mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
Updated dependence analyzer. Fixed numerous bugs. Same stage scheduling, etc.
llvm-svn: 21444
This commit is contained in:
parent
c638ca05a0
commit
3f4d35ca74
@ -1,4 +1,4 @@
|
||||
//===-- DependenceAnalyzer.cpp - DependenceAnalyzer ----------------*- C++ -*-===//
|
||||
//===-- DependenceAnalyzer.cpp - DependenceAnalyzer ------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
@ -16,94 +16,281 @@
|
||||
#include "DependenceAnalyzer.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Constants.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
|
||||
/// Create ModuloSchedulingPass
|
||||
///
|
||||
namespace llvm {
|
||||
FunctionPass *createDependenceAnalyzer() {
|
||||
return new DependenceAnalyzer();
|
||||
}
|
||||
}
|
||||
|
||||
bool DependenceAnalyzer::runOnFunction(Function &F) {
|
||||
AA = &getAnalysis<AliasAnalysis>();
|
||||
TD = &getAnalysis<TargetData>();
|
||||
|
||||
return false;
|
||||
/// Create ModuloSchedulingPass
|
||||
FunctionPass *createDependenceAnalyzer() {
|
||||
return new DependenceAnalyzer();
|
||||
}
|
||||
}
|
||||
|
||||
static RegisterAnalysis<DependenceAnalyzer>X("depanalyzer", "Dependence Analyzer");
|
||||
Statistic<> NoDeps("depanalyzer-nodeps", "Number of dependences eliminated");
|
||||
Statistic<> NumDeps("depanalyzer-deps",
|
||||
"Number of dependences could not eliminate");
|
||||
Statistic<> AdvDeps("depanalyzer-advdeps",
|
||||
"Number of dependences using advanced techniques");
|
||||
|
||||
DependenceResult DependenceAnalyzer::getDependenceInfo(Instruction *inst1, Instruction *inst2) {
|
||||
std::vector<Dependence> deps;
|
||||
bool DependenceAnalyzer::runOnFunction(Function &F) {
|
||||
AA = &getAnalysis<AliasAnalysis>();
|
||||
TD = &getAnalysis<TargetData>();
|
||||
SE = &getAnalysis<ScalarEvolution>();
|
||||
|
||||
DEBUG(std::cerr << "Inst1: " << *inst1 << "\n");
|
||||
DEBUG(std::cerr << "Inst2: " << *inst2 << "\n");
|
||||
|
||||
|
||||
if(LoadInst *ldInst = dyn_cast<LoadInst>(inst1)) {
|
||||
|
||||
if(StoreInst *stInst = dyn_cast<StoreInst>(inst2)) {
|
||||
//Get load mem ref
|
||||
Value *ldOp = ldInst->getOperand(0);
|
||||
|
||||
//Get store mem ref
|
||||
Value *stOp = stInst->getOperand(1);
|
||||
|
||||
if(AA->alias(ldOp, (unsigned)TD->getTypeSize(ldOp->getType()),
|
||||
stOp,(unsigned)TD->getTypeSize(stOp->getType()))
|
||||
!= AliasAnalysis::NoAlias) {
|
||||
|
||||
//Anti Dep
|
||||
deps.push_back(Dependence(0, Dependence::AntiDep));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
else if(StoreInst *stInst = dyn_cast<StoreInst>(inst1)) {
|
||||
|
||||
if(LoadInst *ldInst = dyn_cast<LoadInst>(inst2)) {
|
||||
//Get load mem ref
|
||||
Value *ldOp = ldInst->getOperand(0);
|
||||
|
||||
//Get store mem ref
|
||||
Value *stOp = stInst->getOperand(1);
|
||||
|
||||
|
||||
if(AA->alias(ldOp, (unsigned)TD->getTypeSize(ldOp->getType()),
|
||||
stOp,(unsigned)TD->getTypeSize(stOp->getType()))
|
||||
!= AliasAnalysis::NoAlias) {
|
||||
|
||||
//Anti Dep
|
||||
deps.push_back(Dependence(0, Dependence::TrueDep));
|
||||
}
|
||||
}
|
||||
else if(StoreInst *stInst2 = dyn_cast<StoreInst>(inst2)) {
|
||||
|
||||
//Get load mem ref
|
||||
Value *stOp1 = stInst->getOperand(1);
|
||||
|
||||
//Get store mem ref
|
||||
Value *stOp2 = stInst2->getOperand(1);
|
||||
|
||||
|
||||
if(AA->alias(stOp1, (unsigned)TD->getTypeSize(stOp1->getType()),
|
||||
stOp2,(unsigned)TD->getTypeSize(stOp2->getType()))
|
||||
!= AliasAnalysis::NoAlias) {
|
||||
|
||||
//Anti Dep
|
||||
deps.push_back(Dependence(0, Dependence::OutputDep));
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static RegisterAnalysis<DependenceAnalyzer>X("depanalyzer",
|
||||
"Dependence Analyzer");
|
||||
|
||||
// - Get inter and intra dependences between loads and stores
|
||||
//
|
||||
// Overview of Method:
|
||||
// Step 1: Use alias analysis to determine dependencies if values are loop
|
||||
// invariant
|
||||
// Step 2: If pointers are not GEP, then there is a dependence.
|
||||
// Step 3: Compare GEP base pointers with AA. If no alias, no dependence.
