1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00

[X86] Add SchedWrites for CMOV and SETCC. Use them to remove InstRWs.

Summary:
Cmov and setcc previously used WriteALU, but on Intel processors at least they are more restricted than basic ALU ops.

This patch adds new SchedWrites for them and removes the InstRWs. I had to leave some InstRWs for CMOVA/CMOVBE and SETA/SETBE because those have an extra uop relative to the other condition codes on Intel CPUs.

The test changes are due to fixing a missing ZnAGU dependency on the memory form of setcc.

Reviewers: RKSimon, andreadb, GGanesh

Reviewed By: RKSimon

Subscribers: GGanesh, llvm-commits

Differential Revision: https://reviews.llvm.org/D45380

llvm-svn: 329539
This commit is contained in:
Craig Topper 2018-04-08 17:53:18 +00:00
parent 105c7a5507
commit 355c80f441
11 changed files with 79 additions and 92 deletions

View File

@ -16,7 +16,7 @@
// CMOV instructions.
multiclass CMOV<bits<8> opc, string Mnemonic, PatLeaf CondNode> {
let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
isCommutable = 1, SchedRW = [WriteALU] in {
isCommutable = 1, SchedRW = [WriteCMOV] in {
def NAME#16rr
: I<opc, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
!strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
@ -38,7 +38,7 @@ multiclass CMOV<bits<8> opc, string Mnemonic, PatLeaf CondNode> {
}
let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
SchedRW = [WriteALULd, ReadAfterLd] in {
SchedRW = [WriteCMOVLd, ReadAfterLd] in {
def NAME#16rm
: I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
!strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
@ -85,11 +85,11 @@ multiclass SETCC<bits<8> opc, string Mnemonic, PatLeaf OpNode> {
def r : I<opc, MRMXr, (outs GR8:$dst), (ins),
!strconcat(Mnemonic, "\t$dst"),
[(set GR8:$dst, (X86setcc OpNode, EFLAGS))],
IIC_SET_R>, TB, Sched<[WriteALU]>;
IIC_SET_R>, TB, Sched<[WriteSETCC]>;
def m : I<opc, MRMXm, (outs), (ins i8mem:$dst),
!strconcat(Mnemonic, "\t$dst"),
[(store (X86setcc OpNode, EFLAGS), addr:$dst)],
IIC_SET_M>, TB, Sched<[WriteALU, WriteStore]>;
IIC_SET_M>, TB, Sched<[WriteSETCCStore]>;
} // Uses = [EFLAGS]
}

View File

@ -113,6 +113,13 @@ def : WriteRes<WriteIMulH, []> { let Latency = 3; } // Integer multiplication, h
def : WriteRes<WriteLEA, [BWPort15]>; // LEA instructions can't fold loads.
defm : BWWriteResPair<WriteCMOV, [BWPort06], 1>; // Conditional move.
def : WriteRes<WriteSETCC, [BWPort06]>; // Setcc.
def : WriteRes<WriteSETCCStore, [BWPort06,BWPort4,BWPort237]> {
let Latency = 2;
let NumMicroOps = 3;
}
// Bit counts.
defm : BWWriteResPair<WriteBitScan, [BWPort1], 3>;
defm : BWWriteResPair<WriteLZCNT, [BWPort1], 3>;
@ -469,7 +476,6 @@ def: InstRW<[BWWriteResGroup6], (instregex "ADC(16|32|64)ri",
"BTR(16|32|64)rr",
"BTS(16|32|64)ri8",
"BTS(16|32|64)rr",
"CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rr",
"J(A|AE|B|BE|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)_1",
"J(A|AE|B|BE|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)_4",
"JMP_1",
@ -481,7 +487,6 @@ def: InstRW<[BWWriteResGroup6], (instregex "ADC(16|32|64)ri",
"SBB(16|32|64)ri",
"SBB(16|32|64)i",
"SBB(8|16|32|64)rr",
"SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)r",
"SHL(8|16|32|64)r1",
"SHL(8|16|32|64)ri",
"SHLX(32|64)rr",
@ -791,13 +796,6 @@ def BWWriteResGroup22 : SchedWriteRes<[BWPort4,BWPort6,BWPort237]> {
}
def: InstRW<[BWWriteResGroup22], (instregex "FNSTCW16m")>;
def BWWriteResGroup23 : SchedWriteRes<[BWPort4,BWPort237,BWPort06]> {
let Latency = 2;
let NumMicroOps = 3;
let ResourceCycles = [1,1,1];
}
def: InstRW<[BWWriteResGroup23], (instregex "SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)m")>;
def BWWriteResGroup24 : SchedWriteRes<[BWPort4,BWPort237,BWPort15]> {
let Latency = 2;
let NumMicroOps = 3;
@ -1398,7 +1396,6 @@ def BWWriteResGroup63 : SchedWriteRes<[BWPort23,BWPort06]> {
let ResourceCycles = [1,1];
}
def: InstRW<[BWWriteResGroup63], (instregex "BT(16|32|64)mi8",
"CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rm",
"RORX(32|64)mi",
"SARX(32|64)rm",
"SHLX(32|64)rm",

