsigned value, by using the least number of bytes
|
||||
/// possible. This is useful because many of our "infinite" values are really
|
||||
/// very small most of the time; but can be large a few times.
|
||||
/// Data format used: If you read a byte with the high bit set, use the low
|
||||
/// seven bits as data and then read another byte. Note that using this may
|
||||
/// cause the output buffer to become unaligned.
|
||||
inline void BytecodeWriter::output_vbr(uint64_t i) {
|
||||
while (1) {
|
||||
if (i < 0x80) { // done?
|
||||
Out.push_back((unsigned char)i); // We know the high bit is clear...
|
||||
return;
|
||||
}
|
||||
|
||||
// Nope, we are bigger than a character, output the next 7 bits and set the
|
||||
// high bit to say that there is more coming...
|
||||
Out.push_back(0x80 | ((unsigned char)i & 0x7F));
|
||||
i >>= 7; // Shift out 7 bits now...
|
||||
}
|
||||
}
|
||||
|
||||
inline void BytecodeWriter::output_vbr(unsigned i) {
|
||||
while (1) {
|
||||
if (i < 0x80) { // done?
|
||||
Out.push_back((unsigned char)i); // We know the high bit is clear...
|
||||
return;
|
||||
}
|
||||
|
||||
// Nope, we are bigger than a character, output the next 7 bits and set the
|
||||
// high bit to say that there is more coming...
|
||||
Out.push_back(0x80 | ((unsigned char)i & 0x7F));
|
||||
i >>= 7; // Shift out 7 bits now...
|
||||
}
|
||||
}
|
||||
|
||||
inline void BytecodeWriter::output_typeid(unsigned i) {
|
||||
if (i <= 0x00FFFFFF)
|
||||
this->output_vbr(i);
|
||||
else {
|
||||
this->output_vbr(0x00FFFFFF);
|
||||
this->output_vbr(i);
|
||||
}
|
||||
}
|
||||
|
||||
inline void BytecodeWriter::output_vbr(int64_t i) {
|
||||
if (i < 0)
|
||||
output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit...
|
||||
else
|
||||
output_vbr((uint64_t)i << 1); // Low order bit is clear.
|
||||
}
|
||||
|
||||
|
||||
inline void BytecodeWriter::output_vbr(int i) {
|
||||
if (i < 0)
|
||||
output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit...
|
||||
else
|
||||
output_vbr((unsigned)i << 1); // Low order bit is clear.
|
||||
}
|
||||
|
||||
// align32 - emit the minimal number of bytes that will bring us to 32 bit
|
||||
// alignment...
|
||||
//
|
||||
inline void BytecodeWriter::align32() {
|
||||
int NumPads = (4-(Out.size() & 3)) & 3; // Bytes to get padding to 32 bits
|
||||
while (NumPads--) Out.push_back((unsigned char)0xAB);
|
||||
}
|
||||
|
||||
inline void BytecodeWriter::output(const std::string &s, bool Aligned ) {
|
||||
unsigned Len = s.length();
|
||||
output_vbr(Len ); // Strings may have an arbitrary length...
|
||||
Out.insert(Out.end(), s.begin(), s.end());
|
||||
|
||||
if (Aligned)
|
||||
align32(); // Make sure we are now aligned...
|
||||
}
|
||||
|
||||
inline void BytecodeWriter::output_data(const void *Ptr, const void *End) {
|
||||
Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End);
|
||||
}
|
||||
|
||||
inline void BytecodeWriter::output_float(float& FloatVal) {
|
||||
/// FIXME: This isn't optimal, it has size problems on some platforms
|
||||
/// where FP is not IEEE.
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} FloatUnion;
|
||||
FloatUnion.f = FloatVal;
|
||||
Out.push_back( static_cast<unsigned char>( (FloatUnion.i & 0xFF )));
|
||||
Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 8) & 0xFF));
|
||||
Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 16) & 0xFF));
|
||||
Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 24) & 0xFF));
|
||||
}
|
||||
|
||||
inline void BytecodeWriter::output_double(double& DoubleVal) {
|
||||
/// FIXME: This isn't optimal, it has size problems on some platforms
|
||||
/// where FP is not IEEE.
|
||||
union {
|
||||
double d;
|
||||
uint64_t i;
|
||||
} DoubleUnion;
|
||||
DoubleUnion.d = DoubleVal;
|
||||
Out.push_back( static_cast<unsigned char>( (DoubleUnion.i & 0xFF )));
|
||||
Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 8) & 0xFF));
|
||||
Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 16) & 0xFF));
|
||||
Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 24) & 0xFF));
|
||||
Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 32) & 0xFF));
|
||||
Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 40) & 0xFF));
|
||||
Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 48) & 0xFF));
|
||||
Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 56) & 0xFF));
|
||||
}
|
||||
|
||||
inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter& w,
|
||||
bool elideIfEmpty, bool hasLongFormat )
|
||||
: Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){
|
||||
|
||||
if (HasLongFormat) {
|
||||
w.output(ID);
|
||||
w.output(0U); // For length in long format
|
||||
} else {
|
||||
w.output(0U); /// Place holder for ID and length for this block
|
||||
}
|
||||
Loc = w.size();
|
||||
}
|
||||
|
||||
inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out
|
||||
// of scope...
|
||||
if (Loc == Writer.size() && ElideIfEmpty) {
|
||||
// If the block is empty, and we are allowed to, do not emit the block at
|
||||
// all!
|
||||
Writer.resize(Writer.size()-(HasLongFormat?8:4));
|
||||
return;
|
||||
}
|
||||
|
||||
//cerr << "OldLoc = " << Loc << " NewLoc = " << NewLoc << " diff = "
|
||||
// << (NewLoc-Loc) << endl;
|
||||
if (HasLongFormat)
|
||||
Writer.output(unsigned(Writer.size()-Loc), int(Loc-4));
|
||||
else
|
||||
Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4));
|
||||
Writer.align32(); // Blocks must ALWAYS be aligned
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//=== Constant Output ===//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void BytecodeWriter::outputType(const Type *T) {
|
||||
output_vbr((unsigned)T->getTypeID());
|
||||
|
||||
// That's all there is to handling primitive types...