|
||||
// If may alias, then add a dependence. If must alias, then analyze
|
||||
// further (Step 4)
|
||||
// Step 4: do advanced analysis
|
||||
void DependenceAnalyzer::AnalyzeDeps(Value *val, Value *val2, bool valLoad,
|
||||
bool val2Load,
|
||||
std::vector<Dependence> &deps,
|
||||
BasicBlock *BB,
|
||||
bool srcBeforeDest) {
|
||||
|
||||
bool loopInvariant = true;
|
||||
|
||||
//Check if both are instructions and prove not loop invariant if possible
|
||||
if(Instruction *valInst = dyn_cast<Instruction>(val))
|
||||
if(valInst->getParent() == BB)
|
||||
loopInvariant = false;
|
||||
if(Instruction *val2Inst = dyn_cast<Instruction>(val2))
|
||||
if(val2Inst->getParent() == BB)
|
||||
loopInvariant = false;
|
||||
|
||||
|
||||
//If Loop invariant, let AA decide
|
||||
if(loopInvariant) {
|
||||
if(AA->alias(val, (unsigned)TD->getTypeSize(val->getType()),
|
||||
val2,(unsigned)TD->getTypeSize(val2->getType()))
|
||||
!= AliasAnalysis::NoAlias) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
}
|
||||
else
|
||||
assert("Expected a load or a store\n");
|
||||
++NoDeps;
|
||||
return;
|
||||
}
|
||||
|
||||
//Otherwise, continue with step 2
|
||||
|
||||
DependenceResult dr = DependenceResult(deps);
|
||||
return dr;
|
||||
GetElementPtrInst *GP = dyn_cast<GetElementPtrInst>(val);
|
||||
GetElementPtrInst *GP2 = dyn_cast<GetElementPtrInst>(val2);
|
||||
|
||||
//If both are not GP instructions, we can not do further analysis
|
||||
if(!GP || !GP2) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
//Otherwise, compare GEP bases (op #0) with Alias Analysis
|
||||
|
||||
Value *GPop = GP->getOperand(0);
|
||||
Value *GP2op = GP2->getOperand(0);
|
||||
int alias = AA->alias(GPop, (unsigned)TD->getTypeSize(GPop->getType()),
|
||||
GP2op,(unsigned)TD->getTypeSize(GP2op->getType()));
|
||||
|
||||
|
||||
if(alias == AliasAnalysis::MustAlias) {
|
||||
//Further dep analysis to do
|
||||
advancedDepAnalysis(GP, GP2, valLoad, val2Load, deps, srcBeforeDest);
|
||||
++AdvDeps;
|
||||
}
|
||||
else if(alias == AliasAnalysis::MayAlias) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
}
|
||||
//Otherwise no dependence since there is no alias
|
||||
else
|
||||
++NoDeps;
|
||||
}
|
||||
|
||||
|
||||
// advancedDepAnalysis - Do advanced data dependence tests
|
||||
void DependenceAnalyzer::advancedDepAnalysis(GetElementPtrInst *gp1,
|
||||
GetElementPtrInst *gp2,
|
||||
bool valLoad,
|
||||
bool val2Load,
|
||||
std::vector<Dependence> &deps,
|
||||
bool srcBeforeDest) {
|
||||
|
||||
//Check if both GEPs are in a simple form: 3 ops, constant 0 as second arg
|
||||
if(gp1->getNumOperands() != 3 || gp2->getNumOperands() != 3) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
}
|
||||
|
||||
//Check second arg is constant 0
|
||||
bool GPok = false;
|
||||
if(Constant *c1 = dyn_cast<Constant>(gp1->getOperand(1)))
|
||||
if(Constant *c2 = dyn_cast<Constant>(gp2->getOperand(1)))
|
||||
if(c1->isNullValue() && c2->isNullValue())
|
||||
GPok = true;
|
||||
|
||||
if(!GPok) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
|
||||
}
|
||||
|
||||
Value *Gep1Idx = gp1->getOperand(2);
|
||||
Value *Gep2Idx = gp2->getOperand(2);
|
||||
|
||||
if(CastInst *c1 = dyn_cast<CastInst>(Gep1Idx))
|
||||
Gep1Idx = c1->getOperand(0);
|
||||
if(CastInst *c2 = dyn_cast<CastInst>(Gep2Idx))
|
||||
Gep2Idx = c2->getOperand(0);
|
||||
|
||||
//Get SCEV for each index into the area
|
||||
SCEVHandle SV1 = SE->getSCEV(Gep1Idx);
|
||||
SCEVHandle SV2 = SE->getSCEV(Gep2Idx);
|
||||
|
||||
//Now handle special cases of dependence analysis
|
||||
SV1->print(std::cerr);
|
||||
std::cerr << "\n";
|
||||
SV2->print(std::cerr);
|
||||
std::cerr << "\n";
|
||||
|
||||
//Check if we have an SCEVAddExpr, cause we can only handle those
|
||||
SCEVAddRecExpr *SVAdd1 = dyn_cast<SCEVAddRecExpr>(SV1);
|
||||
SCEVAddRecExpr *SVAdd2 = dyn_cast<SCEVAddRecExpr>(SV2);
|
||||
|
||||
//Default to having a dependence since we can't analyze further
|
||||
if(!SVAdd1 || !SVAdd2) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
}
|
||||
|
||||
//Check if not Affine, we can't handle those
|
||||
if(!SVAdd1->isAffine( ) || !SVAdd2->isAffine()) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
}
|
||||
|
||||
//We know the SCEV is in the form A + B*x, check that B is the same for both
|
||||
SCEVConstant *B1 = dyn_cast<SCEVConstant>(SVAdd1->getOperand(1));
|
||||
SCEVConstant *B2 = dyn_cast<SCEVConstant>(SVAdd2->getOperand(1));
|
||||
|
||||
if(B1->getValue() != B2->getValue()) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
}
|
||||
|
||||
if(B1->getValue()->getRawValue() != 1 || B2->getValue()->getRawValue() != 1) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
SCEVConstant *A1 = dyn_cast<SCEVConstant>(SVAdd1->getOperand(0));
|
||||
SCEVConstant *A2 = dyn_cast<SCEVConstant>(SVAdd2->getOperand(0));
|
||||
|
||||
//Come back and deal with nested SCEV!
