1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00

Factor out more instruction scheduler code to the base class.

llvm-svn: 25532
This commit is contained in:
Evan Cheng 2006-01-23 07:01:07 +00:00
parent 8fcb65e8fb
commit 37c62244a6
4 changed files with 364 additions and 342 deletions

View File

@ -35,6 +35,14 @@ namespace llvm {
typedef std::vector<NodeInfoPtr>::iterator NIIterator;
// Scheduling heuristics
enum SchedHeuristics {
noScheduling,
simpleScheduling,
simpleNoItinScheduling
};
//===--------------------------------------------------------------------===//
///
/// Node group - This struct is used to manage flagged node groups.
@ -45,7 +53,7 @@ namespace llvm {
NodeInfo *Dominator; // Node with highest latency
unsigned Latency; // Total latency of the group
int Pending; // Number of visits pending before
// adding to order
// adding to order
public:
// Ctor.
@ -76,7 +84,6 @@ namespace llvm {
}
static void Add(NodeInfo *D, NodeInfo *U);
static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U);
};
//===--------------------------------------------------------------------===//
@ -232,6 +239,7 @@ namespace llvm {
class ScheduleDAG {
public:
SchedHeuristics Heuristic; // Scheduling heuristic
SelectionDAG &DAG; // DAG of the current basic block
MachineBasicBlock *BB; // Current basic block
const TargetMachine &TM; // Target processor
@ -240,10 +248,15 @@ namespace llvm {
SSARegMap *RegMap; // Virtual/real register map
MachineConstantPool *ConstPool; // Target constant pool
std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
unsigned NodeCount; // Number of nodes in DAG
bool HasGroups; // True if there are any groups
NodeInfo *Info; // Info for nodes being scheduled
NIVector Ordering; // Emit ordering of nodes
ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb,
ScheduleDAG(SchedHeuristics hstc, SelectionDAG &dag, MachineBasicBlock *bb,
const TargetMachine &tm)
: DAG(dag), BB(bb), TM(tm) {}
: Heuristic(hstc), DAG(dag), BB(bb), TM(tm),
NodeCount(0), HasGroups(false), Info(NULL) {}
virtual ~ScheduleDAG() {};
@ -263,25 +276,61 @@ namespace llvm {
return NI->VRBase + Op.ResNo;
}
/// isPassiveNode - Return true if the node is a non-scheduled leaf.
///
bool isPassiveNode(SDNode *Node) {
if (isa<ConstantSDNode>(Node)) return true;
if (isa<RegisterSDNode>(Node)) return true;
if (isa<GlobalAddressSDNode>(Node)) return true;
if (isa<BasicBlockSDNode>(Node)) return true;
if (isa<FrameIndexSDNode>(Node)) return true;
if (isa<ConstantPoolSDNode>(Node)) return true;
if (isa<ExternalSymbolSDNode>(Node)) return true;
return false;
}
/// EmitNode - Generate machine code for an node and needed dependencies.
///
void EmitNode(NodeInfo *NI);
/// EmitAll - Emit all nodes in schedule sorted order.
///
void EmitAll();
/// Schedule - Order nodes according to selected style.
///
virtual void Schedule() {};
virtual void print(std::ostream &O) const {};
/// printNI - Print node info.
///
void printNI(std::ostream &O, NodeInfo *NI) const;
/// printChanges - Hilight changes in order caused by scheduling.
///
void printChanges(unsigned Index) const;
/// print - Print ordering to specified output stream.
///
void print(std::ostream &O) const;
void dump(const char *tag) const;
void dump() const;
private:
unsigned CreateVirtualRegisters(MachineInstr *MI,
unsigned NumResults,
const TargetInstrDescriptor &II);
/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
///
void PrepareNodeInfo();
/// IdentifyGroups - Put flagged nodes into groups.
///
void IdentifyGroups();
};
/// createSimpleDAGScheduler - This creates a simple two pass instruction
/// scheduler.
