1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00

1. Add a bottom-up pass on BURG trees that is used to fix constant operands.

Needs to be bottom up because constant values may be forward-substituted
   to their uses (i.e., into the parent in the BURG tree).
2. Move most of the constant-fixup code into machine-indepedent file
   InstrSelectionSupport.cpp.

llvm-svn: 859
This commit is contained in:
Vikram S. Adve 2001-10-17 23:57:50 +00:00
parent abed788cd9
commit 34b17e8a37
3 changed files with 237 additions and 151 deletions

View File

@ -15,6 +15,7 @@
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Instruction.h"
@ -22,7 +23,7 @@
#include "llvm/Method.h"
static bool SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
TargetMachine &Target);
TargetMachine &target);
enum SelectDebugLevel_t {
@ -48,7 +49,7 @@ cl::Enum<enum SelectDebugLevel_t> SelectDebugLevel("dselect", cl::NoFlags,
//---------------------------------------------------------------------------
bool
SelectInstructionsForMethod(Method* method, TargetMachine &Target)
SelectInstructionsForMethod(Method* method, TargetMachine &target)
{
bool failed = false;
@ -86,7 +87,7 @@ SelectInstructionsForMethod(Method* method, TargetMachine &Target)
}
// Then recursively walk the tree to select instructions
if (SelectInstructionsForTree(basicNode, /*goalnt*/1, Target))
if (SelectInstructionsForTree(basicNode, /*goalnt*/1, target))
{
failed = true;
break;
@ -120,6 +121,35 @@ SelectInstructionsForMethod(Method* method, TargetMachine &Target)
//*********************** Private Functions *****************************/
//---------------------------------------------------------------------------
// Function PostprocessMachineCodeForTree
//
// Apply any final cleanups to machine code for the root of a subtree
// after selection for all its children has been completed.
//---------------------------------------------------------------------------
void
PostprocessMachineCodeForTree(InstructionNode* instrNode,
int ruleForNode,
short* nts,
TargetMachine &target)
{
// Fix up any constant operands in the machine instructions to either
// use an immediate field or to load the constant into a register
// Walk backwards and use direct indexes to allow insertion before current
//
Instruction* vmInstr = instrNode->getInstruction();
MachineCodeForVMInstr& mvec = vmInstr->getMachineInstrVec();
for (int i = (int) mvec.size()-1; i >= 0; i--)
{
vector<MachineInstr*> loadConstVec =
FixConstantOperandsForInstr(vmInstr, mvec[i], target);
if (loadConstVec.size() > 0)
mvec.insert(mvec.begin()+i, loadConstVec.begin(), loadConstVec.end());
}
}
//---------------------------------------------------------------------------
// Function SelectInstructionsForTree
//
@ -138,7 +168,7 @@ SelectInstructionsForMethod(Method* method, TargetMachine &Target)
bool
SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
TargetMachine &Target)
TargetMachine &target)
{
// Use a static vector to avoid allocating a new one per VM instruction
static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR];
@ -158,7 +188,6 @@ SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
//
short *nts = burm_nts[ruleForNode];
// First, select instructions for the current node and rule.
// (If this is a list node, not an instruction, then skip this step).
// This function is specific to the target architecture.
@ -168,7 +197,7 @@ SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
unsigned N = GetInstructionsByRule(instrNode, ruleForNode, nts, Target,
unsigned N = GetInstructionsByRule(instrNode, ruleForNode, nts, target,
minstrVec);
assert(N <= MAX_INSTR_PER_VMINSTR);
for (unsigned i=0; i < N; i++)
@ -206,12 +235,21 @@ SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode)
{
if (SelectInstructionsForTree(kids[i], nts[i], Target))
if (SelectInstructionsForTree(kids[i], nts[i], target))
return true; // failure
}
}
}
// Finally, do any postprocessing on this node after its children
// have been translated
//
if (treeRoot->opLabel != VRegListOp)
{
InstructionNode* instrNode = (InstructionNode*)treeRoot;
PostprocessMachineCodeForTree(instrNode, ruleForNode, nts, target);
}
return false; // success
}