|
||||
if(!A1 || !A2) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
}
|
||||
|
||||
//If equal, create dep as normal
|
||||
if(A1->getValue() == A2->getValue()) {
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest);
|
||||
return;
|
||||
}
|
||||
//Eliminate a dep if this is a intra dep
|
||||
else if(srcBeforeDest) {
|
||||
++NoDeps;
|
||||
return;
|
||||
}
|
||||
|
||||
//Find constant index difference
|
||||
int diff = A1->getValue()->getRawValue() - A2->getValue()->getRawValue();
|
||||
std::cerr << diff << "\n";
|
||||
|
||||
if(diff > 0)
|
||||
createDep(deps, valLoad, val2Load, srcBeforeDest, diff);
|
||||
|
||||
//assert(diff > 0 && "Expected diff to be greater then 0");
|
||||
}
|
||||
|
||||
// Create dependences once its determined these two instructions
|
||||
// references the same memory
|
||||
void DependenceAnalyzer::createDep(std::vector<Dependence> &deps,
|
||||
bool valLoad, bool val2Load,
|
||||
bool srcBeforeDest, int diff) {
|
||||
|
||||
//If the source instruction occurs after the destination instruction
|
||||
//(execution order), then this dependence is across iterations
|
||||
if(!srcBeforeDest && (diff==0))
|
||||
diff = 1;
|
||||
|
||||
//If load/store pair
|
||||
if(valLoad && !val2Load) {
|
||||
//Anti Dep
|
||||
deps.push_back(Dependence(diff, Dependence::AntiDep));
|
||||
++NumDeps;
|
||||
}
|
||||
//If store/load pair
|
||||
else if(!valLoad && val2Load) {
|
||||
//True Dep
|
||||
deps.push_back(Dependence(diff, Dependence::TrueDep));
|
||||
++NumDeps;
|
||||
}
|
||||
//If store/store pair
|
||||
else if(!valLoad && !val2Load) {
|
||||
//True Dep
|
||||
deps.push_back(Dependence(diff, Dependence::OutputDep));
|
||||
++NumDeps;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//Get Dependence Info for a pair of Instructions
|
||||
DependenceResult DependenceAnalyzer::getDependenceInfo(Instruction *inst1,
|
||||
Instruction *inst2,
|
||||
bool srcBeforeDest) {
|
||||
std::vector<Dependence> deps;
|
||||
|
||||
DEBUG(std::cerr << "Inst1: " << *inst1 << "\n");
|
||||
DEBUG(std::cerr << "Inst2: " << *inst2 << "\n");
|
||||
|
||||
//No self deps
|
||||
if(inst1 == inst2)
|
||||
return DependenceResult(deps);
|
||||
|
||||
if(LoadInst *ldInst = dyn_cast<LoadInst>(inst1)) {
|
||||
|
||||
if(StoreInst *stInst = dyn_cast<StoreInst>(inst2))
|
||||
AnalyzeDeps(ldInst->getOperand(0), stInst->getOperand(1),
|
||||
true, false, deps, ldInst->getParent(), srcBeforeDest);
|
||||
}
|
||||
else if(StoreInst *stInst = dyn_cast<StoreInst>(inst1)) {
|
||||
|
||||
if(LoadInst *ldInst = dyn_cast<LoadInst>(inst2))
|
||||
AnalyzeDeps(stInst->getOperand(1), ldInst->getOperand(0), false, true,
|
||||
deps, ldInst->getParent(), srcBeforeDest);
|
||||
|
||||
else if(StoreInst *stInst2 = dyn_cast<StoreInst>(inst2))
|
||||
AnalyzeDeps(stInst->getOperand(1), stInst2->getOperand(1), false, false,
|
||||
deps, stInst->getParent(), srcBeforeDest);
|
||||
}
|
||||
else
|
||||
assert(0 && "Expected a load or a store\n");
|
||||
|
||||
DependenceResult dr = DependenceResult(deps);
|
||||
return dr;
|
||||
}
|
||||
|
||||
|
@ -17,10 +17,12 @@
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
|
||||
//class to represent a dependence
|
||||
struct Dependence {
|
||||
@ -47,11 +49,25 @@ namespace llvm {
|
||||
|
||||
|
||||
class DependenceAnalyzer : public FunctionPass {
|
||||
|
||||
|
||||
AliasAnalysis *AA;
|
||||
TargetData *TD;
|
||||
ScalarEvolution *SE;
|
||||
|
||||
void advancedDepAnalysis(GetElementPtrInst *gp1, GetElementPtrInst *gp2,
|
||||
bool valLoad, bool val2Load,
|
||||
std::vector<Dependence> &deps, bool srcBeforeDest);
|
||||
|
||||
void AnalyzeDeps(Value *val, Value *val2, bool val1Load, bool val2Load,
|
||||
std::vector<Dependence> &deps, BasicBlock *BB,
|
||||
bool srcBeforeDest);
|
||||
|
||||
void createDep(std::vector<Dependence> &deps, bool valLoad, bool val2Load,
|
||||
bool srcBeforeDest, int diff = 0);
|
||||
|
||||
public:
|
||||
DependenceAnalyzer() { AA = 0; TD = 0; }
|
||||
DependenceAnalyzer() { AA = 0; TD = 0; SE = 0; }
|
||||
virtual bool runOnFunction(Function &F);
|
||||
virtual const char* getPassName() const { return "DependenceAnalyzer"; }
|
||||
|
||||
@ -59,10 +75,13 @@ namespace llvm {
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.addRequired<AliasAnalysis>();
|
||||
AU.addRequired<TargetData>();
|
||||
AU.addRequired<ScalarEvolution>();
|
||||
AU.setPreservesAll();
|
||||
}
|
||||
|
||||
//get dependence info
|
||||
DependenceResult getDependenceInfo(Instruction *inst1, Instruction *inst2);
|
||||
DependenceResult getDependenceInfo(Instruction *inst1, Instruction *inst2,
|
||||
bool srcBeforeDest);
|
||||
|
||||
};
|
||||
|
||||
|
@ -19,6 +19,7 @@
|
||||
#include "../SparcV9RegisterInfo.h"
|
||||
#include "../MachineCodeForInstruction.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/CodeGen/MachineBasicBlock.h"
|
||||
@ -33,8 +34,9 @@ using namespace llvm;
|
||||
//MSchedGraphNode constructor
|
||||
MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst,
|
||||
MSchedGraph *graph, unsigned idx,
|
||||
unsigned late, bool isBranch)
|
||||
: Inst(inst), Parent(graph), index(idx), latency(late), isBranchInstr(isBranch) {
|
||||
unsigned late, bool isBranch)
|
||||
: Inst(inst), Parent(graph), index(idx), latency(late),
|
||||
isBranchInstr(isBranch) {
|
||||
|
||||
//Add to the graph
|
||||
graph->addNode(inst, this);
|
||||
@ -73,7 +75,8 @@ MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) {
|
||||
|
||||
//Get the iteration difference for the edge from this node to its successor
|
||||
unsigned MSchedGraphNode::getIteDiff(MSchedGraphNode *succ) {
|
||||
for(std::vector<MSchedGraphEdge>::iterator I = Successors.begin(), E = Successors.end();
|
||||
for(std::vector<MSchedGraphEdge>::iterator I = Successors.begin(),
|
||||
E = Successors.end();
|
||||
I != E; ++I) {
|
||||
if(I->getDest() == succ)
|
||||
return I->getIteDiff();
|
||||
@ -86,7 +89,8 @@ unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) {
|
||||
//Loop over all the successors of our predecessor
|
||||
//return the edge the corresponds to this in edge
|
||||
int count = 0;
|
||||
for(MSchedGraphNode::succ_iterator I = pred->succ_begin(), E = pred->succ_end();
|
||||
for(MSchedGraphNode::succ_iterator I = pred->succ_begin(),
|
||||
E = pred->succ_end();
|
||||
I != E; ++I) {
|
||||
if(*I == this)
|
||||
return count;
|
||||
@ -106,7 +110,8 @@ bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) {
|
||||
|
||||
//Dtermine if pred is a predecessor of this node
|
||||
bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) {
|
||||
if(std::find( Predecessors.begin(), Predecessors.end(), pred) != Predecessors.end())
|
||||
if(std::find( Predecessors.begin(), Predecessors.end(),
|
||||
pred) != Predecessors.end())
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
@ -138,13 +143,16 @@ void MSchedGraph::deleteNode(MSchedGraphNode *node) {
|
||||
|
||||
}
|
||||
|
||||
//Create a graph for a machine block. The ignoreInstrs map is so that we ignore instructions
|
||||
//associated to the index variable since this is a special case in Modulo Scheduling.
