mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
[ARM] Deduplicate table generated CC analysis code
Create ARMCallingConv.cpp and emit code for calling convention analysis from there. llvm-svn: 352431
This commit is contained in:
parent
18f71dad93
commit
36501f0cba
284
lib/Target/ARM/ARMCallingConv.cpp
Normal file
284
lib/Target/ARM/ARMCallingConv.cpp
Normal file
@ -0,0 +1,284 @@
|
||||
//=== ARMCallingConv.cpp - ARM Custom CC Routines ---------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains the custom routines for the ARM Calling Convention that
|
||||
// aren't done by tablegen, and includes the table generated implementations.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "ARM.h"
|
||||
#include "ARMCallingConv.h"
|
||||
#include "ARMSubtarget.h"
|
||||
#include "ARMRegisterInfo.h"
|
||||
using namespace llvm;
|
||||
|
||||
// APCS f64 is in register pairs, possibly split to stack
|
||||
static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
CCState &State, bool CanFail) {
|
||||
static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
||||
|
||||
// Try to get the first register.
|
||||
if (unsigned Reg = State.AllocateReg(RegList))
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
else {
|
||||
// For the 2nd half of a v2f64, do not fail.
|
||||
if (CanFail)
|
||||
return false;
|
||||
|
||||
// Put the whole thing on the stack.
|
||||
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
|
||||
State.AllocateStack(8, 4),
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
// Try to get the second register.
|
||||
if (unsigned Reg = State.AllocateReg(RegList))
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
else
|
||||
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
|
||||
State.AllocateStack(4, 4),
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
|
||||
return false;
|
||||
if (LocVT == MVT::v2f64 &&
|
||||
!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
|
||||
return false;
|
||||
return true; // we handled it
|
||||
}
|
||||
|
||||
// AAPCS f64 is in aligned register pairs
|
||||
static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
CCState &State, bool CanFail) {
|
||||
static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
|
||||
static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
|
||||
static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 };
|
||||
static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
||||
|
||||
unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList);
|
||||
if (Reg == 0) {
|
||||
|
||||
// If we had R3 unallocated only, now we still must to waste it.
|
||||
Reg = State.AllocateReg(GPRArgRegs);
|
||||
assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64");
|
||||
|
||||
// For the 2nd half of a v2f64, do not just fail.
|
||||
if (CanFail)
|
||||
return false;
|
||||
|
||||
// Put the whole thing on the stack.
|
||||
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
|
||||
State.AllocateStack(8, 8),
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
unsigned i;
|
||||
for (i = 0; i < 2; ++i)
|
||||
if (HiRegList[i] == Reg)
|
||||
break;
|
||||
|
||||
unsigned T = State.AllocateReg(LoRegList[i]);
|
||||
(void)T;
|
||||
assert(T == LoRegList[i] && "Could not allocate register");
|
||||
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
|
||||
return false;
|
||||
if (LocVT == MVT::v2f64 &&
|
||||
!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
|
||||
return false;
|
||||
return true; // we handled it
|
||||
}
|
||||
|
||||
static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo, CCState &State) {
|
||||
static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
|
||||
static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
|
||||
|
||||
unsigned Reg = State.AllocateReg(HiRegList, LoRegList);
|
||||
if (Reg == 0)
|
||||
return false; // we didn't handle it
|
||||
|
||||
unsigned i;
|
||||
for (i = 0; i < 2; ++i)
|
||||
if (HiRegList[i] == Reg)
|
||||
break;
|
||||
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
|
||||
return false;
|
||||
if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
|
||||
return false;
|
||||
return true; // we handled it
|
||||
}
|
||||
|
||||
static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
|
||||
State);
|
||||
}
|
||||
|
||||
static const MCPhysReg RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
||||
|
||||
static const MCPhysReg SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3,
|
||||
ARM::S4, ARM::S5, ARM::S6, ARM::S7,
|
||||
ARM::S8, ARM::S9, ARM::S10, ARM::S11,
|
||||
ARM::S12, ARM::S13, ARM::S14, ARM::S15 };
|
||||
static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
|
||||
ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
|
||||
static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
|
||||
|
||||
|
||||
// Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
|
||||
// has InConsecutiveRegs set, and that the last member also has
|
||||
// InConsecutiveRegsLast set. We must process all members of the HA before
|
||||
// we can allocate it, as we need to know the total number of registers that
|
||||
// will be needed in order to (attempt to) allocate a contiguous block.