View File

@ -24,84 +24,77 @@
//*************************** Local Functions ******************************/
inline int64_t
GetSignedIntConstantValue(Value* val, bool& isValidConstant)
{
int64_t intValue = 0;
isValidConstant = false;
if (val->getValueType() == Value::ConstantVal)
{
switch(val->getType()->getPrimitiveID())
{
case Type::BoolTyID:
intValue = ((ConstPoolBool*) val)->getValue()? 1 : 0;
isValidConstant = true;
break;
case Type::SByteTyID:
case Type::ShortTyID:
case Type::IntTyID:
case Type::LongTyID:
intValue = ((ConstPoolSInt*) val)->getValue();
isValidConstant = true;
break;
default:
break;
}
}
return intValue;
}
inline uint64_t
GetUnsignedIntConstantValue(Value* val, bool& isValidConstant)
static TmpInstruction*
InsertCodeToLoadConstant(Value* opValue,
Instruction* vmInstr,
vector<MachineInstr*>& loadConstVec,
TargetMachine& target)
{
uint64_t intValue = 0;
isValidConstant = false;
vector<TmpInstruction*> tempVec;
if (val->getValueType() == Value::ConstantVal)
{
switch(val->getType()->getPrimitiveID())
{
case Type::BoolTyID:
intValue = ((ConstPoolBool*) val)->getValue()? 1 : 0;
isValidConstant = true;
break;
case Type::UByteTyID:
case Type::UShortTyID:
case Type::UIntTyID:
case Type::ULongTyID:
intValue = ((ConstPoolUInt*) val)->getValue();
isValidConstant = true;
break;
default:
break;
}
}
// Create a tmp virtual register to hold the constant.
TmpInstruction* tmpReg =
new TmpInstruction(TMP_INSTRUCTION_OPCODE, opValue, NULL);
vmInstr->getMachineInstrVec().addTempValue(tmpReg);
return intValue;
target.getInstrInfo().CreateCodeToLoadConst(opValue, tmpReg,
loadConstVec, tempVec);
// Register the new tmp values created for this m/c instruction sequence
for (unsigned i=0; i < tempVec.size(); i++)
vmInstr->getMachineInstrVec().addTempValue(tempVec[i]);
// Record the mapping from the tmp VM instruction to machine instruction.
// Do this for all machine instructions that were not mapped to any
// other temp values created by
// tmpReg->addMachineInstruction(loadConstVec.back());
return tmpReg;
}
inline int64_t
GetConstantValueAsSignedInt(Value* val, bool& isValidConstant)
//---------------------------------------------------------------------------
// Function GetConstantValueAsSignedInt
//
// Convenience function to get the value of an integer constant, for an
// appropriate integer or non-integer type that can be held in an integer.
// The type of the argument must be the following:
// Signed or unsigned integer
// Boolean
// Pointer
//
// isValidConstant is set to true if a valid constant was found.
//---------------------------------------------------------------------------
int64_t
GetConstantValueAsSignedInt(const Value *V,
bool &isValidConstant)
{
int64_t intValue = 0;
if (val->getType()->isSigned())
if (!isa<ConstPoolVal>(V))
{
intValue = GetSignedIntConstantValue(val, isValidConstant);
}
else // non-numeric types will fall here
{
uint64_t uintValue = GetUnsignedIntConstantValue(val, isValidConstant);
if (isValidConstant && uintValue < INT64_MAX) // safe to use signed
intValue = (int64_t) uintValue;
else
isValidConstant = false;
isValidConstant = false;
return 0;
}
return intValue;
isValidConstant = true;
if (V->getType() == Type::BoolTy)
return (int64_t) ((ConstPoolBool*)V)->getValue();
if (V->getType()->isIntegral())
{
if (V->getType()->isSigned())
return ((ConstPoolSInt*)V)->getValue();
assert(V->getType()->isUnsigned());
uint64_t Val = ((ConstPoolUInt*)V)->getValue();