View File

@ -119,6 +119,13 @@ defm : HWWriteResPair<WriteShift, [HWPort06], 1>;
defm : HWWriteResPair<WriteJump, [HWPort06], 1>;
defm : HWWriteResPair<WriteCRC32, [HWPort1], 3>;
defm : HWWriteResPair<WriteCMOV, [HWPort06,HWPort0156], 2, [1,1], 2>; // Conditional move.
def : WriteRes<WriteSETCC, [HWPort06]>; // Setcc.
def : WriteRes<WriteSETCCStore, [HWPort06,HWPort4,HWPort237]> {
let Latency = 2;
let NumMicroOps = 3;
}
// This is for simple LEAs with one or two input operands.
// The complex ones can only execute on port 1, and they require two cycles on
// the port to read all inputs. We don't model that.
@ -830,7 +837,6 @@ def: InstRW<[HWWriteResGroup7], (instregex "BT(16|32|64)ri8",
"SAR(8|16|32|64)r1",
"SAR(8|16|32|64)ri",
"SARX(32|64)rr",
"SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)r",
"SHL(8|16|32|64)r1",
"SHL(8|16|32|64)ri",
"SHLX(32|64)rr",
@ -1405,13 +1411,6 @@ def HWWriteResGroup21 : SchedWriteRes<[HWPort4,HWPort6,HWPort237]> {
}
def: InstRW<[HWWriteResGroup21], (instregex "FNSTCW16m")>;
def HWWriteResGroup22 : SchedWriteRes<[HWPort4,HWPort237,HWPort06]> {
let Latency = 2;
let NumMicroOps = 3;
let ResourceCycles = [1,1,1];
}
def: InstRW<[HWWriteResGroup22], (instregex "SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)m")>;
def HWWriteResGroup23 : SchedWriteRes<[HWPort4,HWPort237,HWPort15]> {
let Latency = 2;
let NumMicroOps = 3;
@ -1568,7 +1567,6 @@ def: InstRW<[HWWriteResGroup35], (instrs CWD, JCXZ, JECXZ, JRCXZ)>;
def: InstRW<[HWWriteResGroup35], (instregex "ADC(8|16|32|64)ri",
"ADC(8|16|32|64)rr",
"ADC(8|16|32|64)i",
"CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rr",
"SBB(8|16|32|64)ri",
"SBB(8|16|32|64)rr",
"SBB(8|16|32|64)i",
@ -1663,7 +1661,6 @@ def HWWriteResGroup43 : SchedWriteRes<[HWPort23,HWPort06,HWPort0156]> {
let NumMicroOps = 3;
let ResourceCycles = [1,1,1];
}
def: InstRW<[HWWriteResGroup43], (instregex "CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rm")>;
def: InstRW<[HWWriteResGroup43, ReadAfterLd], (instrs ADC8rm, ADC16rm, ADC32rm, ADC64rm,
SBB8rm, SBB16rm, SBB32rm, SBB64rm)>;