ScheduleDAG* createSimpleDAGScheduler(SelectionDAG &DAG,
ScheduleDAG* createSimpleDAGScheduler(SchedHeuristics Heuristic,
SelectionDAG &DAG,
MachineBasicBlock *BB);
}

View File

@ -51,11 +51,51 @@ static unsigned CountOperands(SDNode *Node) {
return N;
}
/// CreateVirtualRegisters - Add result register values for things that are
/// defined by this instruction.
unsigned ScheduleDAG::CreateVirtualRegisters(MachineInstr *MI,
unsigned NumResults,
const TargetInstrDescriptor &II) {
/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
///
void ScheduleDAG::PrepareNodeInfo() {
// Allocate node information
Info = new NodeInfo[NodeCount];
unsigned i = 0;
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I, ++i) {
// Fast reference to node schedule info
NodeInfo* NI = &Info[i];
// Set up map
Map[I] = NI;
// Set node
NI->Node = I;
// Set pending visit count
NI->setPending(I->use_size());
}
}
/// IdentifyGroups - Put flagged nodes into groups.
///
void ScheduleDAG::IdentifyGroups() {
for (unsigned i = 0, N = NodeCount; i < N; i++) {
NodeInfo* NI = &Info[i];
SDNode *Node = NI->Node;
// For each operand (in reverse to only look at flags)
for (unsigned N = Node->getNumOperands(); 0 < N--;) {
// Get operand
SDOperand Op = Node->getOperand(N);
// No more flags to walk
if (Op.getValueType() != MVT::Flag) break;
// Add to node group
NodeGroup::Add(getNI(Op.Val), NI);
// Let evryone else know
HasGroups = true;
}
}
}
static unsigned CreateVirtualRegisters(MachineInstr *MI,
unsigned NumResults,
SSARegMap *RegMap,
const TargetInstrDescriptor &II) {
// Create the result registers for this node and add the result regs to
// the machine instruction.
const TargetOperandInfo *OpInfo = II.OpInfo;
@ -114,7 +154,7 @@ void ScheduleDAG::EmitNode(NodeInfo *NI) {
// Otherwise, create new virtual registers.
if (NumResults && VRBase == 0)
VRBase = CreateVirtualRegisters(MI, NumResults, II);
VRBase = CreateVirtualRegisters(MI, NumResults, RegMap, II);
// Emit all of the actual operands of this instruction, adding them to the
// instruction as appropriate.
@ -250,6 +290,112 @@ void ScheduleDAG::EmitNode(NodeInfo *NI) {
NI->VRBase = VRBase;
}
/// EmitAll - Emit all nodes in schedule sorted order.
///
void ScheduleDAG::EmitAll() {
// For each node in the ordering
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
// Get the scheduling info
NodeInfo *NI = Ordering[i];
if (NI->isInGroup()) {
NodeGroupIterator NGI(Ordering[i]);
while (NodeInfo *NI = NGI.next()) EmitNode(NI);
} else {
EmitNode(NI);
}
}
}
/// isFlagDefiner - Returns true if the node defines a flag result.
static bool isFlagDefiner(SDNode *A) {
unsigned N = A->getNumValues();
return N && A->getValueType(N - 1) == MVT::Flag;
}
/// isFlagUser - Returns true if the node uses a flag result.
///
static bool isFlagUser(SDNode *A) {
unsigned N = A->getNumOperands();
return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
}
/// printNI - Print node info.
///
void ScheduleDAG::printNI(std::ostream &O, NodeInfo *NI) const {
#ifndef NDEBUG
SDNode *Node = NI->Node;
O << " "
<< std::hex << Node << std::dec
<< ", Lat=" << NI->Latency
<< ", Slot=" << NI->Slot
<< ", ARITY=(" << Node->getNumOperands() << ","
<< Node->getNumValues() << ")"
<< " " << Node->getOperationName(&DAG);
if (isFlagDefiner(Node)) O << "<#";
if (isFlagUser(Node)) O << ">#";
#endif
}
/// printChanges - Hilight changes in order caused by scheduling.