|
||||
if (T->isPrimitiveType()) {
|
||||
return; // We might do this if we alias a prim type: %x = type int
|
||||
}
|
||||
|
||||
switch (T->getTypeID()) { // Handle derived types now.
|
||||
case Type::FunctionTyID: {
|
||||
const FunctionType *MT = cast<FunctionType>(T);
|
||||
int Slot = Table.getSlot(MT->getReturnType());
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_typeid((unsigned)Slot);
|
||||
|
||||
// Output the number of arguments to function (+1 if varargs):
|
||||
output_vbr((unsigned)MT->getNumParams()+MT->isVarArg());
|
||||
|
||||
// Output all of the arguments...
|
||||
FunctionType::param_iterator I = MT->param_begin();
|
||||
for (; I != MT->param_end(); ++I) {
|
||||
Slot = Table.getSlot(*I);
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_typeid((unsigned)Slot);
|
||||
}
|
||||
|
||||
// Terminate list with VoidTy if we are a varargs function...
|
||||
if (MT->isVarArg())
|
||||
output_typeid((unsigned)Type::VoidTyID);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::ArrayTyID: {
|
||||
const ArrayType *AT = cast<ArrayType>(T);
|
||||
int Slot = Table.getSlot(AT->getElementType());
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_typeid((unsigned)Slot);
|
||||
//std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl;
|
||||
|
||||
output_vbr(AT->getNumElements());
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::StructTyID: {
|
||||
const StructType *ST = cast<StructType>(T);
|
||||
|
||||
// Output all of the element types...
|
||||
for (StructType::element_iterator I = ST->element_begin(),
|
||||
E = ST->element_end(); I != E; ++I) {
|
||||
int Slot = Table.getSlot(*I);
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_typeid((unsigned)Slot);
|
||||
}
|
||||
|
||||
// Terminate list with VoidTy
|
||||
output_typeid((unsigned)Type::VoidTyID);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::PointerTyID: {
|
||||
const PointerType *PT = cast<PointerType>(T);
|
||||
int Slot = Table.getSlot(PT->getElementType());
|
||||
assert(Slot != -1 && "Type used but not available!!");
|
||||
output_typeid((unsigned)Slot);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::OpaqueTyID: {
|
||||
// No need to emit anything, just the count of opaque types is enough.
|
||||
break;
|
||||
}
|
||||
|
||||
//case Type::PackedTyID:
|
||||
default:
|
||||
std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
|
||||
<< " Type '" << T->getDescription() << "'\n";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputConstant(const Constant *CPV) {
|
||||
assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) &&
|
||||
"Shouldn't output null constants!");
|
||||
|
||||
// We must check for a ConstantExpr before switching by type because
|
||||
// a ConstantExpr can be of any type, and has no explicit value.
|
||||
//
|
||||
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
|
||||
// FIXME: Encoding of constant exprs could be much more compact!
|
||||
assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
|
||||
output_vbr(CE->getNumOperands()); // flags as an expr
|
||||
output_vbr(CE->getOpcode()); // flags as an expr
|
||||
|
||||
for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
|
||||
int Slot = Table.getSlot(*OI);
|
||||
assert(Slot != -1 && "Unknown constant used in ConstantExpr!!");
|
||||
output_vbr((unsigned)Slot);
|
||||
Slot = Table.getSlot((*OI)->getType());
|
||||
output_typeid((unsigned)Slot);
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
output_vbr(0U); // flag as not a ConstantExpr
|
||||
}
|
||||
|
||||
switch (CPV->getType()->getTypeID()) {
|
||||
case Type::BoolTyID: // Boolean Types
|
||||
if (cast<ConstantBool>(CPV)->getValue())
|
||||
output_vbr(1U);
|
||||
else
|
||||
output_vbr(0U);
|
||||
break;
|
||||
|
||||
case Type::UByteTyID: // Unsigned integer types...
|
||||
case Type::UShortTyID:
|
||||
case Type::UIntTyID:
|
||||
case Type::ULongTyID:
|
||||
output_vbr(cast<ConstantUInt>(CPV)->getValue());
|
||||
break;
|
||||
|
||||
case Type::SByteTyID: // Signed integer types...
|
||||
case Type::ShortTyID:
|
||||
case Type::IntTyID:
|
||||
case Type::LongTyID:
|
||||
output_vbr(cast<ConstantSInt>(CPV)->getValue());
|
||||
break;
|
||||
|
||||
case Type::ArrayTyID: {
|
||||
const ConstantArray *CPA = cast<ConstantArray>(CPV);
|
||||
assert(!CPA->isString() && "Constant strings should be handled specially!");
|
||||
|
||||
for (unsigned i = 0; i != CPA->getNumOperands(); ++i) {
|
||||
int Slot = Table.getSlot(CPA->getOperand(i));
|
||||
assert(Slot != -1 && "Constant used but not available!!");
|
||||
output_vbr((unsigned)Slot);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::StructTyID: {
|
||||
const ConstantStruct *CPS = cast<ConstantStruct>(CPV);
|
||||
const std::vector<Use> &Vals = CPS->getValues();
|
||||
|
||||
for (unsigned i = 0; i < Vals.size(); ++i) {
|
||||
int Slot = Table.getSlot(Vals[i]);
|
||||
assert(Slot != -1 && "Constant used but not available!!");
|
||||
output_vbr((unsigned)Slot);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::PointerTyID:
|
||||
assert(0 && "No non-null, non-constant-expr constants allowed!");
|
||||
abort();
|
||||
|
||||
case Type::FloatTyID: { // Floating point types...