View File

@ -110,6 +110,13 @@ defm : SBWriteResPair<WriteShift, [SBPort05], 1>;
defm : SBWriteResPair<WriteJump, [SBPort5], 1>;
defm : SBWriteResPair<WriteCRC32, [SBPort1], 3, [1], 1, 5>;
defm : SBWriteResPair<WriteCMOV, [SBPort05,SBPort015], 2, [1,1], 2>; // Conditional move.
def : WriteRes<WriteSETCC, [SBPort05]>; // Setcc.
def : WriteRes<WriteSETCCStore, [SBPort05,SBPort4,SBPort23]> {
let Latency = 2;
let NumMicroOps = 3;
}
// This is for simple LEAs with one or two input operands.
// The complex ones can only execute on port 1, and they require two cycles on
// the port to read all inputs. We don't model that.
@ -382,7 +389,6 @@ def: InstRW<[SBWriteResGroup4], (instregex "BT(16|32|64)ri8",
"SAHF",
"SAR(8|16|32|64)ri",
"SAR(8|16|32|64)r1",
"SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)r",
"SHL(8|16|32|64)ri",
"SHL(8|16|32|64)r1",
"SHR(8|16|32|64)ri",
@ -624,7 +630,6 @@ def SBWriteResGroup19 : SchedWriteRes<[SBPort05,SBPort015]> {
def: InstRW<[SBWriteResGroup19], (instregex "ADC(8|16|32|64)ri",
"ADC(8|16|32|64)rr",
"ADC(8|16|32|64)i",
"CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rr",
"SBB(8|16|32|64)ri",
"SBB(8|16|32|64)rr",
"SBB(8|16|32|64)i",
@ -949,13 +954,6 @@ def SBWriteResGroup37 : SchedWriteRes<[SBPort4,SBPort01,SBPort23]> {
def: InstRW<[SBWriteResGroup37], (instregex "VMASKMOVPD(Y?)mr",
"VMASKMOVPS(Y?)mr")>;
def SBWriteResGroup38 : SchedWriteRes<[SBPort4,SBPort23,SBPort05]> {
let Latency = 2;
let NumMicroOps = 3;
let ResourceCycles = [1,1,1];
}
def: InstRW<[SBWriteResGroup38], (instregex "SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)m")>;
def SBWriteResGroup39 : SchedWriteRes<[SBPort4,SBPort23,SBPort15]> {
let Latency = 5;
let NumMicroOps = 3;
@ -1297,7 +1295,6 @@ def SBWriteResGroup65 : SchedWriteRes<[SBPort23,SBPort05,SBPort015]> {
let NumMicroOps = 3;
let ResourceCycles = [1,1,1];
}
def: InstRW<[SBWriteResGroup65], (instregex "CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rm")>;
def: InstRW<[SBWriteResGroup65, ReadAfterLd], (instrs ADC8rm, ADC16rm, ADC32rm, ADC64rm,
SBB8rm, SBB16rm, SBB32rm, SBB64rm)>;