if (Val < INT64_MAX) // then safe to cast to signed
return (int64_t)Val;
}
isValidConstant = false;
return 0;
}
@ -183,81 +176,6 @@ Set2OperandsFromInstr(MachineInstr* minstr,
/*op2Position*/ -1, resultPosition);
}
#undef REVERT_TO_EXPLICIT_CONSTANT_CHECKS
#ifdef REVERT_TO_EXPLICIT_CONSTANT_CHECKS
unsigned
Set3OperandsFromInstrJUNK(MachineInstr* minstr,
InstructionNode* vmInstrNode,
const TargetMachine& target,
bool canDiscardResult,
int op1Position,
int op2Position,
int resultPosition)
{
assert(op1Position >= 0);
assert(resultPosition >= 0);
unsigned returnFlags = 0x0;
// Check if operand 1 is 0. If so, try to use a hardwired 0 register.
Value* op1Value = vmInstrNode->leftChild()->getValue();
bool isValidConstant;
int64_t intValue = GetConstantValueAsSignedInt(op1Value, isValidConstant);
if (isValidConstant && intValue == 0 && target.zeroRegNum >= 0)
minstr->SetMachineOperand(op1Position, /*regNum*/ target.zeroRegNum);
else
{
if (isa<ConstPoolVal>(op1Value))
{
// value is constant and must be loaded from constant pool
returnFlags = returnFlags | (1 << op1Position);
}
minstr->SetMachineOperand(op1Position, MachineOperand::MO_VirtualRegister,
op1Value);
}
// Check if operand 2 (if any) fits in the immed. field of the instruction,
// or if it is 0 and can use a dedicated machine register
if (op2Position >= 0)
{
Value* op2Value = vmInstrNode->rightChild()->getValue();
int64_t immedValue;
unsigned int machineRegNum;
MachineOperand::MachineOperandType
op2type = ChooseRegOrImmed(op2Value, minstr->getOpCode(), target,
/*canUseImmed*/ true,
machineRegNum, immedValue);
if (op2type == MachineOperand::MO_MachineRegister)
minstr->SetMachineOperand(op2Position, machineRegNum);
else if (op2type == MachineOperand::MO_VirtualRegister)
{
if (isa<ConstPoolVal>(op2Value))
{
// value is constant and must be loaded from constant pool
returnFlags = returnFlags | (1 << op2Position);
}
minstr->SetMachineOperand(op2Position, op2type, op2Value);
}
else
{
assert(op2type != MO_CCRegister);
minstr->SetMachineOperand(op2Position, op2type, immedValue);
}
}
// If operand 3 (result) can be discarded, use a dead register if one exists
if (canDiscardResult && target.zeroRegNum >= 0)
minstr->SetMachineOperand(resultPosition, target.zeroRegNum);
else
minstr->SetMachineOperand(resultPosition,
MachineOperand::MO_VirtualRegister, vmInstrNode->getValue());
return returnFlags;
}
#endif
void
Set3OperandsFromInstr(MachineInstr* minstr,
@ -355,3 +273,132 @@ ChooseRegOrImmed(Value* val,
return opType;
}
//---------------------------------------------------------------------------
// Function: FixConstantOperandsForInstr
//
// Purpose:
// Special handling for constant operands of a machine instruction
// -- if the constant is 0, use the hardwired 0 register, if any;
// -- if the constant fits in the IMMEDIATE field, use that field;
// -- else create instructions to put the constant into a register, either
// directly or by loading explicitly from the constant pool.
//
// In the first 2 cases, the operand of `minstr' is modified in place.
// Returns a vector of machine instructions generated for operands that
// fall under case 3; these must be inserted before `minstr'.
//---------------------------------------------------------------------------
vector<MachineInstr*>
FixConstantOperandsForInstr(Instruction* vmInstr,
MachineInstr* minstr,
TargetMachine& target)
{
vector<MachineInstr*> loadConstVec;
const MachineInstrDescriptor& instrDesc =