|
||||
static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT,
|
||||
MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
|
||||
|
||||
// AAPCS HFAs must have 1-4 elements, all of the same type
|
||||
if (PendingMembers.size() > 0)
|
||||
assert(PendingMembers[0].getLocVT() == LocVT);
|
||||
|
||||
// Add the argument to the list to be allocated once we know the size of the
|
||||
// aggregate. Store the type's required alignmnent as extra info for later: in
|
||||
// the [N x i64] case all trace has been removed by the time we actually get
|
||||
// to do allocation.
|
||||
PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo,
|
||||
ArgFlags.getOrigAlign()));
|
||||
|
||||
if (!ArgFlags.isInConsecutiveRegsLast())
|
||||
return true;
|
||||
|
||||
// Try to allocate a contiguous block of registers, each of the correct
|
||||
// size to hold one member.
|
||||
auto &DL = State.getMachineFunction().getDataLayout();
|
||||
unsigned StackAlign = DL.getStackAlignment();
|
||||
unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign);
|
||||
|
||||
ArrayRef<MCPhysReg> RegList;
|
||||
switch (LocVT.SimpleTy) {
|
||||
case MVT::i32: {
|
||||
RegList = RRegList;
|
||||
unsigned RegIdx = State.getFirstUnallocated(RegList);
|
||||
|
||||
// First consume all registers that would give an unaligned object. Whether
|
||||
// we go on stack or in regs, no-one will be using them in future.
|
||||
unsigned RegAlign = alignTo(Align, 4) / 4;
|
||||
while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
|
||||
State.AllocateReg(RegList[RegIdx++]);
|
||||
|
||||
break;
|
||||
}
|
||||
case MVT::f16:
|
||||
case MVT::f32:
|
||||
RegList = SRegList;
|
||||
break;
|
||||
case MVT::v4f16:
|
||||
case MVT::f64:
|
||||
RegList = DRegList;
|
||||
break;
|
||||
case MVT::v8f16:
|
||||
case MVT::v2f64:
|
||||
RegList = QRegList;
|
||||
break;
|
||||
default:
|
||||
llvm_unreachable("Unexpected member type for block aggregate");
|
||||
break;
|
||||
}
|
||||
|
||||
unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
|
||||
if (RegResult) {
|
||||
for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin();
|
||||
It != PendingMembers.end(); ++It) {
|
||||
It->convertToReg(RegResult);
|
||||
State.addLoc(*It);
|
||||
++RegResult;
|
||||
}
|
||||
PendingMembers.clear();
|
||||
return true;
|
||||
}
|
||||
|
||||
// Register allocation failed, we'll be needing the stack
|
||||
unsigned Size = LocVT.getSizeInBits() / 8;
|
||||
if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) {
|
||||
// If nothing else has used the stack until this point, a non-HFA aggregate
|
||||
// can be split between regs and stack.
|
||||
unsigned RegIdx = State.getFirstUnallocated(RegList);
|
||||
for (auto &It : PendingMembers) {
|
||||
if (RegIdx >= RegList.size())
|
||||
It.convertToMem(State.AllocateStack(Size, Size));
|
||||
else
|
||||
It.convertToReg(State.AllocateReg(RegList[RegIdx++]));
|
||||
|
||||
State.addLoc(It);
|
||||
}
|
||||
PendingMembers.clear();
|
||||
return true;
|
||||
} else if (LocVT != MVT::i32)
|
||||
RegList = SRegList;
|
||||
|
||||
// Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
|
||||
for (auto Reg : RegList)
|
||||
State.AllocateReg(Reg);
|
||||
|
||||
// After the first item has been allocated, the rest are packed as tightly as
|
||||
// possible. (E.g. an incoming i64 would have starting Align of 8, but we'll
|
||||
// be allocating a bunch of i32 slots).