View File

@ -113,6 +113,13 @@ defm : SKLWriteResPair<WriteCRC32, [SKLPort1], 3>;
def : WriteRes<WriteIMulH, []> { let Latency = 3; } // Integer multiplication, high part.
def : WriteRes<WriteLEA, [SKLPort15]>; // LEA instructions can't fold loads.
defm : SKLWriteResPair<WriteCMOV, [SKLPort06], 1>; // Conditional move.
def : WriteRes<WriteSETCC, [SKLPort06]>; // Setcc.
def : WriteRes<WriteSETCCStore, [SKLPort06,SKLPort4,SKLPort237]> {
let Latency = 2;
let NumMicroOps = 3;
}
// Bit counts.
defm : SKLWriteResPair<WriteBitScan, [SKLPort1], 3>;
defm : SKLWriteResPair<WriteLZCNT, [SKLPort1], 3>;
@ -534,7 +541,6 @@ def: InstRW<[SKLWriteResGroup7], (instregex "ADC(16|32|64)ri",
"BTS(16|32|64)ri8",
"BTS(16|32|64)rr",
"CLAC",
"CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rr",
"J(A|AE|B|BE|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)_1",
"J(A|AE|B|BE|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)_4",
"JMP_1",
@ -546,7 +552,6 @@ def: InstRW<[SKLWriteResGroup7], (instregex "ADC(16|32|64)ri",
"SBB(16|32|64)ri",
"SBB(16|32|64)i",
"SBB(8|16|32|64)rr",
"SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)r",
"SHL(8|16|32|64)r1",
"SHL(8|16|32|64)ri",
"SHLX(32|64)rr",
@ -812,13 +817,6 @@ def SKLWriteResGroup25 : SchedWriteRes<[SKLPort4,SKLPort6,SKLPort237]> {
}
def: InstRW<[SKLWriteResGroup25], (instregex "FNSTCW16m")>;
def SKLWriteResGroup26 : SchedWriteRes<[SKLPort4,SKLPort237,SKLPort06]> {
let Latency = 2;
let NumMicroOps = 3;
let ResourceCycles = [1,1,1];
}
def: InstRW<[SKLWriteResGroup26], (instregex "SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)m")>;
def SKLWriteResGroup27 : SchedWriteRes<[SKLPort4,SKLPort237,SKLPort15]> {
let Latency = 2;
let NumMicroOps = 3;
@ -1421,7 +1419,6 @@ def SKLWriteResGroup74 : SchedWriteRes<[SKLPort23,SKLPort06]> {
let ResourceCycles = [1,1];
}
def: InstRW<[SKLWriteResGroup74], (instregex "BT(16|32|64)mi8",
"CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rm",
"RORX(32|64)mi",
"SARX(32|64)rm",
"SHLX(32|64)rm",

View File

@ -113,6 +113,13 @@ defm : SKXWriteResPair<WriteCRC32, [SKXPort1], 3>;
def : WriteRes<WriteIMulH, []> { let Latency = 3; } // Integer multiplication, high part.
def : WriteRes<WriteLEA, [SKXPort15]>; // LEA instructions can't fold loads.
defm : SKXWriteResPair<WriteCMOV, [SKXPort06], 1>; // Conditional move.
def : WriteRes<WriteSETCC, [SKXPort06]>; // Setcc.
def : WriteRes<WriteSETCCStore, [SKXPort06,SKXPort4,SKXPort237]> {
let Latency = 2;
let NumMicroOps = 3;
}
// Integer shifts and rotates.
defm : SKXWriteResPair<WriteShift, [SKXPort06], 1>;
@ -1010,7 +1017,6 @@ def: InstRW<[SKXWriteResGroup7], (instregex "ADC(16|32|64)ri",
"BTS(16|32|64)ri8",
"BTS(16|32|64)rr",
"CLAC",
"CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rr",
"J(A|AE|B|BE|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)_1",
"J(A|AE|B|BE|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)_4",
"JMP_1",
@ -1022,7 +1028,6 @@ def: InstRW<[SKXWriteResGroup7], (instregex "ADC(16|32|64)ri",
"SBB(16|32|64)ri",
"SBB(16|32|64)i",
"SBB(8|16|32|64)rr",
"SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)r",
"SHL(8|16|32|64)r1",
"SHL(8|16|32|64)ri",
"SHLX(32|64)rr",
@ -1617,13 +1622,6 @@ def SKXWriteResGroup25 : SchedWriteRes<[SKXPort4,SKXPort6,SKXPort237]> {
}
def: InstRW<[SKXWriteResGroup25], (instregex "FNSTCW16m")>;
def SKXWriteResGroup26 : SchedWriteRes<[SKXPort4,SKXPort237,SKXPort06]> {
let Latency = 2;
let NumMicroOps = 3;
let ResourceCycles = [1,1,1];
}
def: InstRW<[SKXWriteResGroup26], (instregex "SET(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)m")>;
def SKXWriteResGroup27 : SchedWriteRes<[SKXPort4,SKXPort237,SKXPort15]> {
let Latency = 2;
let NumMicroOps = 3;
@ -3050,7 +3048,6 @@ def SKXWriteResGroup78 : SchedWriteRes<[SKXPort23,SKXPort06]> {
let ResourceCycles = [1,1];
}
def: InstRW<[SKXWriteResGroup78], (instregex "BT(16|32|64)mi8",
"CMOV(AE|B|E|G|GE|L|LE|NE|NO|NP|NS|O|P|S)(16|32|64)rm",
"RORX(32|64)mi",
"SARX(32|64)rm",
"SHLX(32|64)rm",