///
void ScheduleDAG::printChanges(unsigned Index) const {
#ifndef NDEBUG
// Get the ordered node count
unsigned N = Ordering.size();
// Determine if any changes
unsigned i = 0;
for (; i < N; i++) {
NodeInfo *NI = Ordering[i];
if (NI->Preorder != i) break;
}
if (i < N) {
std::cerr << Index << ". New Ordering\n";
for (i = 0; i < N; i++) {
NodeInfo *NI = Ordering[i];
std::cerr << " " << NI->Preorder << ". ";
printNI(std::cerr, NI);
std::cerr << "\n";
if (NI->isGroupDominator()) {
NodeGroup *Group = NI->Group;
for (NIIterator NII = Group->group_begin(), E = Group->group_end();
NII != E; NII++) {
std::cerr << " ";
printNI(std::cerr, *NII);
std::cerr << "\n";
}
}
}
} else {
std::cerr << Index << ". No Changes\n";
}
#endif
}
/// print - Print ordering to specified output stream.
///
void ScheduleDAG::print(std::ostream &O) const {
#ifndef NDEBUG
using namespace std;
O << "Ordering\n";
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
NodeInfo *NI = Ordering[i];
printNI(O, NI);
O << "\n";
if (NI->isGroupDominator()) {
NodeGroup *Group = NI->Group;
for (NIIterator NII = Group->group_begin(), E = Group->group_end();
NII != E; NII++) {
O << " ";
printNI(O, *NII);
O << "\n";
}
}
}
#endif
}
void ScheduleDAG::dump(const char *tag) const {
std::cerr << tag; dump();
}
@ -265,6 +411,88 @@ MachineBasicBlock *ScheduleDAG::Run() {
MRI = TM.getRegisterInfo();
RegMap = BB->getParent()->getSSARegMap();
ConstPool = BB->getParent()->getConstantPool();
// Number the nodes
NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
// Set up minimum info for scheduling
PrepareNodeInfo();
// Construct node groups for flagged nodes
IdentifyGroups();
Schedule();
return BB;
}
/// CountInternalUses - Returns the number of edges between the two nodes.
///
static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) {
unsigned N = 0;
for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
SDOperand Op = U->Node->getOperand(M);
if (Op.Val == D->Node) N++;
}
return N;
}
//===----------------------------------------------------------------------===//
/// Add - Adds a definer and user pair to a node group.
///
void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
// Get current groups
NodeGroup *DGroup = D->Group;
NodeGroup *UGroup = U->Group;
// If both are members of groups
if (DGroup && UGroup) {
// There may have been another edge connecting
if (DGroup == UGroup) return;
// Add the pending users count
DGroup->addPending(UGroup->getPending());
// For each member of the users group
NodeGroupIterator UNGI(U);
while (NodeInfo *UNI = UNGI.next() ) {
// Change the group
UNI->Group = DGroup;
// For each member of the definers group
NodeGroupIterator DNGI(D);
while (NodeInfo *DNI = DNGI.next() ) {
// Remove internal edges
DGroup->addPending(-CountInternalUses(DNI, UNI));
}
}
// Merge the two lists
DGroup->group_insert(DGroup->group_end(),
UGroup->group_begin(), UGroup->group_end());
} else if (DGroup) {
// Make user member of definers group
U->Group = DGroup;
// Add users uses to definers group pending
DGroup->addPending(U->Node->use_size());
// For each member of the definers group
NodeGroupIterator DNGI(D);
while (NodeInfo *DNI = DNGI.next() ) {
// Remove internal edges
DGroup->addPending(-CountInternalUses(DNI, U));
}
DGroup->group_push_back(U);
} else if (UGroup) {
// Make definer member of users group
D->Group = UGroup;
// Add definers uses to users group pending
UGroup->addPending(D->Node->use_size());
// For each member of the users group
NodeGroupIterator UNGI(U);
while (NodeInfo *UNI = UNGI.next() ) {
// Remove internal edges
UGroup->addPending(-CountInternalUses(D, UNI));
}
UGroup->group_insert(UGroup->group_begin(), D);
} else {
D->Group = U->Group = DGroup = new NodeGroup();
DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
CountInternalUses(D, U));
DGroup->group_push_back(D);
DGroup->group_push_back(U);
}
}

View File

@ -21,32 +21,8 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <iostream>
#include <ios>
#include <algorithm>
using namespace llvm;
namespace {
// Style of scheduling to use.