|
||||
//We only want to deal with the body of the loop.
|
||||
MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ,
|
||||
std::map<const MachineInstr*, unsigned> &ignoreInstrs,
|
||||
DependenceAnalyzer &DA, std::map<MachineInstr*, Instruction*> &machineTollvm
|
||||
)
|
||||
|
||||
//Create a graph for a machine block. The ignoreInstrs map is so that
|
||||
//we ignore instructions associated to the index variable since this
|
||||
//is a special case in Modulo Scheduling. We only want to deal with
|
||||
//the body of the loop.
|
||||
MSchedGraph::MSchedGraph(const MachineBasicBlock *bb,
|
||||
const TargetMachine &targ,
|
||||
std::map<const MachineInstr*, unsigned> &ignoreInstrs,
|
||||
DependenceAnalyzer &DA,
|
||||
std::map<MachineInstr*, Instruction*> &machineTollvm)
|
||||
: BB(bb), Target(targ) {
|
||||
|
||||
//Make sure BB is not null,
|
||||
@ -160,13 +168,15 @@ MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ,
|
||||
}
|
||||
|
||||
//Copies the graph and keeps a map from old to new nodes
|
||||
MSchedGraph::MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes)
|
||||
MSchedGraph::MSchedGraph(const MSchedGraph &G,
|
||||
std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes)
|
||||
: BB(G.BB), Target(G.Target) {
|
||||
|
||||
std::map<MSchedGraphNode*, MSchedGraphNode*> oldToNew;
|
||||
//Copy all nodes
|
||||
for(MSchedGraph::const_iterator N = G.GraphMap.begin(), NE = G.GraphMap.end();
|
||||
N != NE; ++N) {
|
||||
for(MSchedGraph::const_iterator N = G.GraphMap.begin(),
|
||||
NE = G.GraphMap.end(); N != NE; ++N) {
|
||||
|
||||
MSchedGraphNode *newNode = new MSchedGraphNode(*(N->second));
|
||||
oldToNew[&*(N->second)] = newNode;
|
||||
newNodes[newNode] = &*(N->second);
|
||||
@ -174,7 +184,8 @@ MSchedGraph::MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSched
|
||||
}
|
||||
|
||||
//Loop over nodes and update edges to point to new nodes
|
||||
for(MSchedGraph::iterator N = GraphMap.begin(), NE = GraphMap.end(); N != NE; ++N) {
|
||||
for(MSchedGraph::iterator N = GraphMap.begin(), NE = GraphMap.end();
|
||||
N != NE; ++N) {
|
||||
|
||||
//Get the node we are dealing with
|
||||
MSchedGraphNode *node = &*(N->second);
|
||||
@ -196,15 +207,49 @@ MSchedGraph::MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSched
|
||||
|
||||
//Deconstructor, deletes all nodes in the graph
|
||||
MSchedGraph::~MSchedGraph () {
|
||||
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I)
|
||||
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
|
||||
I != E; ++I)
|
||||
delete I->second;
|
||||
}
|
||||
|
||||
//Print out graph
|
||||
void MSchedGraph::print(std::ostream &os) const {
|
||||
for(MSchedGraph::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
|
||||
N != NE; ++N) {
|
||||
|
||||
//Get the node we are dealing with
|
||||
MSchedGraphNode *node = &*(N->second);
|
||||
|
||||
os << "Node Start\n";
|
||||
node->print(os);
|
||||
os << "Successors:\n";
|
||||
//print successors
|
||||
for(unsigned i = 0; i < node->succ_size(); ++i) {
|
||||
MSchedGraphEdge *edge = node->getSuccessor(i);
|
||||
MSchedGraphNode *oldDest = edge->getDest();
|
||||
oldDest->print(os);
|
||||
}
|
||||
os << "Node End\n";
|
||||
}
|
||||
}
|
||||
|
||||
//Calculate total delay
|
||||
int MSchedGraph::totalDelay() {
|
||||
int sum = 0;
|
||||
|
||||
for(MSchedGraph::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
|
||||
N != NE; ++N) {
|
||||
|
||||
//Get the node we are dealing with
|
||||
MSchedGraphNode *node = &*(N->second);
|
||||
sum += node->getLatency();
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
//Experimental code to add edges from the branch to all nodes dependent upon it.
|
||||
void hasPath(MSchedGraphNode *node, std::set<MSchedGraphNode*> &visited,
|
||||
std::set<MSchedGraphNode*> &branches, MSchedGraphNode *startNode,
|
||||
std::set<std::pair<MSchedGraphNode*,MSchedGraphNode*> > &newEdges ) {
|
||||
void hasPath(MSchedGraphNode *node, std::set<MSchedGraphNode*> &visited,
|
||||
std::set<MSchedGraphNode*> &branches, MSchedGraphNode *startNode,
|
||||
std::set<std::pair<MSchedGraphNode*,MSchedGraphNode*> > &newEdges ) {
|
||||
|
||||
visited.insert(node);
|
||||
DEBUG(std::cerr << "Visiting: " << *node << "\n");
|
||||
@ -229,7 +274,8 @@ void MSchedGraph::addBranchEdges() {
|
||||
std::set<MSchedGraphNode*> branches;
|
||||
std::set<MSchedGraphNode*> nodes;
|
||||
|
||||
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I) {
|
||||
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
|
||||
I != E; ++I) {
|
||||
if(I->second->isBranch())
|
||||
if(I->second->hasPredecessors())
|
||||
branches.insert(I->second);
|
||||
@ -238,7 +284,8 @@ void MSchedGraph::addBranchEdges() {
|
||||
//See if there is a path first instruction to the branches, if so, add an
|
||||
//iteration dependence between that node and the branch
|
||||
std::set<std::pair<MSchedGraphNode*, MSchedGraphNode*> > newEdges;
|
||||
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I) {
|
||||
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
|
||||
I != E; ++I) {
|
||||
std::set<MSchedGraphNode*> visited;
|
||||
hasPath((I->second), visited, branches, (I->second), newEdges);
|
||||
}
|
||||
@ -275,7 +322,8 @@ void MSchedGraph::addBranchEdges() {
|
||||
//Add edges between the nodes
|
||||
void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ignoreInstrs,
|
||||
DependenceAnalyzer &DA,
|
||||
std::map<MachineInstr*, Instruction*> &machineTollvm) {
|
||||
std::map<MachineInstr*, Instruction*> &machineTollvm) {
|
||||
|
||||
|
||||
//Get Machine target information for calculating latency
|
||||
const TargetInstrInfo *MTI = Target.getInstrInfo();
|
||||
@ -289,7 +337,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
|
||||
unsigned index = 0;
|
||||
|
||||
//Loop over instructions in MBB and add nodes and edges
|
||||
for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end(); MI != e; ++MI) {
|
||||
for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end();
|
||||
MI != e; ++MI) {
|
||||
|
||||
//Ignore indvar instructions
|
||||
if(ignoreInstrs.count(MI)) {
|
||||
@ -329,11 +378,13 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
|
||||
isBranch = true;
|
||||
|
||||
//Node is created and added to the graph automatically
|
||||
MSchedGraphNode *node = new MSchedGraphNode(MI, this, index, delay, isBranch);
|
||||
MSchedGraphNode *node = new MSchedGraphNode(MI, this, index, delay,
|
||||
isBranch);
|
||||
|
||||
DEBUG(std::cerr << "Created Node: " << *node << "\n");
|
||||
|
||||
//Check OpCode to keep track of memory operations to add memory dependencies later.