View File

@ -39,9 +39,14 @@ multiclass X86SchedWritePair {
}
}
// Loads, stores, and moves, not folded with other operations.
def WriteLoad : SchedWrite;
def WriteStore : SchedWrite;
def WriteMove : SchedWrite;
// Arithmetic.
defm WriteALU : X86SchedWritePair; // Simple integer ALU op.
def WriteALURMW : WriteSequence<[WriteALULd, WriteRMW]>;
def WriteALURMW : WriteSequence<[WriteALULd, WriteStore]>;
defm WriteIMul : X86SchedWritePair; // Integer multiplication.
def WriteIMulH : SchedWrite; // Integer multiplication, high part.
defm WriteIDiv : X86SchedWritePair; // Integer division.
@ -51,6 +56,9 @@ defm WriteBitScan : X86SchedWritePair; // Bit scan forward/reverse.
defm WritePOPCNT : X86SchedWritePair; // Bit population count.
defm WriteLZCNT : X86SchedWritePair; // Leading zero count.
defm WriteTZCNT : X86SchedWritePair; // Trailing zero count.
defm WriteCMOV : X86SchedWritePair; // Conditional move.
def WriteSETCC : SchedWrite; // Set register based on condition code.
def WriteSETCCStore : SchedWrite;
// Integer shifts and rotates.
defm WriteShift : X86SchedWritePair;
@ -59,11 +67,6 @@ defm WriteShift : X86SchedWritePair;
defm WriteBEXTR : X86SchedWritePair;
defm WriteBZHI : X86SchedWritePair;
// Loads, stores, and moves, not folded with other operations.
def WriteLoad : SchedWrite;
def WriteStore : SchedWrite;
def WriteMove : SchedWrite;
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
def WriteZero : SchedWrite;

View File

@ -141,6 +141,10 @@ defm : JWriteResIntPair<WriteIMul, [JALU1, JMul], 3, [1, 1], 2>; // i8/i16/i32
defm : JWriteResIntPair<WriteIDiv, [JALU1, JDiv], 41, [1, 41], 2>; // Worst case (i64 division)
defm : JWriteResIntPair<WriteCRC32, [JALU01], 3, [4], 3>;
defm : JWriteResIntPair<WriteCMOV, [JALU01], 1>; // Conditional move.
def : WriteRes<WriteSETCC, [JALU01]>; // Setcc.
def : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>;
def : WriteRes<WriteIMulH, [JALU1]> {
let Latency = 6;
let ResourceCycles = [4];

View File

@ -93,6 +93,13 @@ defm : SLMWriteResPair<WriteShift, [SLM_IEC_RSV0], 1>;
defm : SLMWriteResPair<WriteJump, [SLM_IEC_RSV1], 1>;
defm : SLMWriteResPair<WriteCRC32, [SLM_IEC_RSV1], 3>;
defm : SLMWriteResPair<WriteCMOV, [SLM_IEC_RSV01], 1>;
def : WriteRes<WriteSETCC, [SLM_IEC_RSV01]>;
def : WriteRes<WriteSETCCStore, [SLM_IEC_RSV01, SLM_MEC_RSV]> {
// FIXME Latency and NumMicrOps?
let ResourceCycles = [2,1];
}
// This is for simple LEAs with one or two input operands.
// The complex ones can only execute on port 1, and they require two cycles on
// the port to read all inputs. We don't model that.