enum ScheduleChoices {
noScheduling,
simpleScheduling,
simpleNoItinScheduling
};
} // namespace
cl::opt<ScheduleChoices> ScheduleStyle("sched",
cl::desc("Choose scheduling style"),
cl::init(noScheduling),
cl::values(
clEnumValN(noScheduling, "none",
"Trivial emission with no analysis"),
clEnumValN(simpleScheduling, "simple",
"Minimize critical path and maximize processor utilization"),
clEnumValN(simpleNoItinScheduling, "simple-noitin",
"Same as simple except using generic latency"),
clEnumValEnd));
namespace {
//===----------------------------------------------------------------------===//
///
@ -212,10 +188,6 @@ public:
///
class ScheduleDAGSimple : public ScheduleDAG {
private:
unsigned NodeCount; // Number of nodes in DAG
bool HasGroups; // True if there are any groups
NodeInfo *Info; // Info for nodes being scheduled
NIVector Ordering; // Emit ordering of nodes
ResourceTally<unsigned> Tally; // Resource usage tally
unsigned NSlots; // Total latency
static const unsigned NotFound = ~0U; // Search marker
@ -223,10 +195,9 @@ private:
public:
// Ctor.
ScheduleDAGSimple(SelectionDAG &dag, MachineBasicBlock *bb,
const TargetMachine &tm)
: ScheduleDAG(dag, bb, tm),
NodeCount(0), HasGroups(false), Info(NULL), Tally(), NSlots(0) {
ScheduleDAGSimple(SchedHeuristics hstc, SelectionDAG &dag,
MachineBasicBlock *bb, const TargetMachine &tm)
: ScheduleDAG(hstc, dag, bb, tm), Tally(), NSlots(0) {
assert(&TII && "Target doesn't provide instr info?");
assert(&MRI && "Target doesn't provide register info?");
}
@ -234,29 +205,18 @@ public:
virtual ~ScheduleDAGSimple() {};
private:
static bool isFlagDefiner(SDNode *A);
static bool isFlagUser(SDNode *A);
static bool isDefiner(NodeInfo *A, NodeInfo *B);
static bool isPassiveNode(SDNode *Node);
void IncludeNode(NodeInfo *NI);
void VisitAll();
void Schedule();
void IdentifyGroups();
void GatherSchedulingInfo();
void FakeGroupDominators();
void PrepareNodeInfo();
bool isStrongDependency(NodeInfo *A, NodeInfo *B);
bool isWeakDependency(NodeInfo *A, NodeInfo *B);
void ScheduleBackward();
void ScheduleForward();
void EmitAll();
void printChanges(unsigned Index);
void printSI(std::ostream &O, NodeInfo *NI) const;
void print(std::ostream &O) const;
};
//===----------------------------------------------------------------------===//
/// Special case itineraries.
///
@ -275,103 +235,12 @@ static InstrStage IntStage = { 2, RSInteger };
static InstrStage FloatStage = { 3, RSFloat };
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
} // namespace
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// Add - Adds a definer and user pair to a node group.