|
||||
float Tmp = (float)cast<ConstantFP>(CPV)->getValue();
|
||||
output_float(Tmp);
|
||||
break;
|
||||
}
|
||||
case Type::DoubleTyID: {
|
||||
double Tmp = cast<ConstantFP>(CPV)->getValue();
|
||||
output_double(Tmp);
|
||||
break;
|
||||
}
|
||||
|
||||
case Type::VoidTyID:
|
||||
case Type::LabelTyID:
|
||||
default:
|
||||
std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
|
||||
<< " type '" << *CPV->getType() << "'\n";
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputConstantStrings() {
|
||||
SlotCalculator::string_iterator I = Table.string_begin();
|
||||
SlotCalculator::string_iterator E = Table.string_end();
|
||||
if (I == E) return; // No strings to emit
|
||||
|
||||
// If we have != 0 strings to emit, output them now. Strings are emitted into
|
||||
// the 'void' type plane.
|
||||
output_vbr(unsigned(E-I));
|
||||
output_typeid(Type::VoidTyID);
|
||||
|
||||
// Emit all of the strings.
|
||||
for (I = Table.string_begin(); I != E; ++I) {
|
||||
const ConstantArray *Str = *I;
|
||||
int Slot = Table.getSlot(Str->getType());
|
||||
assert(Slot != -1 && "Constant string of unknown type?");
|
||||
output_typeid((unsigned)Slot);
|
||||
|
||||
// Now that we emitted the type (which indicates the size of the string),
|
||||
// emit all of the characters.
|
||||
std::string Val = Str->getAsString();
|
||||
output_data(Val.c_str(), Val.c_str()+Val.size());
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//=== Instruction Output ===//
|
||||
//===----------------------------------------------------------------------===//
|
||||
typedef unsigned char uchar;
|
||||
|
||||
// outputInstructionFormat0 - Output those wierd instructions that have a large
|
||||
// number of operands or have large operands themselves...
|
||||
//
|
||||
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
|
||||
//
|
||||
void BytecodeWriter::outputInstructionFormat0(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned Type) {
|
||||
// Opcode must have top two bits clear...
|
||||
output_vbr(Opcode << 2); // Instruction Opcode ID
|
||||
output_typeid(Type); // Result type
|
||||
|
||||
unsigned NumArgs = I->getNumOperands();
|
||||
output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
|
||||
isa<VAArgInst>(I)));
|
||||
|
||||
if (!isa<GetElementPtrInst>(&I)) {
|
||||
for (unsigned i = 0; i < NumArgs; ++i) {
|
||||
int Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot);
|
||||
}
|
||||
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
int Slot = Table.getSlot(I->getType());
|
||||
assert(Slot != -1 && "Cast return type unknown?");
|
||||
output_typeid((unsigned)Slot);
|
||||
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
|
||||
int Slot = Table.getSlot(VAI->getArgType());
|
||||
assert(Slot != -1 && "VarArg argument type unknown?");
|
||||
output_typeid((unsigned)Slot);
|
||||
}
|
||||
|
||||
} else {
|
||||
int Slot = Table.getSlot(I->getOperand(0));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr(unsigned(Slot));
|
||||
|
||||
// We need to encode the type of sequential type indices into their slot #
|
||||
unsigned Idx = 1;
|
||||
for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
|
||||
Idx != NumArgs; ++TI, ++Idx) {
|
||||
Slot = Table.getSlot(I->getOperand(Idx));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
|
||||
if (isa<SequentialType>(*TI)) {
|
||||
unsigned IdxId;
|
||||
switch (I->getOperand(Idx)->getType()->getTypeID()) {
|
||||
default: assert(0 && "Unknown index type!");
|
||||
case Type::UIntTyID: IdxId = 0; break;
|
||||
case Type::IntTyID: IdxId = 1; break;
|
||||
case Type::ULongTyID: IdxId = 2; break;
|
||||
case Type::LongTyID: IdxId = 3; break;
|
||||
}
|
||||
Slot = (Slot << 2) | IdxId;
|
||||
}
|
||||
output_vbr(unsigned(Slot));
|
||||
}
|
||||
}
|
||||
|
||||
align32(); // We must maintain correct alignment!
|
||||
}
|
||||
|
||||
|
||||
// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
|
||||
// This are more annoying than most because the signature of the call does not
|
||||
// tell us anything about the types of the arguments in the varargs portion.
|
||||
// Because of this, we encode (as type 0) all of the argument types explicitly
|
||||
// before the argument value. This really sucks, but you shouldn't be using
|
||||
// varargs functions in your code! *death to printf*!
|
||||
//
|
||||
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
|
||||
//
|
||||
void BytecodeWriter::outputInstrVarArgsCall(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned Type) {
|
||||
assert(isa<CallInst>(I) || isa<InvokeInst>(I));
|
||||
// Opcode must have top two bits clear...
|
||||
output_vbr(Opcode << 2); // Instruction Opcode ID
|
||||
output_typeid(Type); // Result type (varargs type)
|
||||
|
||||
const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
|
||||
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
||||
unsigned NumParams = FTy->getNumParams();
|
||||
|
||||
unsigned NumFixedOperands;
|
||||
if (isa<CallInst>(I)) {
|
||||
// Output an operand for the callee and each fixed argument, then two for
|
||||
// each variable argument.
|
||||
NumFixedOperands = 1+NumParams;
|
||||
} else {
|
||||
assert(isa<InvokeInst>(I) && "Not call or invoke??");
|
||||
// Output an operand for the callee and destinations, then two for each
|
||||
// variable argument.
|
||||
NumFixedOperands = 3+NumParams;
|
||||
}
|
||||
output_vbr(2 * I->getNumOperands()-NumFixedOperands);
|
||||
|
||||
// The type for the function has already been emitted in the type field of the
|
||||
// instruction. Just emit the slot # now.
|
||||
for (unsigned i = 0; i != NumFixedOperands; ++i) {
|
||||
int Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot);
|
||||
}
|
||||
|
||||
for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
|
||||
// Output Arg Type ID
|
||||
int Slot = Table.getSlot(I->getOperand(i)->getType());
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_typeid((unsigned)Slot);
|
||||
|
||||
// Output arg ID itself
|
||||
Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot);
|
||||
}
|
||||
align32(); // We must maintain correct alignment!
|
||||
}
|
||||
|
||||
|
||||
// outputInstructionFormat1 - Output one operand instructions, knowing that no
|
||||
// operand index is >= 2^12.