|
||||
unsigned RestAlign = std::min(Align, Size);
|
||||
|
||||
for (auto &It : PendingMembers) {
|
||||
It.convertToMem(State.AllocateStack(Size, Align));
|
||||
State.addLoc(It);
|
||||
Align = RestAlign;
|
||||
}
|
||||
|
||||
// All pending members have now been allocated
|
||||
PendingMembers.clear();
|
||||
|
||||
// This will be allocated by the last member of the aggregate
|
||||
return true;
|
||||
}
|
||||
|
||||
// Include the table generated calling convention implementations.
|
||||
#include "ARMGenCallingConv.inc"
|
@ -6,286 +6,45 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains the custom routines for the ARM Calling Convention that
|
||||
// aren't done by tablegen.
|
||||
// This file declares the entry points for ARM calling convention analysis.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIB_TARGET_ARM_ARMCALLINGCONV_H
|
||||
#define LLVM_LIB_TARGET_ARM_ARMCALLINGCONV_H
|
||||
|
||||
#include "ARM.h"
|
||||
#include "ARMBaseInstrInfo.h"
|
||||
#include "ARMSubtarget.h"
|
||||
#include "llvm/CodeGen/CallingConvLower.h"
|
||||
#include "llvm/CodeGen/TargetInstrInfo.h"
|
||||
#include "llvm/IR/CallingConv.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
// APCS f64 is in register pairs, possibly split to stack
|
||||
static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
CCState &State, bool CanFail) {
|
||||
static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
||||
bool CC_ARM_AAPCS(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
bool CC_ARM_AAPCS_VFP(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
bool CC_ARM_APCS(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
bool CC_ARM_APCS_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
bool FastCC_ARM_APCS(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
bool RetCC_ARM_AAPCS(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
bool RetCC_ARM_AAPCS_VFP(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
bool RetCC_ARM_APCS(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
bool RetFastCC_ARM_APCS(unsigned ValNo, MVT ValVT, MVT LocVT,
|
||||
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
||||
CCState &State);
|
||||
|
||||
// Try to get the first register.
|
||||
if (unsigned Reg = State.AllocateReg(RegList))
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
else {
|
||||
// For the 2nd half of a v2f64, do not fail.
|
||||
if (CanFail)
|
||||
return false;
|
||||
|
||||
// Put the whole thing on the stack.
|
||||
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
|
||||
State.AllocateStack(8, 4),
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
// Try to get the second register.
|
||||
if (unsigned Reg = State.AllocateReg(RegList))
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
else
|
||||
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
|
||||
State.AllocateStack(4, 4),
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
|
||||
return false;
|
||||
if (LocVT == MVT::v2f64 &&
|
||||
!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
|
||||
return false;
|
||||
return true; // we handled it
|
||||
}
|
||||
|
||||
// AAPCS f64 is in aligned register pairs
|
||||
static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
CCState &State, bool CanFail) {
|
||||
static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
|
||||
static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
|
||||
static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 };
|
||||
static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
||||
|
||||
unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList);
|
||||
if (Reg == 0) {
|
||||
|
||||
// If we had R3 unallocated only, now we still must to waste it.
|
||||
Reg = State.AllocateReg(GPRArgRegs);
|
||||
assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64");
|
||||
|
||||
// For the 2nd half of a v2f64, do not just fail.
|
||||
if (CanFail)
|
||||
return false;
|
||||
|
||||
// Put the whole thing on the stack.