///
void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
// Get current groups
NodeGroup *DGroup = D->Group;
NodeGroup *UGroup = U->Group;
// If both are members of groups
if (DGroup && UGroup) {
// There may have been another edge connecting
if (DGroup == UGroup) return;
// Add the pending users count
DGroup->addPending(UGroup->getPending());
// For each member of the users group
NodeGroupIterator UNGI(U);
while (NodeInfo *UNI = UNGI.next() ) {
// Change the group
UNI->Group = DGroup;
// For each member of the definers group
NodeGroupIterator DNGI(D);
while (NodeInfo *DNI = DNGI.next() ) {
// Remove internal edges
DGroup->addPending(-CountInternalUses(DNI, UNI));
}
}
// Merge the two lists
DGroup->group_insert(DGroup->group_end(),
UGroup->group_begin(), UGroup->group_end());
} else if (DGroup) {
// Make user member of definers group
U->Group = DGroup;
// Add users uses to definers group pending
DGroup->addPending(U->Node->use_size());
// For each member of the definers group
NodeGroupIterator DNGI(D);
while (NodeInfo *DNI = DNGI.next() ) {
// Remove internal edges
DGroup->addPending(-CountInternalUses(DNI, U));
}
DGroup->group_push_back(U);
} else if (UGroup) {
// Make definer member of users group
D->Group = UGroup;
// Add definers uses to users group pending
UGroup->addPending(D->Node->use_size());
// For each member of the users group
NodeGroupIterator UNGI(U);
while (NodeInfo *UNI = UNGI.next() ) {
// Remove internal edges
UGroup->addPending(-CountInternalUses(D, UNI));
}
UGroup->group_insert(UGroup->group_begin(), D);
} else {
D->Group = U->Group = DGroup = new NodeGroup();
DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
CountInternalUses(D, U));
DGroup->group_push_back(D);
DGroup->group_push_back(U);
}
}
/// CountInternalUses - Returns the number of edges between the two nodes.
///
unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
unsigned N = 0;
for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
SDOperand Op = U->Node->getOperand(M);
if (Op.Val == D->Node) N++;
}
return N;
}
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// isFlagDefiner - Returns true if the node defines a flag result.
bool ScheduleDAGSimple::isFlagDefiner(SDNode *A) {
unsigned N = A->getNumValues();
return N && A->getValueType(N - 1) == MVT::Flag;
}
/// isFlagUser - Returns true if the node uses a flag result.
///
bool ScheduleDAGSimple::isFlagUser(SDNode *A) {
unsigned N = A->getNumOperands();
return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
}
/// isDefiner - Return true if node A is a definer for B.
///
bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
@ -391,19 +260,6 @@ bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
return false;
}
/// isPassiveNode - Return true if the node is a non-scheduled leaf.
///
bool ScheduleDAGSimple::isPassiveNode(SDNode *Node) {
if (isa<ConstantSDNode>(Node)) return true;
if (isa<RegisterSDNode>(Node)) return true;
if (isa<GlobalAddressSDNode>(Node)) return true;
if (isa<BasicBlockSDNode>(Node)) return true;
if (isa<FrameIndexSDNode>(Node)) return true;
if (isa<ConstantPoolSDNode>(Node)) return true;
if (isa<ExternalSymbolSDNode>(Node)) return true;
return false;
}
/// IncludeNode - Add node to NodeInfo vector.
///
void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
@ -432,62 +288,6 @@ void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
NI->setPending(Count);
}
/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
/// Note that the ordering in the Nodes vector is reversed.
void ScheduleDAGSimple::VisitAll() {
// Add first element to list
NodeInfo *NI = getNI(DAG.getRoot().Val);
if (NI->isInGroup()) {
Ordering.push_back(NI->Group->getDominator());
} else {
Ordering.push_back(NI);
}
// Iterate through all nodes that have been added
for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
// Visit all operands
NodeGroupOpIterator NGI(Ordering[i]);
while (!NGI.isEnd()) {
// Get next operand
SDOperand Op = NGI.next();
// Get node
SDNode *Node = Op.Val;
// Ignore passive nodes
if (isPassiveNode(Node)) continue;
// Check out node
IncludeNode(getNI(Node));
}
}
// Add entry node last (IncludeNode filters entry nodes)
if (DAG.getEntryNode().Val != DAG.getRoot().Val)
Ordering.push_back(getNI(DAG.getEntryNode().Val));
// Reverse the order
std::reverse(Ordering.begin(), Ordering.end());
}
/// IdentifyGroups - Put flagged nodes into groups.