|
||||
//
|
||||
inline void BytecodeWriter::outputInstructionFormat1(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 1.
|
||||
// 07-02: Opcode
|
||||
// 19-08: Resulting type plane
|
||||
// 31-20: Operand #1 (if set to (2^12-1), then zero operands)
|
||||
//
|
||||
unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
|
||||
// cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
|
||||
output(Bits);
|
||||
}
|
||||
|
||||
|
||||
// outputInstructionFormat2 - Output two operand instructions, knowing that no
|
||||
// operand index is >= 2^8.
|
||||
//
|
||||
inline void BytecodeWriter::outputInstructionFormat2(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 2.
|
||||
// 07-02: Opcode
|
||||
// 15-08: Resulting type plane
|
||||
// 23-16: Operand #1
|
||||
// 31-24: Operand #2
|
||||
//
|
||||
unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
|
||||
(Slots[0] << 16) | (Slots[1] << 24);
|
||||
// cerr << "2 " << IType << " " << Type << " " << Slots[0] << " "
|
||||
// << Slots[1] << endl;
|
||||
output(Bits);
|
||||
}
|
||||
|
||||
|
||||
// outputInstructionFormat3 - Output three operand instructions, knowing that no
|
||||
// operand index is >= 2^6.
|
||||
//
|
||||
inline void BytecodeWriter::outputInstructionFormat3(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 3.
|
||||
// 07-02: Opcode
|
||||
// 13-08: Resulting type plane
|
||||
// 19-14: Operand #1
|
||||
// 25-20: Operand #2
|
||||
// 31-26: Operand #3
|
||||
//
|
||||
unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
|
||||
(Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
|
||||
//cerr << "3 " << IType << " " << Type << " " << Slots[0] << " "
|
||||
// << Slots[1] << " " << Slots[2] << endl;
|
||||
output(Bits);
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||
assert(I.getOpcode() < 62 && "Opcode too big???");
|
||||
unsigned Opcode = I.getOpcode();
|
||||
unsigned NumOperands = I.getNumOperands();
|
||||
|
||||
// Encode 'volatile load' as 62 and 'volatile store' as 63.
|
||||
if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
|
||||
Opcode = 62;
|
||||
if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
|
||||
Opcode = 63;
|
||||
|
||||
// Figure out which type to encode with the instruction. Typically we want
|
||||
// the type of the first parameter, as opposed to the type of the instruction
|
||||
// (for example, with setcc, we always know it returns bool, but the type of
|
||||
// the first param is actually interesting). But if we have no arguments
|
||||
// we take the type of the instruction itself.
|
||||
//
|
||||
const Type *Ty;
|
||||
switch (I.getOpcode()) {
|
||||
case Instruction::Select:
|
||||
case Instruction::Malloc:
|
||||
case Instruction::Alloca:
|
||||
Ty = I.getType(); // These ALWAYS want to encode the return type
|
||||
break;
|
||||
case Instruction::Store:
|
||||
Ty = I.getOperand(1)->getType(); // Encode the pointer type...
|
||||
assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
|
||||
break;
|
||||
default: // Otherwise use the default behavior...
|
||||
Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
|
||||
break;
|
||||
}
|
||||
|
||||
unsigned Type;
|
||||
int Slot = Table.getSlot(Ty);
|
||||
assert(Slot != -1 && "Type not available!!?!");
|
||||
Type = (unsigned)Slot;
|
||||
|
||||
// Varargs calls and invokes are encoded entirely different from any other
|
||||
// instructions.
|
||||
if (const CallInst *CI = dyn_cast<CallInst>(&I)){
|
||||
const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(CI, Opcode, Table, Type);
|
||||
return;
|
||||
}
|
||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
||||
const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(II, Opcode, Table, Type);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (NumOperands <= 3) {
|
||||
// Make sure that we take the type number into consideration. We don't want
|
||||
// to overflow the field size for the instruction format we select.
|
||||
//
|
||||
unsigned MaxOpSlot = Type;
|
||||
unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
||||
|
||||
for (unsigned i = 0; i != NumOperands; ++i) {
|
||||
int slot = Table.getSlot(I.getOperand(i));
|
||||
assert(slot != -1 && "Broken bytecode!");
|
||||
if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
|
||||
Slots[i] = unsigned(slot);
|
||||
}
|
||||
|
||||
// Handle the special cases for various instructions...
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
// Cast has to encode the destination type as the second argument in the
|
||||
// packet, or else we won't know what type to cast to!
|
||||
Slots[1] = Table.getSlot(I.getType());
|
||||
assert(Slots[1] != ~0U && "Cast return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
|
||||
Slots[1] = Table.getSlot(VANI->getArgType());
|
||||
assert(Slots[1] != ~0U && "va_next return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
||||
// We need to encode the type of sequential type indices into their slot #
|
||||
unsigned Idx = 1;
|
||||
for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
|
||||
I != E; ++I, ++Idx)
|
||||
if (isa<SequentialType>(*I)) {
|
||||
unsigned IdxId;
|
||||
switch (GEP->getOperand(Idx)->getType()->getTypeID()) {
|
||||
default: assert(0 && "Unknown index type!");
|
||||
case Type::UIntTyID: IdxId = 0; break;
|
||||
case Type::IntTyID: IdxId = 1; break;
|
||||
case Type::ULongTyID: IdxId = 2; break;
|
||||
case Type::LongTyID: IdxId = 3; break;
|
||||
}
|
||||
Slots[Idx] = (Slots[Idx] << 2) | IdxId;
|
||||
if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
|
||||
}
|
||||
}
|
||||
|
||||
// Decide which instruction encoding to use. This is determined primarily
|
||||
// by the number of operands, and secondarily by whether or not the max
|
||||
// operand will fit into the instruction encoding. More operands == fewer
|
||||
// bits per operand.
|
||||
//
|
||||
switch (NumOperands) {
|
||||
case 0:
|
||||
case 1:
|
||||
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
||||
outputInstructionFormat1(&I, Opcode, Slots, Type);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
if (MaxOpSlot < (1 << 8)) {
|
||||
outputInstructionFormat2(&I, Opcode, Slots, Type);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (MaxOpSlot < (1 << 6)) {
|
||||
outputInstructionFormat3(&I, Opcode, Slots, Type);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If we weren't handled before here, we either have a large number of
|
||||
// operands or a large operand index that we are referring to.