View File

@ -153,6 +153,10 @@ defm : ZnWriteResPair<WriteShift, [ZnALU], 1>;
defm : ZnWriteResPair<WriteJump, [ZnALU], 1>;
defm : ZnWriteResFpuPair<WriteCRC32, [ZnFPU0], 3>;
defm : ZnWriteResPair<WriteCMOV, [ZnALU], 1>;
def : WriteRes<WriteSETCC, [ZnALU]>;
def : WriteRes<WriteSETCCStore, [ZnALU, ZnAGU]>;
// Bit counts.
defm : ZnWriteResPair<WriteBitScan, [ZnALU], 3>;
defm : ZnWriteResPair<WriteLZCNT, [ZnALU], 2>;
@ -277,14 +281,6 @@ def : InstRW<[WriteALULd, ReadAfterLd], (instregex "MOV16rm")>;
// r,m.
def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>;
// CMOVcc.
// r,r.
def : InstRW<[WriteALU],
(instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rr")>;
// r,m.
def : InstRW<[WriteALULd, ReadAfterLd],
(instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rm")>;
// XCHG.
// r,r.
def ZnWriteXCHG : SchedWriteRes<[ZnALU]> {
@ -614,14 +610,6 @@ def : InstRW<[WriteMicrocoded], (instregex "SHRD(16|32|64)rrCL")>;
// m,r,cl.
def : InstRW<[WriteMicrocoded], (instregex "SH(R|L)D(16|32|64)mrCL")>;
// SETcc.
// r.
def : InstRW<[WriteShift],
(instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)r")>;
// m.
def : InstRW<[WriteShift],
(instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)m")>;
//-- Misc instructions --//
// CMPXCHG.
def ZnWriteCMPXCHG : SchedWriteRes<[ZnAGU, ZnALU]> {

View File

@ -13882,22 +13882,22 @@ define void @test_setcc(i8 %a0, i8 *%a1) optsize {
; ZNVER1-NEXT: setge %dil # sched: [1:0.25]
; ZNVER1-NEXT: setle %dil # sched: [1:0.25]
; ZNVER1-NEXT: setg %dil # sched: [1:0.25]
; ZNVER1-NEXT: seto (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setno (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setb (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setae (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: sete (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setne (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setbe (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: seta (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: sets (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setns (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setp (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setnp (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setl (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setge (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setle (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: setg (%rsi) # sched: [1:0.25]
; ZNVER1-NEXT: seto (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setno (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setb (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setae (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: sete (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setne (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setbe (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: seta (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: sets (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setns (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setp (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setnp (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setl (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setge (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setle (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: setg (%rsi) # sched: [1:0.50]
; ZNVER1-NEXT: #NO_APP
; ZNVER1-NEXT: retq # sched: [1:0.50]
call void asm sideeffect "seto $0 \0A\09 setno $0 \0A\09 setb $0 \0A\09 setnb $0 \0A\09 setz $0 \0A\09 setnz $0 \0A\09 setbe $0 \0A\09 setnbe $0 \0A\09 sets $0 \0A\09 setns $0 \0A\09 setp $0 \0A\09 setnp $0 \0A\09 setl $0 \0A\09 setnl $0 \0A\09 setle $0 \0A\09 setnle $0 \0A\09 seto $1 \0A\09 setno $1 \0A\09 setb $1 \0A\09 setnb $1 \0A\09 setz $1 \0A\09 setnz $1 \0A\09 setbe $1 \0A\09 setnbe $1 \0A\09 sets $1 \0A\09 setns $1 \0A\09 setp $1 \0A\09 setnp $1 \0A\09 setl $1 \0A\09 setnl $1 \0A\09 setle $1 \0A\09 setnle $1", "r,*m"(i8 %a0, i8 *%a1)