|
||||
//Check OpCode to keep track of memory operations to add memory
|
||||
//dependencies later.
|
||||
if(MTI->isLoad(opCode) || MTI->isStore(opCode))
|
||||
memInstructions.push_back(node);
|
||||
|
||||
@ -359,7 +410,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
|
||||
//Add virtual registers dependencies
|
||||
//Check if any exist in the value map already and create dependencies
|
||||
//between them.
|
||||
if(mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) {
|
||||
if(mOp.getType() == MachineOperand::MO_VirtualRegister
|
||||
|| mOp.getType() == MachineOperand::MO_CCRegister) {
|
||||
|
||||
//Make sure virtual register value is not null
|
||||
assert((mOp.getVRegValue() != NULL) && "Null value is defined");
|
||||
@ -395,9 +447,11 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
|
||||
++index;
|
||||
}
|
||||
|
||||
//Loop over LLVM BB, examine phi instructions, and add them to our phiInstr list to process
|
||||
//Loop over LLVM BB, examine phi instructions, and add them to our
|
||||
//phiInstr list to process
|
||||
const BasicBlock *llvm_bb = BB->getBasicBlock();
|
||||
for(BasicBlock::const_iterator I = llvm_bb->begin(), E = llvm_bb->end(); I != E; ++I) {
|
||||
for(BasicBlock::const_iterator I = llvm_bb->begin(), E = llvm_bb->end();
|
||||
I != E; ++I) {
|
||||
if(const PHINode *PN = dyn_cast<PHINode>(I)) {
|
||||
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(PN);
|
||||
for (unsigned j = 0; j < tempMvec.size(); j++) {
|
||||
@ -414,7 +468,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
|
||||
addMachRegEdges(regNumtoNodeMap);
|
||||
|
||||
//Finally deal with PHI Nodes and Value*
|
||||
for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(), E = phiInstrs.end(); I != E; ++I) {
|
||||
for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(),
|
||||
E = phiInstrs.end(); I != E; ++I) {
|
||||
|
||||
//Get Node for this instruction
|
||||
std::map<const MachineInstr*, MSchedGraphNode*>::iterator X;
|
||||
@ -431,7 +486,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
|
||||
for(unsigned i=0; i < (*I)->getNumOperands(); ++i) {
|
||||
//Get Operand
|
||||
const MachineOperand &mOp = (*I)->getOperand(i);
|
||||
if((mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
|
||||
if((mOp.getType() == MachineOperand::MO_VirtualRegister
|
||||
|| mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
|
||||
|
||||
//find the value in the map
|
||||
if (const Value* srcI = mOp.getVRegValue()) {
|
||||
@ -444,7 +500,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
|
||||
//those instructions
|
||||
//to this one we are processing
|
||||
if(V != valuetoNodeMap.end()) {
|
||||
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), phiInstrs, 1);
|
||||
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(),
|
||||
phiInstrs, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -496,7 +553,8 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
|
||||
//Loop over all machine registers in the map, and add dependencies
|
||||
//between the instructions that use it
|
||||
typedef std::map<int, std::vector<OpIndexNodePair> > regNodeMap;
|
||||
for(regNodeMap::iterator I = regNumtoNodeMap.begin(); I != regNumtoNodeMap.end(); ++I) {
|
||||
for(regNodeMap::iterator I = regNumtoNodeMap.begin();
|
||||
I != regNumtoNodeMap.end(); ++I) {
|
||||
//Get the register number
|
||||
int regNum = (*I).first;
|
||||
|
||||
@ -527,24 +585,29 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
|
||||
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
|
||||
//Src only uses the register (read)
|
||||
if(srcIsUse)
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::AntiDep);
|
||||
|
||||
else if(srcIsUseandDef) {
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::AntiDep);
|
||||
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::OutputDep);
|
||||
}
|
||||
else
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::OutputDep);
|
||||
}
|
||||
//Dest node is a read
|
||||
else {
|
||||
if(!srcIsUse || srcIsUseandDef)
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::TrueDep);
|
||||
}
|
||||
|
||||
@ -557,25 +620,29 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
|
||||
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
|
||||
//Src only uses the register (read)
|
||||
if(srcIsUse)
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::AntiDep, 1);
|
||||
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::AntiDep, 1);
|
||||
else if(srcIsUseandDef) {
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::AntiDep, 1);
|
||||
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::OutputDep, 1);
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::AntiDep, 1);
|
||||
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::OutputDep, 1);
|
||||
}
|
||||
else
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::OutputDep, 1);
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::OutputDep, 1);
|
||||
}
|
||||
//Dest node is a read
|
||||
else {
|
||||
if(!srcIsUse || srcIsUseandDef)
|
||||
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::TrueDep,1 );
|
||||
srcNode->addOutEdge(Nodes[j].second,
|
||||
MSchedGraphEdge::MachineRegister,
|
||||
MSchedGraphEdge::TrueDep,1 );
|
||||
}
|
||||
|
||||
|
||||
@ -589,8 +656,9 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
|
||||
|
||||
//Add edges between all loads and stores
|
||||
//Can be less strict with alias analysis and data dependence analysis.