|
||||
outputInstructionFormat0(&I, Opcode, Table, Type);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//=== Block Output ===//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
BytecodeWriter::BytecodeWriter(std::vector<unsigned char> &o, const Module *M)
|
||||
: Out(o), Table(M) {
|
||||
|
||||
// Emit the signature...
|
||||
static const unsigned char *Sig = (const unsigned char*)"llvm";
|
||||
output_data(Sig, Sig+4, Out);
|
||||
output_data(Sig, Sig+4);
|
||||
|
||||
// Emit the top level CLASS block.
|
||||
BytecodeBlock ModuleBlock(BytecodeFormat::Module, Out);
|
||||
BytecodeBlock ModuleBlock(BytecodeFormat::ModuleBlockID, *this, false, true);
|
||||
|
||||
bool isBigEndian = M->getEndianness() == Module::BigEndian;
|
||||
bool hasLongPointers = M->getPointerSize() == Module::Pointer64;
|
||||
@ -56,14 +758,14 @@ BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
|
||||
|
||||
// Output the version identifier... we are currently on bytecode version #2,
|
||||
// which corresponds to LLVM v1.3.
|
||||
unsigned Version = (2 << 4) | (unsigned)isBigEndian | (hasLongPointers << 1) |
|
||||
unsigned Version = (3 << 4) | (unsigned)isBigEndian | (hasLongPointers << 1) |
|
||||
(hasNoEndianness << 2) | (hasNoPointerSize << 3);
|
||||
output_vbr(Version, Out);
|
||||
align32(Out);
|
||||
output_vbr(Version);
|
||||
align32();
|
||||
|
||||
// The Global type plane comes first
|
||||
{
|
||||
BytecodeBlock CPool(BytecodeFormat::GlobalTypePlane, Out );
|
||||
BytecodeBlock CPool(BytecodeFormat::GlobalTypePlaneBlockID, *this );
|
||||
outputTypes(Type::FirstDerivedTyID);
|
||||
}
|
||||
|
||||
@ -94,7 +796,7 @@ void BytecodeWriter::outputTypes(unsigned TypeNum)
|
||||
unsigned NumEntries = Types.size() - TypeNum;
|
||||
|
||||
// Output type header: [num entries]
|
||||
output_vbr(NumEntries, Out);
|
||||
output_vbr(NumEntries);
|
||||
|
||||
for (unsigned i = TypeNum; i < TypeNum+NumEntries; ++i)
|
||||
outputType(Types[i]);
|
||||
@ -126,12 +828,12 @@ void BytecodeWriter::outputConstantsInPlane(const std::vector<const Value*>
|
||||
|
||||
// Output type header: [num entries][type id number]
|
||||
//
|
||||
output_vbr(NC, Out);
|
||||
output_vbr(NC);
|
||||
|
||||
// Output the Type ID Number...
|
||||
int Slot = Table.getSlot(Plane.front()->getType());
|
||||
assert (Slot != -1 && "Type in constant pool but not in function!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
output_typeid((unsigned)Slot);
|
||||
|
||||
for (unsigned i = ValNo; i < ValNo+NC; ++i) {
|
||||
const Value *V = Plane[i];
|
||||
@ -146,7 +848,7 @@ static inline bool hasNullValue(unsigned TyID) {
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputConstants(bool isFunction) {
|
||||
BytecodeBlock CPool(BytecodeFormat::ConstantPool, Out,
|
||||
BytecodeBlock CPool(BytecodeFormat::ConstantPoolBlockID, *this,
|
||||
true /* Elide block if empty */);
|
||||
|
||||
unsigned NumPlanes = Table.getNumPlanes();
|
||||
@ -189,7 +891,7 @@ static unsigned getEncodedLinkage(const GlobalValue *GV) {
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
|
||||
BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfo, Out);
|
||||
BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfoBlockID, *this);
|
||||
|
||||
// Output the types for the global variables in the module...
|
||||
for (Module::const_giterator I = M->gbegin(), End = M->gend(); I != End;++I) {
|
||||
@ -200,37 +902,48 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
|
||||
// bit5+ = Slot # for type
|
||||
unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) |
|
||||
(I->hasInitializer() << 1) | (unsigned)I->isConstant();
|
||||
output_vbr(oSlot, Out);
|
||||
output_vbr(oSlot );
|
||||
|
||||
// If we have an initializer, output it now.
|
||||
if (I->hasInitializer()) {
|
||||
Slot = Table.getSlot((Value*)I->getInitializer());
|
||||
assert(Slot != -1 && "No slot for global var initializer!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
output_vbr((unsigned)Slot);
|
||||
}
|
||||
}
|
||||
output_vbr((unsigned)Table.getSlot(Type::VoidTy), Out);
|
||||
output_typeid((unsigned)Table.getSlot(Type::VoidTy));
|
||||
|
||||
// Output the types of the functions in this module...
|
||||
for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) {
|
||||
int Slot = Table.getSlot(I->getType());
|
||||
assert(Slot != -1 && "Module const pool is broken!");
|
||||
assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
output_typeid((unsigned)Slot);
|
||||
}
|
||||
output_vbr((unsigned)Table.getSlot(Type::VoidTy), Out);
|
||||
output_typeid((unsigned)Table.getSlot(Type::VoidTy));
|
||||
|
||||
// Put out the list of dependent libraries for the Module
|
||||
Module::const_literator LI = M->lbegin();
|
||||
Module::const_literator LE = M->lend();
|
||||
output_vbr( unsigned(LE - LI) ); // Put out the number of dependent libraries
|
||||
for ( ; LI != LE; ++LI ) {
|
||||
output(*LI, /*aligned=*/false);
|
||||
}
|
||||
|
||||
// Output the target triple from the module
|
||||
output(M->getTargetTriple(), /*aligned=*/ true);
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputInstructions(const Function *F) {
|
||||
BytecodeBlock ILBlock(BytecodeFormat::InstructionList, Out);
|
||||
BytecodeBlock ILBlock(BytecodeFormat::InstructionListBlockID, *this);
|
||||
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
||||
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
|
||||
outputInstruction(*I);
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputFunction(const Function *F) {
|
||||
BytecodeBlock FunctionBlock(BytecodeFormat::Function, Out);
|
||||
output_vbr(getEncodedLinkage(F), Out);
|
||||
BytecodeBlock FunctionBlock(BytecodeFormat::FunctionBlockID, *this);
|
||||
output_vbr(getEncodedLinkage(F));
|
||||
|
||||
// If this is an external function, there is nothing else to emit!