///
void ScheduleDAGSimple::IdentifyGroups() {
for (unsigned i = 0, N = NodeCount; i < N; i++) {
NodeInfo* NI = &Info[i];
SDNode *Node = NI->Node;
// For each operand (in reverse to only look at flags)
for (unsigned N = Node->getNumOperands(); 0 < N--;) {
// Get operand
SDOperand Op = Node->getOperand(N);
// No more flags to walk
if (Op.getValueType() != MVT::Flag) break;
// Add to node group
NodeGroup::Add(getNI(Op.Val), NI);
// Let evryone else know
HasGroups = true;
}
}
}
/// GatherSchedulingInfo - Get latency and resource information about each node.
///
void ScheduleDAGSimple::GatherSchedulingInfo() {
@ -501,7 +301,7 @@ void ScheduleDAGSimple::GatherSchedulingInfo() {
SDNode *Node = NI->Node;
// If there are itineraries and it is a machine instruction
if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
if (InstrItins.isEmpty() || Heuristic == simpleNoItinScheduling) {
// If machine opcode
if (Node->isTargetOpcode()) {
// Get return type to guess which processing unit
@ -572,6 +372,41 @@ void ScheduleDAGSimple::GatherSchedulingInfo() {
}
}
/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
/// Note that the ordering in the Nodes vector is reversed.
void ScheduleDAGSimple::VisitAll() {
// Add first element to list
NodeInfo *NI = getNI(DAG.getRoot().Val);
if (NI->isInGroup()) {
Ordering.push_back(NI->Group->getDominator());
} else {
Ordering.push_back(NI);
}
// Iterate through all nodes that have been added
for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
// Visit all operands
NodeGroupOpIterator NGI(Ordering[i]);
while (!NGI.isEnd()) {
// Get next operand
SDOperand Op = NGI.next();
// Get node
SDNode *Node = Op.Val;
// Ignore passive nodes
if (isPassiveNode(Node)) continue;
// Check out node
IncludeNode(getNI(Node));
}
}
// Add entry node last (IncludeNode filters entry nodes)
if (DAG.getEntryNode().Val != DAG.getRoot().Val)
Ordering.push_back(getNI(DAG.getEntryNode().Val));
// Reverse the order
std::reverse(Ordering.begin(), Ordering.end());
}
/// FakeGroupDominators - Set dominators for non-scheduling.
///
void ScheduleDAGSimple::FakeGroupDominators() {
@ -588,26 +423,6 @@ void ScheduleDAGSimple::FakeGroupDominators() {
}
}
/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
///
void ScheduleDAGSimple::PrepareNodeInfo() {
// Allocate node information
Info = new NodeInfo[NodeCount];
unsigned i = 0;
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I, ++i) {
// Fast reference to node schedule info
NodeInfo* NI = &Info[i];
// Set up map
Map[I] = NI;
// Set node
NI->Node = I;
// Set pending visit count
NI->setPending(I->use_size());
}
}
/// isStrongDependency - Return true if node A has results used by node B.
/// I.E., B must wait for latency of A.
bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
@ -742,34 +557,11 @@ void ScheduleDAGSimple::ScheduleForward() {
}
}
/// EmitAll - Emit all nodes in schedule sorted order.
///
void ScheduleDAGSimple::EmitAll() {
// For each node in the ordering
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
// Get the scheduling info
NodeInfo *NI = Ordering[i];
if (NI->isInGroup()) {
NodeGroupIterator NGI(Ordering[i]);
while (NodeInfo *NI = NGI.next()) EmitNode(NI);
} else {
EmitNode(NI);
}
}
}
/// Schedule - Order nodes according to selected style.
///
void ScheduleDAGSimple::Schedule() {
// Number the nodes
NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
// Test to see if scheduling should occur
bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling;
// Set up minimum info for scheduling
PrepareNodeInfo();
// Construct node groups for flagged nodes
IdentifyGroups();
bool ShouldSchedule = NodeCount > 3 && Heuristic != noScheduling;
// Don't waste time if is only entry and return
if (ShouldSchedule) {
// Get latency and resource requirements
@ -806,86 +598,11 @@ void ScheduleDAGSimple::Schedule() {
EmitAll();
}
/// printChanges - Hilight changes in order caused by scheduling.