|
||||
void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst, DependenceAnalyzer &DA,
|
||||
std::map<MachineInstr*, Instruction*> &machineTollvm) {
|
||||
void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst,
|
||||
DependenceAnalyzer &DA,
|
||||
std::map<MachineInstr*, Instruction*> &machineTollvm) {
|
||||
|
||||
//Get Target machine instruction info
|
||||
const TargetInstrInfo *TMI = Target.getInstrInfo();
|
||||
@ -603,38 +671,72 @@ void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst, Depe
|
||||
|
||||
//Get the machine opCode to determine type of memory instruction
|
||||
MachineOpCode srcNodeOpCode = srcInst->getOpcode();
|
||||
|
||||
//All instructions after this one in execution order have an
|
||||
//iteration delay of 0
|
||||
for(unsigned destIndex = 0; destIndex < memInst.size(); ++destIndex) {
|
||||
|
||||
//All instructions after this one in execution order have an iteration delay of 0
|
||||
for(unsigned destIndex = srcIndex + 1; destIndex < memInst.size(); ++destIndex) {
|
||||
//No self loops
|
||||
if(destIndex == srcIndex)
|
||||
continue;
|
||||
|
||||
MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
|
||||
|
||||
DEBUG(std::cerr << "MInst1: " << *srcInst << "\n");
|
||||
DEBUG(std::cerr << "Inst1: " << *machineTollvm[srcInst] << "\n");
|
||||
DEBUG(std::cerr << "MInst2: " << *destInst << "\n");
|
||||
DEBUG(std::cerr << "Inst2: " << *machineTollvm[destInst] << "\n");
|
||||
|
||||
//Assuming instructions without corresponding llvm instructions
|
||||
//are from constant pools.
|
||||
if (!machineTollvm.count(srcInst) || !machineTollvm.count(destInst))
|
||||
continue;
|
||||
|
||||
bool useDepAnalyzer = true;
|
||||
|
||||
DependenceResult dr = DA.getDependenceInfo(machineTollvm[srcInst], machineTollvm[destInst]);
|
||||
|
||||
for(std::vector<Dependence>::iterator d = dr.dependences.begin(), de = dr.dependences.end();
|
||||
d != de; ++d) {
|
||||
//Add edge from load to store
|
||||
memInst[srcIndex]->addOutEdge(memInst[destIndex],
|
||||
MSchedGraphEdge::MemoryDep,
|
||||
d->getDepType(), d->getIteDiff());
|
||||
|
||||
//Some machine loads and stores are generated by casts, so be
|
||||
//conservative and always add deps
|
||||
Instruction *srcLLVM = machineTollvm[srcInst];
|
||||
Instruction *destLLVM = machineTollvm[destInst];
|
||||
if(!isa<LoadInst>(srcLLVM)
|
||||
&& !isa<StoreInst>(srcLLVM)) {
|
||||
if(isa<BinaryOperator>(srcLLVM)) {
|
||||
if(isa<ConstantFP>(srcLLVM->getOperand(0)) || isa<ConstantFP>(srcLLVM->getOperand(1)))
|
||||
continue;
|
||||
}
|
||||
useDepAnalyzer = false;
|
||||
}
|
||||
if(!isa<LoadInst>(destLLVM)
|
||||
&& !isa<StoreInst>(destLLVM)) {
|
||||
if(isa<BinaryOperator>(destLLVM)) {
|
||||
if(isa<ConstantFP>(destLLVM->getOperand(0)) || isa<ConstantFP>(destLLVM->getOperand(1)))
|
||||
continue;
|
||||
}
|
||||
useDepAnalyzer = false;
|
||||
}
|
||||
|
||||
}
|
||||
//Use dep analysis when we have corresponding llvm loads/stores
|
||||
if(useDepAnalyzer) {
|
||||
bool srcBeforeDest = true;
|
||||
if(destIndex < srcIndex)
|
||||
srcBeforeDest = false;
|
||||
|
||||
//All instructions before the src in execution order have an iteration delay of 1
|
||||
for(unsigned destIndex = 0; destIndex < srcIndex; ++destIndex) {
|
||||
|
||||
MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
|
||||
bool malias = false;
|
||||
|
||||
//source is a Load, so add anti-dependencies (store after load)
|
||||
if(TMI->isLoad(srcNodeOpCode)) {
|
||||
DependenceResult dr = DA.getDependenceInfo(machineTollvm[srcInst],
|
||||
machineTollvm[destInst],
|
||||
srcBeforeDest);
|
||||
|
||||
for(std::vector<Dependence>::iterator d = dr.dependences.begin(),
|
||||
de = dr.dependences.end(); d != de; ++d) {
|
||||
//Add edge from load to store
|
||||
memInst[srcIndex]->addOutEdge(memInst[destIndex],
|
||||
MSchedGraphEdge::MemoryDep,
|
||||
d->getDepType(), d->getIteDiff());
|
||||
|
||||
}
|
||||
}
|
||||
//Otherwise, we can not do any further analysis and must make a dependence
|
||||
else {
|
||||
|
||||
//Get the machine opCode to determine type of memory instruction
|
||||
MachineOpCode destNodeOpCode = destInst->getOpcode();
|
||||
|
||||
//Get the Value* that we are reading from the load, always the first op
|
||||
const MachineOperand &mOp = srcInst->getOperand(0);
|
||||
@ -643,62 +745,31 @@ void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst, Depe
|
||||
if(mOp.hasAllocatedReg())
|
||||
if(mOp.getReg() == SparcV9::g0)
|
||||
continue;
|
||||
else
|
||||
malias = true;
|
||||
if(mOp2.hasAllocatedReg())
|
||||
if(mOp2.getReg() == SparcV9::g0)
|
||||
continue;
|
||||
|
||||
DEBUG(std::cerr << "Adding dependence for machine instructions\n");
|
||||
//Load-Store deps
|
||||
if(TMI->isLoad(srcNodeOpCode)) {
|
||||
|
||||
if(TMI->isStore(destNodeOpCode))
|
||||
memInst[srcIndex]->addOutEdge(memInst[destIndex],
|
||||
MSchedGraphEdge::MemoryDep,
|
||||
MSchedGraphEdge::AntiDep, 0);
|
||||
}
|
||||
else if(TMI->isStore(srcNodeOpCode)) {
|
||||
if(TMI->isStore(destNodeOpCode))
|
||||
memInst[srcIndex]->addOutEdge(memInst[destIndex],
|
||||
MSchedGraphEdge::MemoryDep,
|
||||
MSchedGraphEdge::OutputDep, 0);
|
||||
|
||||
else
|
||||
malias = true;
|
||||
|
||||
//Only add the edge if we can't verify that they do not alias
|
||||
/*if(AA.alias(mOp2.getVRegValue(),
|
||||
(unsigned)TD.getTypeSize(mOp2.getVRegValue()->getType()),
|
||||
mOp.getVRegValue(),
|
||||
(unsigned)TD.getTypeSize(mOp.getVRegValue()->getType()))
|
||||
!= AliasAnalysis::NoAlias) {*/
|
||||
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
|
||||
memInst[srcIndex]->addOutEdge(memInst[destIndex],
|
||||
MSchedGraphEdge::MemoryDep,
|
||||
MSchedGraphEdge::AntiDep, 1);
|
||||
//}
|
||||
memInst[srcIndex]->addOutEdge(memInst[destIndex],
|
||||
MSchedGraphEdge::MemoryDep,
|
||||
MSchedGraphEdge::TrueDep, 0);
|
||||
}
|
||||
}
|
||||
if(TMI->isStore(srcNodeOpCode)) {
|
||||
|
||||
//Get the Value* that we are reading from the load, always the first op
|
||||
const MachineOperand &mOp = srcInst->getOperand(0);
|
||||
const MachineOperand &mOp2 = destInst->getOperand(0);
|
||||
|
||||
if(mOp.hasAllocatedReg())
|
||||
if(mOp.getReg() == SparcV9::g0)
|
||||
continue;
|
||||
else
|
||||
malias = true;
|
||||
if(mOp2.hasAllocatedReg())
|
||||
if(mOp2.getReg() == SparcV9::g0)
|
||||
continue;
|
||||
else
|
||||
malias = true;
|
||||
|
||||
//Only add the edge if we can't verify that they do not alias
|
||||
/*if(AA.alias(mOp2.getVRegValue(),
|
||||
(unsigned)TD.getTypeSize(mOp2.getVRegValue()->getType()),
|
||||
mOp.getVRegValue(),
|
||||
(unsigned)TD.getTypeSize(mOp.getVRegValue()->getType()))
|
||||
!= AliasAnalysis::NoAlias) {*/
|
||||
|
||||
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
|
||||
memInst[srcIndex]->addOutEdge(memInst[destIndex],
|
||||
MSchedGraphEdge::MemoryDep,
|
||||
MSchedGraphEdge::OutputDep, 1);
|
||||
else
|
||||
memInst[srcIndex]->addOutEdge(memInst[destIndex],
|
||||
MSchedGraphEdge::MemoryDep,
|
||||
MSchedGraphEdge::TrueDep, 1);
|
||||
//}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -258,6 +258,9 @@ namespace llvm {
|
||||
|
||||
//Copy constructor with maps to link old nodes to new nodes
|
||||
MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes);
|
||||
|
||||
//Print graph
|
||||
void print(std::ostream &os) const;
|
||||
|
||||
//Deconstructor!