|
||||
if (F->isExternal()) return;
|
||||
@ -273,17 +986,17 @@ void BytecodeWriter::outputCompactionTablePlane(unsigned PlaneNo,
|
||||
case 0: // Avoid emitting two vbr's if possible.
|
||||
case 1:
|
||||
case 2:
|
||||
output_vbr((PlaneNo << 2) | End-StartNo, Out);
|
||||
output_vbr((PlaneNo << 2) | End-StartNo);
|
||||
break;
|
||||
default:
|
||||
// Output the number of things.
|
||||
output_vbr((unsigned(End-StartNo) << 2) | 3, Out);
|
||||
output_vbr(PlaneNo, Out); // Emit the type plane this is
|
||||
output_vbr((unsigned(End-StartNo) << 2) | 3);
|
||||
output_typeid(PlaneNo); // Emit the type plane this is
|
||||
break;
|
||||
}
|
||||
|
||||
for (unsigned i = StartNo; i != End; ++i)
|
||||
output_vbr(Table.getGlobalSlot(Plane[i]), Out);
|
||||
output_vbr(Table.getGlobalSlot(Plane[i]));
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputCompactionTypes(unsigned StartNo) {
|
||||
@ -293,7 +1006,7 @@ void BytecodeWriter::outputCompactionTypes(unsigned StartNo) {
|
||||
// The compaction types may have been uncompactified back to the
|
||||
// global types. If so, we just write an empty table
|
||||
if (CTypes.size() == 0 ) {
|
||||
output_vbr(0U, Out);
|
||||
output_vbr(0U);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -303,14 +1016,15 @@ void BytecodeWriter::outputCompactionTypes(unsigned StartNo) {
|
||||
unsigned NumTypes = CTypes.size() - StartNo;
|
||||
|
||||
// Output the number of types.
|
||||
output_vbr(NumTypes, Out);
|
||||
output_vbr(NumTypes);
|
||||
|
||||
for (unsigned i = StartNo; i < StartNo+NumTypes; ++i)
|
||||
output_vbr(Table.getGlobalSlot(CTypes[i]), Out);
|
||||
output_typeid(Table.getGlobalSlot(CTypes[i]));
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputCompactionTable() {
|
||||
BytecodeBlock CTB(BytecodeFormat::CompactionTable, Out, true/*ElideIfEmpty*/);
|
||||
BytecodeBlock CTB(BytecodeFormat::CompactionTableBlockID, *this,
|
||||
true/*ElideIfEmpty*/);
|
||||
const std::vector<std::vector<const Value*> > &CT =Table.getCompactionTable();
|
||||
|
||||
// First thing is first, emit the type compaction table if there is one.
|
||||
@ -325,16 +1039,16 @@ void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) {
|
||||
// space!
|
||||
if ( MST.isEmpty() ) return;
|
||||
|
||||
BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTable, Out,
|
||||
BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTableBlockID, *this,
|
||||
true/* ElideIfEmpty*/);
|
||||
|
||||
//Symtab block header for types: [num entries]
|
||||
output_vbr(MST.num_types(), Out);
|
||||
output_vbr(MST.num_types());
|
||||
for (SymbolTable::type_const_iterator TI = MST.type_begin(),
|
||||
TE = MST.type_end(); TI != TE; ++TI ) {
|
||||
//Symtab entry:[def slot #][name]
|
||||
output_vbr((unsigned)Table.getSlot(TI->second), Out);
|
||||
output(TI->first, Out, /*align=*/false);
|
||||
output_typeid((unsigned)Table.getSlot(TI->second));
|
||||
output(TI->first, /*align=*/false);
|
||||
}
|
||||
|
||||
// Now do each of the type planes in order.
|
||||
@ -347,29 +1061,30 @@ void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) {
|
||||
if (I == End) continue; // Don't mess with an absent type...
|
||||
|
||||
// Symtab block header: [num entries][type id number]
|
||||
output_vbr(MST.type_size(PI->first), Out);
|
||||
output_vbr(MST.type_size(PI->first));
|
||||
|
||||
Slot = Table.getSlot(PI->first);
|
||||
assert(Slot != -1 && "Type in symtab, but not in table!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
output_typeid((unsigned)Slot);
|
||||
|
||||
for (; I != End; ++I) {
|
||||
// Symtab entry: [def slot #][name]
|
||||
Slot = Table.getSlot(I->second);
|
||||
assert(Slot != -1 && "Value in symtab but has no slot number!!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
output(I->first, Out, false); // Don't force alignment...
|
||||
output_vbr((unsigned)Slot);
|
||||
output(I->first, false); // Don't force alignment...