|
||||
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
|
||||
State.AllocateStack(8, 8),
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
unsigned i;
|
||||
for (i = 0; i < 2; ++i)
|
||||
if (HiRegList[i] == Reg)
|
||||
break;
|
||||
|
||||
unsigned T = State.AllocateReg(LoRegList[i]);
|
||||
(void)T;
|
||||
assert(T == LoRegList[i] && "Could not allocate register");
|
||||
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
|
||||
return false;
|
||||
if (LocVT == MVT::v2f64 &&
|
||||
!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
|
||||
return false;
|
||||
return true; // we handled it
|
||||
}
|
||||
|
||||
static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo, CCState &State) {
|
||||
static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
|
||||
static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
|
||||
|
||||
unsigned Reg = State.AllocateReg(HiRegList, LoRegList);
|
||||
if (Reg == 0)
|
||||
return false; // we didn't handle it
|
||||
|
||||
unsigned i;
|
||||
for (i = 0; i < 2; ++i)
|
||||
if (HiRegList[i] == Reg)
|
||||
break;
|
||||
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
|
||||
LocVT, LocInfo));
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
|
||||
return false;
|
||||
if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
|
||||
return false;
|
||||
return true; // we handled it
|
||||
}
|
||||
|
||||
static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
|
||||
State);
|
||||
}
|
||||
|
||||
static const MCPhysReg RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
|
||||
|
||||
static const MCPhysReg SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3,
|
||||
ARM::S4, ARM::S5, ARM::S6, ARM::S7,
|
||||
ARM::S8, ARM::S9, ARM::S10, ARM::S11,
|
||||
ARM::S12, ARM::S13, ARM::S14, ARM::S15 };
|
||||
static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
|
||||
ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
|
||||
static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
|
||||
|
||||
|
||||
// Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
|
||||
// has InConsecutiveRegs set, and that the last member also has
|
||||
// InConsecutiveRegsLast set. We must process all members of the HA before
|
||||
// we can allocate it, as we need to know the total number of registers that
|
||||
// will be needed in order to (attempt to) allocate a contiguous block.
|
||||
static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT,
|
||||
MVT &LocVT,
|
||||
CCValAssign::LocInfo &LocInfo,
|
||||
ISD::ArgFlagsTy &ArgFlags,
|
||||
CCState &State) {
|
||||
SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
|
||||
|
||||
// AAPCS HFAs must have 1-4 elements, all of the same type
|
||||
if (PendingMembers.size() > 0)
|
||||
assert(PendingMembers[0].getLocVT() == LocVT);
|
||||
|
||||
// Add the argument to the list to be allocated once we know the size of the
|
||||
// aggregate. Store the type's required alignmnent as extra info for later: in
|
||||
// the [N x i64] case all trace has been removed by the time we actually get
|
||||
// to do allocation.
|
||||
PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo,
|
||||
ArgFlags.getOrigAlign()));
|
||||
|
||||
if (!ArgFlags.isInConsecutiveRegsLast())
|
||||
return true;
|
||||
|
||||
// Try to allocate a contiguous block of registers, each of the correct
|
||||
// size to hold one member.
|
||||
auto &DL = State.getMachineFunction().getDataLayout();
|
||||
unsigned StackAlign = DL.getStackAlignment();
|
||||
unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign);
|
||||
|
||||
ArrayRef<MCPhysReg> RegList;
|
||||
switch (LocVT.SimpleTy) {
|
||||
case MVT::i32: {
|
||||
RegList = RRegList;
|
||||
unsigned RegIdx = State.getFirstUnallocated(RegList);
|
||||
|
||||
// First consume all registers that would give an unaligned object. Whether
|
||||
// we go on stack or in regs, no-one will be using them in future.