|
||||
~MSchedGraph();
|
||||
@ -265,6 +268,7 @@ namespace llvm {
|
||||
//Add or delete nodes from the Graph
|
||||
void addNode(const MachineInstr* MI, MSchedGraphNode *node);
|
||||
void deleteNode(MSchedGraphNode *node);
|
||||
int totalDelay();
|
||||
|
||||
//iterators
|
||||
typedef std::map<const MachineInstr*, MSchedGraphNode*>::iterator iterator;
|
||||
|
@ -74,12 +74,23 @@ static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
|
||||
|
||||
//Graph Traits for printing out the dependence graph
|
||||
namespace llvm {
|
||||
|
||||
//Loop statistics
|
||||
Statistic<> ValidLoops("modulosched-validLoops", "Number of candidate loops modulo-scheduled");
|
||||
Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
|
||||
Statistic<> IncreasedII("modulosched-increasedII", "Number of times we had to increase II");
|
||||
Statistic<> JumboBB("modulosched-jumboBB", "Basic Blocks with more then 100 instructions");
|
||||
Statistic<> LoopsWithCalls("modulosched-loopCalls", "Loops with calls");
|
||||
Statistic<> LoopsWithCondMov("modulosched-loopCondMov", "Loops with conditional moves");
|
||||
Statistic<> InvalidLoops("modulosched-invalidLoops", "Loops with unknown trip counts or loop invariant trip counts");
|
||||
Statistic<> SingleBBLoops("modulosched-singeBBLoops", "Number of single basic block loops");
|
||||
|
||||
//Scheduling Statistics
|
||||
Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
|
||||
Statistic<> NoSched("modulosched-noSched", "No schedule");
|
||||
Statistic<> SameStage("modulosched-sameStage", "Max stage is 0");
|
||||
Statistic<> ResourceConstraint("modulosched-resourceConstraint", "Loops constrained by resources");
|
||||
Statistic<> RecurrenceConstraint("modulosched-recurrenceConstraint", "Loops constrained by recurrences");
|
||||
Statistic<> FinalIISum("modulosched-finalIISum", "Sum of all final II");
|
||||
Statistic<> IISum("modulosched-IISum", "Sum of all theoretical II");
|
||||
|
||||
template<>
|
||||
struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
|
||||
@ -142,7 +153,7 @@ namespace llvm {
|
||||
/// 3) Scheduling
|
||||
///
|
||||
bool ModuloSchedulingPass::runOnFunction(Function &F) {
|
||||
alarm(300);
|
||||
alarm(100);
|
||||
|
||||
bool Changed = false;
|
||||
int numMS = 0;
|
||||
@ -160,9 +171,14 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
|
||||
|
||||
//Iterate over BasicBlocks and put them into our worklist if they are valid
|
||||
for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
|
||||
if(MachineBBisValid(BI)) {
|
||||
Worklist.push_back(&*BI);
|
||||
++ValidLoops;
|
||||
if(MachineBBisValid(BI)) {
|
||||
if(BI->size() < 100) {
|
||||
Worklist.push_back(&*BI);
|
||||
++ValidLoops;
|
||||
}
|
||||
else
|
||||
++JumboBB;
|
||||
std::cerr << "BB Size: " << BI->size() << "\n";
|
||||
}
|
||||
|
||||
defaultInst = 0;
|
||||
@ -174,6 +190,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
|
||||
BE = Worklist.end(); BI != BE; ++BI) {
|
||||
|
||||
//Print out BB for debugging
|
||||
DEBUG(std::cerr << "BB Size: " << (*BI)->size() << "\n");
|
||||
DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
|
||||
|
||||
//Print out LLVM BB
|
||||
@ -195,6 +212,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
|
||||
|
||||
//Write Graph out to file
|
||||
DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
|
||||
DEBUG(MSG->print(std::cerr));
|
||||
|
||||
//Calculate Resource II
|
||||
int ResMII = calculateResMII(*BI);
|
||||
@ -204,11 +222,15 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
|
||||
|
||||
DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
|
||||
|
||||
|
||||
|
||||
|
||||
//Our starting initiation interval is the maximum of RecMII and ResMII
|
||||
if(RecMII < ResMII)
|
||||
++RecurrenceConstraint;
|
||||
else
|
||||
++ResourceConstraint;
|
||||
|
||||
II = std::max(RecMII, ResMII);
|
||||
int mII = II;
|
||||
IISum += mII;
|
||||
|
||||
//Print out II, RecMII, and ResMII
|
||||
DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
|
||||
@ -252,7 +274,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
|
||||
});
|
||||
|
||||
//Finally schedule nodes
|
||||
bool haveSched = computeSchedule(*BI);
|
||||
bool haveSched = computeSchedule(*BI, MSG);
|
||||
|
||||
//Print out final schedule
|
||||
DEBUG(schedule.print(std::cerr));
|
||||
@ -363,9 +385,11 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
|
||||
MachineOpCode OC = I->getOpcode();
|
||||
|
||||
//Look for calls
|
||||
if(TMI->isCall(OC))
|
||||
if(TMI->isCall(OC)) {
|
||||
++LoopsWithCalls;
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
//Look for conditional move
|
||||
if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi
|
||||
|| OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi
|
||||
@ -373,8 +397,10 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
|
||||
|| OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
|
||||
|| OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
|
||||
|| OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
|
||||
|| OC == V9::MOVFNEr || OC == V9::MOVFNEi)
|
||||
|| OC == V9::MOVFNEr || OC == V9::MOVFNEi) {
|
||||
++LoopsWithCondMov;
|
||||
return false;
|
||||
}
|
||||
|
||||
indexMap[I] = count;
|
||||
|
||||
@ -406,14 +432,19 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
|
||||
|
||||
if(Instruction *I = dyn_cast<Instruction>(cond))
|
||||
if(I->getParent() == BB) {
|
||||
if (!assocIndVar(I, indVar, stack, BB))
|
||||
if (!assocIndVar(I, indVar, stack, BB)) {
|
||||
++InvalidLoops;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
else {
|
||||
++InvalidLoops;
|
||||
return false;
|
||||
else
|
||||
}
|
||||
else {
|
||||
++InvalidLoops;
|
||||
return false;
|
||||
|
||||
}
|
||||
//The indVar set must be >= 3 instructions for this loop to match (FIX ME!)