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void llvm::WriteBytecodeToFile(const Module *C, std::ostream &Out) {
|
||||
assert(C && "You can't write a null module!!");
|
||||
void llvm::WriteBytecodeToFile(const Module *M, std::ostream &Out) {
|
||||
assert(M && "You can't write a null module!!");
|
||||
|
||||
std::deque<unsigned char> Buffer;
|
||||
std::vector<unsigned char> Buffer;
|
||||
Buffer.reserve(64 * 1024); // avoid lots of little reallocs
|
||||
|
||||
// This object populates buffer for us...
|
||||
BytecodeWriter BCW(Buffer, C);
|
||||
BytecodeWriter BCW(Buffer, M);
|
||||
|
||||
// Keep track of how much we've written...
|
||||
BytesWritten += Buffer.size();
|
||||
@ -379,7 +1094,7 @@ void llvm::WriteBytecodeToFile(const Module *C, std::ostream &Out) {
|
||||
// chunks, until we're done.
|
||||
//
|
||||
|
||||
std::deque<unsigned char>::const_iterator I = Buffer.begin(),E = Buffer.end();
|
||||
std::vector<unsigned char>::const_iterator I = Buffer.begin(),E = Buffer.end();
|
||||
while (I != E) { // Loop until it's all written
|
||||
// Scan to see how big this chunk is...
|
||||
const unsigned char *ChunkPtr = &*I;
|
||||
|
@ -19,19 +19,21 @@
|
||||
#ifndef LLVM_LIB_BYTECODE_WRITER_WRITERINTERNALS_H
|
||||
#define LLVM_LIB_BYTECODE_WRITER_WRITERINTERNALS_H
|
||||
|
||||
#include "WriterPrimitives.h"
|
||||
#include "SlotCalculator.h"
|
||||
#include "llvm/Bytecode/Writer.h"
|
||||
#include "llvm/Bytecode/Format.h"
|
||||
#include "llvm/Instruction.h"
|
||||
#include "Support/DataTypes.h"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class BytecodeWriter {
|
||||
std::deque<unsigned char> &Out;
|
||||
std::vector<unsigned char> &Out;
|
||||
SlotCalculator Table;
|
||||
public:
|
||||
BytecodeWriter(std::deque<unsigned char> &o, const Module *M);
|
||||
BytecodeWriter(std::vector<unsigned char> &o, const Module *M);
|
||||
|
||||
private:
|
||||
void outputConstants(bool isFunction);
|
||||
@ -44,6 +46,25 @@ private:
|
||||
unsigned StartNo);
|
||||
void outputInstructions(const Function *F);
|
||||
void outputInstruction(const Instruction &I);
|
||||
void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned Type);
|
||||
void outputInstrVarArgsCall(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned Type) ;
|
||||
inline void outputInstructionFormat1(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) ;
|
||||
inline void outputInstructionFormat2(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) ;
|
||||
inline void outputInstructionFormat3(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) ;
|
||||
|
||||
void outputModuleInfoBlock(const Module *C);
|
||||
void outputSymbolTable(const SymbolTable &ST);
|
||||
@ -52,48 +73,70 @@ private:
|
||||
unsigned StartNo);
|
||||
void outputConstant(const Constant *CPV);
|
||||
void outputType(const Type *T);
|
||||
|
||||
/// @brief Unsigned integer output primitive
|
||||
inline void output(unsigned i, int pos = -1);
|
||||
|
||||
/// @brief Signed integer output primitive
|
||||
inline void output(int i);
|
||||
|
||||
/// @brief 64-bit variable bit rate output primitive.
|
||||
inline void output_vbr(uint64_t i);
|
||||
|
||||
/// @brief 32-bit variable bit rate output primitive.
|
||||
inline void output_vbr(unsigned i);
|
||||
|
||||
/// @brief Signed 64-bit variable bit rate output primitive.
|
||||
inline void output_vbr(int64_t i);
|
||||
|
||||
/// @brief Signed 32-bit variable bit rate output primitive.
|
||||
inline void output_vbr(int i);
|
||||
|
||||
/// Emit the minimal number of bytes that will bring us to 32 bit alignment.
|
||||
/// @brief 32-bit alignment output primitive
|
||||
inline void align32();
|
||||
|
||||
inline void output(const std::string &s, bool Aligned = true);
|
||||
|
||||
inline void output_data(const void *Ptr, const void *End);
|
||||
|
||||
inline void output_float(float& FloatVal);
|
||||
inline void output_double(double& DoubleVal);
|
||||
|
||||
inline void output_typeid(unsigned i);
|
||||
|
||||
inline size_t size() const { return Out.size(); }
|
||||
inline void resize(size_t S) { Out.resize(S); }
|
||||
friend class BytecodeBlock;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
/// BytecodeBlock - Little helper class is used by the bytecode writer to help
|
||||
/// do backpatching of bytecode block sizes really easily. It backpatches when
|
||||
/// it goes out of scope.
|
||||
///
|
||||
class BytecodeBlock {
|
||||
unsigned Id;
|
||||
unsigned Loc;
|
||||
std::deque<unsigned char> &Out;
|
||||
BytecodeWriter& Writer;
|
||||
|
||||
/// ElideIfEmpty - If this is true and the bytecode block ends up being empty,
|
||||
/// the block can remove itself from the output stream entirely.
|
||||
bool ElideIfEmpty;
|
||||
|
||||
/// If this is true then the block is written with a long format header using
|
||||
/// a uint (32-bits) for both the block id and size. Otherwise, it uses the
|
||||
/// short format which is a single uint with 27 bits for size and 5 bits for
|
||||
/// the block id. Both formats are used in a bc file with version 1.3.
|
||||
/// Previously only the long format was used.
|
||||
bool HasLongFormat;
|
||||
|
||||
BytecodeBlock(const BytecodeBlock &); // do not implement
|
||||
void operator=(const BytecodeBlock &); // do not implement
|
||||
public:
|
||||
inline BytecodeBlock(unsigned ID, std::deque<unsigned char> &o,
|
||||
bool elideIfEmpty = false)
|
||||
: Out(o), ElideIfEmpty(elideIfEmpty) {
|
||||
output(ID, Out);
|
||||
output(0U, Out); // Reserve the space for the block size...
|
||||
Loc = Out.size();
|
||||
}
|
||||
inline BytecodeBlock(unsigned ID, BytecodeWriter& w,
|
||||
bool elideIfEmpty = false, bool hasLongFormat = false);
|
||||
|
||||
inline ~BytecodeBlock() { // Do backpatch when block goes out
|
||||
// of scope...
|
||||
if (Loc == Out.size() && ElideIfEmpty) {
|
||||
// If the block is empty, and we are allowed to, do not emit the block at
|
||||
// all!