///
void ScheduleDAGSimple::printChanges(unsigned Index) {
#ifndef NDEBUG
// Get the ordered node count
unsigned N = Ordering.size();
// Determine if any changes
unsigned i = 0;
for (; i < N; i++) {
NodeInfo *NI = Ordering[i];
if (NI->Preorder != i) break;
}
if (i < N) {
std::cerr << Index << ". New Ordering\n";
for (i = 0; i < N; i++) {
NodeInfo *NI = Ordering[i];
std::cerr << " " << NI->Preorder << ". ";
printSI(std::cerr, NI);
std::cerr << "\n";
if (NI->isGroupDominator()) {
NodeGroup *Group = NI->Group;
for (NIIterator NII = Group->group_begin(), E = Group->group_end();
NII != E; NII++) {
std::cerr << " ";
printSI(std::cerr, *NII);
std::cerr << "\n";
}
}
}
} else {
std::cerr << Index << ". No Changes\n";
}
#endif
}
/// printSI - Print schedule info.
///
void ScheduleDAGSimple::printSI(std::ostream &O, NodeInfo *NI) const {
#ifndef NDEBUG
SDNode *Node = NI->Node;
O << " "
<< std::hex << Node << std::dec
<< ", Lat=" << NI->Latency
<< ", Slot=" << NI->Slot
<< ", ARITY=(" << Node->getNumOperands() << ","
<< Node->getNumValues() << ")"
<< " " << Node->getOperationName(&DAG);
if (isFlagDefiner(Node)) O << "<#";
if (isFlagUser(Node)) O << ">#";
#endif
}
/// print - Print ordering to specified output stream.
///
void ScheduleDAGSimple::print(std::ostream &O) const {
#ifndef NDEBUG
using namespace std;
O << "Ordering\n";
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
NodeInfo *NI = Ordering[i];
printSI(O, NI);
O << "\n";
if (NI->isGroupDominator()) {
NodeGroup *Group = NI->Group;
for (NIIterator NII = Group->group_begin(), E = Group->group_end();
NII != E; NII++) {
O << " ";
printSI(O, *NII);
O << "\n";
}
}
}
#endif
}
/// createSimpleDAGScheduler - This creates a simple two pass instruction
/// scheduler.
llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SelectionDAG &DAG,
llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SchedHeuristics Heuristic,
SelectionDAG &DAG,
MachineBasicBlock *BB) {
return new ScheduleDAGSimple(DAG, BB, DAG.getTarget());
return new ScheduleDAGSimple(Heuristic, DAG, BB, DAG.getTarget());
}

View File

@ -54,6 +54,25 @@ static const bool ViewISelDAGs = 0;
static const bool ViewSchedDAGs = 0;
#endif
namespace {
cl::opt<SchedHeuristics>
ISHeuristic(
"sched",
cl::desc("Choose scheduling style"),
cl::init(noScheduling),
cl::values(
clEnumValN(noScheduling, "none",
"No scheduling: breath first sequencing"),
clEnumValN(simpleScheduling, "simple",
"Simple two pass scheduling: minimize critical path "
"and maximize processor utilization"),
clEnumValN(simpleNoItinScheduling, "simple-noitin",
"Simple two pass scheduling: Same as simple "
"except using generic latency"),
clEnumValEnd));
} // namespace
namespace llvm {
//===--------------------------------------------------------------------===//
/// FunctionLoweringInfo - This contains information that is global to a
@ -1747,6 +1766,15 @@ void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
/// target node in the graph.
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
if (ViewSchedDAGs) DAG.viewGraph();
ScheduleDAG *SL = createSimpleDAGScheduler(DAG, BB);
ScheduleDAG *SL = NULL;
switch (ISHeuristic) {
default: assert(0 && "Unrecognized scheduling heuristic");
case noScheduling:
case simpleScheduling:
case simpleNoItinScheduling:
SL = createSimpleDAGScheduler(ISHeuristic, DAG, BB);
break;
}
BB = SL->Run();
}