target.getInstrInfo().getDescriptor(minstr->getOpCode());
for (unsigned op=0; op < minstr->getNumOperands(); op++)
{
const MachineOperand& mop = minstr->getOperand(op);
// skip the result position (for efficiency below) and any other
// positions already marked as not a virtual register
if (instrDesc.resultPos == (int) op ||
mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
mop.getVRegValue() == NULL)
{
continue;
}
Value* opValue = mop.getVRegValue();
bool constantThatMustBeLoaded = false;
if (isa<ConstPoolVal>(opValue))
{
unsigned int machineRegNum;
int64_t immedValue;
MachineOperand::MachineOperandType opType =
ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
/*canUseImmed*/ (op == 1),
machineRegNum, immedValue);
if (opType == MachineOperand::MO_MachineRegister)
minstr->SetMachineOperand(op, machineRegNum);
else if (opType == MachineOperand::MO_VirtualRegister)
constantThatMustBeLoaded = true; // load is generated below
else
minstr->SetMachineOperand(op, opType, immedValue);
}
if (constantThatMustBeLoaded || isa<GlobalValue>(opValue))
{ // opValue is a constant that must be explicitly loaded into a reg.
TmpInstruction* tmpReg = InsertCodeToLoadConstant(opValue, vmInstr,
loadConstVec, target);
minstr->SetMachineOperand(op, MachineOperand::MO_VirtualRegister,
tmpReg);
}
}
//
// Also, check for implicit operands used (not those defined) by the
// machine instruction. These include:
// -- arguments to a Call
// -- return value of a Return
// Any such operand that is a constant value needs to be fixed also.
// The current instructions with implicit refs (viz., Call and Return)
// have no immediate fields, so the constant always needs to be loaded
// into a register.
//
for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
if (isa<ConstPoolVal>(minstr->getImplicitRef(i)) ||
isa<GlobalValue>(minstr->getImplicitRef(i)))
{
TmpInstruction* tmpReg =
InsertCodeToLoadConstant(minstr->getImplicitRef(i), vmInstr,
loadConstVec, target);
minstr->setImplicitRef(i, tmpReg);
}
return loadConstVec;
}
#undef SAVE_TO_MOVE_BACK_TO_SPARCISSCPP
#ifdef SAVE_TO_MOVE_BACK_TO_SPARCISSCPP
unsigned
FixConstantOperands(const InstructionNode* vmInstrNode,
TargetMachine& target)
{
Instruction* vmInstr = vmInstrNode->getInstruction();
MachineCodeForVMInstr& mvec = vmInstr->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
{
vector<MachineInsr*> loadConstVec =
FixConstantOperandsForInstr(mvec[i], target);
}
//
// Finally, inserted the generated instructions in the vector
// to be returned.
//
unsigned numNew = loadConstVec.size();
if (numNew > 0)
{
// Insert the new instructions *before* the old ones by moving
// the old ones over `numNew' positions (last-to-first, of course!).
// We do check *after* returning that we did not exceed the vector mvec.
for (int i=numInstr-1; i >= 0; i--)
mvec[i+numNew] = mvec[i];
for (unsigned i=0; i < numNew; i++)
mvec[i] = loadConstVec[i];
}
return (numInstr + numNew);
}
#endif SAVE_TO_MOVE_BACK_TO_SPARCISSCPP

View File

@ -98,9 +98,10 @@ operator<< (ostream& os, const MachineInstr& minstr)
const Value* val = *vo;
os << val << (vo.isDef()? "(def), " : ", ");
}
os << endl;
#endif
os << endl;
return os;
}
@ -170,7 +171,7 @@ PrintMachineInstructions(const Method *const method)
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
cout << "\t" << *mvec[i] << endl;
cout << "\t" << *mvec[i];
}
cout << endl << "End method \"" << method->getName() << "\""
<< endl << endl;