|
||||
Out.resize(Out.size()-8);
|
||||
return;
|
||||
}
|
||||
|
||||
//cerr << "OldLoc = " << Loc << " NewLoc = " << NewLoc << " diff = "
|
||||
// << (NewLoc-Loc) << endl;
|
||||
output(unsigned(Out.size()-Loc), Out, int(Loc-4));
|
||||
align32(Out); // Blocks must ALWAYS be aligned
|
||||
}
|
||||
inline ~BytecodeBlock();
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
@ -1,141 +0,0 @@
|
||||
//===-- WriterPrimitives.h - Bytecode writer file format prims --*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This header defines some basic functions for writing basic primitive types to
|
||||
// a bytecode stream.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef WRITERPRIMITIVES_H
|
||||
#define WRITERPRIMITIVES_H
|
||||
|
||||
#include "Support/DataTypes.h"
|
||||
#include <string>
|
||||
#include <deque>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
// output - If a position is specified, it must be in the valid portion of the
|
||||
// string... note that this should be inlined always so only the relevant IF
|
||||
// body should be included...
|
||||
//
|
||||
static inline void output(unsigned i, std::deque<unsigned char> &Out,
|
||||
int pos = -1) {
|
||||
if (pos == -1) { // Be endian clean, little endian is our friend
|
||||
Out.push_back((unsigned char)i);
|
||||
Out.push_back((unsigned char)(i >> 8));
|
||||
Out.push_back((unsigned char)(i >> 16));
|
||||
Out.push_back((unsigned char)(i >> 24));
|
||||
} else {
|
||||
Out[pos ] = (unsigned char)i;
|
||||
Out[pos+1] = (unsigned char)(i >> 8);
|
||||
Out[pos+2] = (unsigned char)(i >> 16);
|
||||
Out[pos+3] = (unsigned char)(i >> 24);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void output(int i, std::deque<unsigned char> &Out) {
|
||||
output((unsigned)i, Out);
|
||||
}
|
||||
|
||||
// output_vbr - Output an unsigned value, by using the least number of bytes
|
||||
// possible. This is useful because many of our "infinite" values are really
|
||||
// very small most of the time... but can be large a few times...
|
||||
//
|
||||
// Data format used: If you read a byte with the night bit set, use the low
|
||||
// seven bits as data and then read another byte...
|
||||
//
|
||||
// Note that using this may cause the output buffer to become unaligned...
|
||||
//
|
||||
static inline void output_vbr(uint64_t i, std::deque<unsigned char> &out) {
|
||||
while (1) {
|
||||
if (i < 0x80) { // done?
|
||||
out.push_back((unsigned char)i); // We know the high bit is clear...
|
||||
return;
|
||||
}
|
||||
|
||||
// Nope, we are bigger than a character, output the next 7 bits and set the
|
||||
// high bit to say that there is more coming...
|
||||
out.push_back(0x80 | ((unsigned char)i & 0x7F));
|
||||
i >>= 7; // Shift out 7 bits now...
|
||||
}
|
||||
}
|
||||
|
||||
static inline void output_vbr(unsigned i, std::deque<unsigned char> &out) {
|
||||
while (1) {
|
||||
if (i < 0x80) { // done?
|
||||
out.push_back((unsigned char)i); // We know the high bit is clear...
|
||||
return;
|
||||
}
|
||||
|
||||
// Nope, we are bigger than a character, output the next 7 bits and set the
|
||||
// high bit to say that there is more coming...
|
||||
out.push_back(0x80 | ((unsigned char)i & 0x7F));
|
||||
i >>= 7; // Shift out 7 bits now...
|
||||
}
|
||||
}
|
||||
|
||||
static inline void output_vbr(int64_t i, std::deque<unsigned char> &out) {
|
||||
if (i < 0)
|
||||
output_vbr(((uint64_t)(-i) << 1) | 1, out); // Set low order sign bit...
|
||||
else
|
||||
output_vbr((uint64_t)i << 1, out); // Low order bit is clear.
|
||||
}
|
||||
|
||||
|
||||
static inline void output_vbr(int i, std::deque<unsigned char> &out) {
|
||||
if (i < 0)
|
||||
output_vbr(((unsigned)(-i) << 1) | 1, out); // Set low order sign bit...
|
||||
else
|
||||
output_vbr((unsigned)i << 1, out); // Low order bit is clear.
|
||||
}
|
||||
|
||||
// align32 - emit the minimal number of bytes that will bring us to 32 bit
|
||||
// alignment...
|
||||
//
|
||||
static inline void align32(std::deque<unsigned char> &Out) {
|
||||
int NumPads = (4-(Out.size() & 3)) & 3; // Bytes to get padding to 32 bits
|
||||
while (NumPads--) Out.push_back((unsigned char)0xAB);
|
||||
}
|
||||
|
||||
static inline void output(const std::string &s, std::deque<unsigned char> &Out,
|
||||
bool Aligned = true) {
|
||||
unsigned Len = s.length();
|
||||
output_vbr(Len, Out); // Strings may have an arbitrary length...
|
||||
Out.insert(Out.end(), s.begin(), s.end());
|
||||
|
||||
if (Aligned)
|
||||
align32(Out); // Make sure we are now aligned...
|
||||
}
|
||||
|
||||
static inline void output_data(const void *Ptr, const void *End,
|
||||
std::deque<unsigned char> &Out) {
|
||||
Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End);
|
||||
}
|
||||
|
||||
static inline void output_float(float& FloatVal,
|
||||
std::deque<unsigned char>& Out) {
|
||||
/// FIXME: This is a broken implementation! It writes
|
||||
/// it in a platform-specific endianess. Need to make
|
||||
/// it little endian always.
|
||||
output_data(&FloatVal, &FloatVal+1, Out);
|
||||
}
|
||||
|
||||
static inline void output_double(double& DoubleVal,
|
||||
std::deque<unsigned char>& Out) {
|
||||
/// FIXME: This is a broken implementation! It writes
|
||||
/// it in a platform-specific endianess. Need to make
|
||||
/// it little endian always.
|
||||
output_data(&DoubleVal, &DoubleVal+1, Out);
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
// vim: sw=2 ai
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user