|
||||
unsigned RegAlign = alignTo(Align, 4) / 4;
|
||||
while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
|
||||
State.AllocateReg(RegList[RegIdx++]);
|
||||
|
||||
break;
|
||||
}
|
||||
case MVT::f16:
|
||||
case MVT::f32:
|
||||
RegList = SRegList;
|
||||
break;
|
||||
case MVT::v4f16:
|
||||
case MVT::f64:
|
||||
RegList = DRegList;
|
||||
break;
|
||||
case MVT::v8f16:
|
||||
case MVT::v2f64:
|
||||
RegList = QRegList;
|
||||
break;
|
||||
default:
|
||||
llvm_unreachable("Unexpected member type for block aggregate");
|
||||
break;
|
||||
}
|
||||
|
||||
unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
|
||||
if (RegResult) {
|
||||
for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin();
|
||||
It != PendingMembers.end(); ++It) {
|
||||
It->convertToReg(RegResult);
|
||||
State.addLoc(*It);
|
||||
++RegResult;
|
||||
}
|
||||
PendingMembers.clear();
|
||||
return true;
|
||||
}
|
||||
|
||||
// Register allocation failed, we'll be needing the stack
|
||||
unsigned Size = LocVT.getSizeInBits() / 8;
|
||||
if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) {
|
||||
// If nothing else has used the stack until this point, a non-HFA aggregate
|
||||
// can be split between regs and stack.
|
||||
unsigned RegIdx = State.getFirstUnallocated(RegList);
|
||||
for (auto &It : PendingMembers) {
|
||||
if (RegIdx >= RegList.size())
|
||||
It.convertToMem(State.AllocateStack(Size, Size));
|
||||
else
|
||||
It.convertToReg(State.AllocateReg(RegList[RegIdx++]));
|
||||
|
||||
State.addLoc(It);
|
||||
}
|
||||
PendingMembers.clear();
|
||||
return true;
|
||||
} else if (LocVT != MVT::i32)
|
||||
RegList = SRegList;
|
||||
|
||||
// Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
|
||||
for (auto Reg : RegList)
|
||||
State.AllocateReg(Reg);
|
||||
|
||||
// After the first item has been allocated, the rest are packed as tightly as
|
||||
// possible. (E.g. an incoming i64 would have starting Align of 8, but we'll
|
||||
// be allocating a bunch of i32 slots).
|
||||
unsigned RestAlign = std::min(Align, Size);
|
||||
|
||||
for (auto &It : PendingMembers) {
|
||||
It.convertToMem(State.AllocateStack(Size, Align));
|
||||
State.addLoc(It);
|
||||
Align = RestAlign;
|
||||
}
|
||||
|
||||
// All pending members have now been allocated
|
||||
PendingMembers.clear();
|
||||
|
||||
// This will be allocated by the last member of the aggregate
|
||||
return true;
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
||||
} // namespace llvm
|
||||
|
||||
#endif
|
||||
|
@ -15,6 +15,7 @@ class CCIfAlign<string Align, CCAction A>:
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ARM APCS Calling Convention
|
||||
//===----------------------------------------------------------------------===//
|
||||
let Entry = 1 in
|
||||
def CC_ARM_APCS : CallingConv<[
|
||||
|
||||
// Handles byval parameters.
|
||||
@ -43,6 +44,7 @@ def CC_ARM_APCS : CallingConv<[
|
||||
CCIfType<[v2f64], CCAssignToStack<16, 4>>
|
||||
]>;
|
||||
|
||||
let Entry = 1 in
|
||||
def RetCC_ARM_APCS : CallingConv<[
|
||||
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
||||
CCIfType<[f32], CCBitConvertToType<i32>>,
|
||||
@ -66,6 +68,7 @@ def RetCC_ARM_APCS : CallingConv<[
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ARM APCS Calling Convention for FastCC (when VFP2 or later is available)
|
||||
//===----------------------------------------------------------------------===//
|
||||
let Entry = 1 in
|
||||
def FastCC_ARM_APCS : CallingConv<[
|
||||
// Handle all vector types as either f64 or v2f64.
|
||||
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
|
||||
@ -85,6 +88,7 @@ def FastCC_ARM_APCS : CallingConv<[
|
||||
CCDelegateTo<CC_ARM_APCS>
|
||||
]>;
|
||||
|
||||
let Entry = 1 in
|
||||
def RetFastCC_ARM_APCS : CallingConv<[
|
||||
// Handle all vector types as either f64 or v2f64.
|
||||
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
|
||||
@ -101,6 +105,7 @@ def RetFastCC_ARM_APCS : CallingConv<[
|
||||
// ARM APCS Calling Convention for GHC
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
let Entry = 1 in
|
||||
def CC_ARM_APCS_GHC : CallingConv<[
|
||||
// Handle all vector types as either f64 or v2f64.
|
||||
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
|
||||
@ -151,6 +156,7 @@ def RetCC_ARM_AAPCS_Common : CallingConv<[
|
||||
// ARM AAPCS (EABI) Calling Convention
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
let Entry = 1 in
|
||||
def CC_ARM_AAPCS : CallingConv<[
|
||||
// Handles byval parameters.
|
||||
CCIfByVal<CCPassByVal<4, 4>>,
|
||||
@ -173,6 +179,7 @@ def CC_ARM_AAPCS : CallingConv<[
|
||||
CCDelegateTo<CC_ARM_AAPCS_Common>
|
||||
]>;
|
||||
|
||||
let Entry = 1 in
|
||||
def RetCC_ARM_AAPCS : CallingConv<[
|
||||
// Handle all vector types as either f64 or v2f64.
|
||||
CCIfType<[v1i64, v2i32, v4i16, v4f16, v8i8, v2f32], CCBitConvertToType<f64>>,
|
||||
@ -195,6 +202,7 @@ def RetCC_ARM_AAPCS : CallingConv<[
|
||||
// Also used for FastCC (when VFP2 or later is available)
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
let Entry = 1 in
|
||||
def CC_ARM_AAPCS_VFP : CallingConv<[
|
||||
// Handles byval parameters.
|
||||
CCIfByVal<CCPassByVal<4, 4>>,
|
||||
@ -219,6 +227,7 @@ def CC_ARM_AAPCS_VFP : CallingConv<[
|
||||
CCDelegateTo<CC_ARM_AAPCS_Common>
|
||||
]>;
|
||||
|
||||
let Entry = 1 in
|
||||
def RetCC_ARM_AAPCS_VFP : CallingConv<[
|
||||
// Handle all vector types as either f64 or v2f64.
|
||||
CCIfType<[v1i64, v2i32, v4i16, v4f16, v8i8, v2f32], CCBitConvertToType<f64>>,
|
||||
|
@ -244,8 +244,6 @@ class ARMFastISel final : public FastISel {
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
#include "ARMGenCallingConv.inc"
|
||||
|
||||
// DefinesOptionalPredicate - This is different from DefinesPredicate in that
|
||||
// we don't care about implicit defs here, just places we'll need to add a
|
||||
// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
|
||||
|
@ -1591,8 +1591,6 @@ static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
|
||||
// Calling Convention Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "ARMGenCallingConv.inc"
|
||||
|
||||
/// getEffectiveCallingConv - Get the effective calling convention, taking into
|
||||
/// account presence of floating point hardware and calling convention
|
||||
/// limitations, such as support for variadic functions.
|
||||
|
@ -22,6 +22,7 @@ add_llvm_target(ARMCodeGen
|
||||
ARMAsmPrinter.cpp
|
||||
ARMBaseInstrInfo.cpp
|
||||
ARMBaseRegisterInfo.cpp
|
||||
ARMCallingConv.cpp
|
||||
ARMCallLowering.cpp
|
||||
ARMCodeGenPrepare.cpp
|
||||
ARMConstantIslandPass.cpp
|
||||
|
Loading…
Reference in New Issue
Block a user