|
||||
if(indVar.size() < 3 )
|
||||
return false;
|
||||
@ -523,7 +554,7 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
|
||||
//Loop over resources in each cycle and increments their usage count
|
||||
for(unsigned i=0; i < resources.size(); ++i)
|
||||
for(unsigned j=0; j < resources[i].size(); ++j) {
|
||||
if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
|
||||
if(!resourceUsageCount.count(resources[i][j])) {
|
||||
resourceUsageCount[resources[i][j]] = 1;
|
||||
}
|
||||
else {
|
||||
@ -913,67 +944,8 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
|
||||
for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
|
||||
if(*I == s) {
|
||||
//We have a circuit, so add it to our list
|
||||
|
||||
std::vector<MSchedGraphNode*> recc;
|
||||
//Dump recurrence for now
|
||||
DEBUG(std::cerr << "Starting Recc\n");
|
||||
|
||||
int totalDelay = 0;
|
||||
int totalDistance = 0;
|
||||
MSchedGraphNode *lastN = 0;
|
||||
MSchedGraphNode *start = 0;
|
||||
MSchedGraphNode *end = 0;
|
||||
|
||||
//Loop over recurrence, get delay and distance
|
||||
for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
|
||||
totalDelay += (*N)->getLatency();
|
||||
if(lastN) {
|
||||
int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
|
||||
totalDistance += iteDiff;
|
||||
|
||||
if(iteDiff > 0) {
|
||||
start = lastN;
|
||||
end = *N;
|
||||
}
|
||||
}
|
||||
//Get the original node
|
||||
lastN = *N;
|
||||
recc.push_back(newNodes[*N]);
|
||||
|
||||
DEBUG(std::cerr << *lastN << "\n");
|
||||
}
|
||||
|
||||
//Get the loop edge
|
||||
totalDistance += lastN->getIteDiff(*stack.begin());
|
||||
|
||||
DEBUG(std::cerr << "End Recc\n");
|
||||
addRecc(stack, newNodes);
|
||||
f = true;
|
||||
CircCount++;
|
||||
|
||||
if(start && end) {
|
||||
//Insert reccurrence into the list
|
||||
DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
|
||||
edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
|
||||
}
|
||||
else {
|
||||
//Insert reccurrence into the list
|
||||
DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
|
||||
edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
|
||||
|
||||
}
|
||||
//Adjust II until we get close to the inequality delay - II*distance <= 0
|
||||
int RecMII = II; //Starting value
|
||||
int value = totalDelay-(RecMII * totalDistance);
|
||||
int lastII = II;
|
||||
while(value <= 0) {
|
||||
|
||||
lastII = RecMII;
|
||||
RecMII--;
|
||||
value = totalDelay-(RecMII * totalDistance);
|
||||
}
|
||||
|
||||
recurrenceList.insert(std::make_pair(lastII, recc));
|
||||
|
||||
}
|
||||
else if(!blocked.count(*I)) {
|
||||
if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes))
|
||||
@ -1000,6 +972,70 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
|
||||
|
||||
}
|
||||
|
||||
void ModuloSchedulingPass::addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
|
||||
std::vector<MSchedGraphNode*> recc;
|
||||
//Dump recurrence for now
|
||||
DEBUG(std::cerr << "Starting Recc\n");
|
||||
|
||||
int totalDelay = 0;
|
||||
int totalDistance = 0;
|
||||
MSchedGraphNode *lastN = 0;
|
||||
MSchedGraphNode *start = 0;
|
||||
MSchedGraphNode *end = 0;
|
||||
|
||||
//Loop over recurrence, get delay and distance
|
||||
for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
|
||||
DEBUG(std::cerr << **N << "\n");
|
||||
totalDelay += (*N)->getLatency();
|
||||
if(lastN) {
|
||||
int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
|
||||
totalDistance += iteDiff;
|
||||
|
||||
if(iteDiff > 0) {
|
||||
start = lastN;
|
||||
end = *N;
|
||||
}
|
||||
}
|
||||
//Get the original node
|
||||
lastN = *N;
|
||||
recc.push_back(newNodes[*N]);
|
||||
|
||||
|
||||
}
|
||||
|
||||
//Get the loop edge
|
||||
totalDistance += lastN->getIteDiff(*stack.begin());
|
||||
|
||||
DEBUG(std::cerr << "End Recc\n");
|
||||
CircCount++;
|
||||
|
||||
if(start && end) {
|
||||
//Insert reccurrence into the list
|
||||
DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
|
||||
edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
|
||||
}
|
||||
else {
|
||||
//Insert reccurrence into the list
|
||||
DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
|
||||
edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
|
||||
|
||||
}
|
||||
//Adjust II until we get close to the inequality delay - II*distance <= 0
|
||||
int RecMII = II; //Starting value
|
||||
int value = totalDelay-(RecMII * totalDistance);
|
||||
int lastII = II;
|
||||
while(value < 0) {
|
||||
|
||||
lastII = RecMII;
|
||||
RecMII--;
|
||||
value = totalDelay-(RecMII * totalDistance);
|
||||
}
|
||||
|
||||
recurrenceList.insert(std::make_pair(lastII, recc));
|
||||
|
||||
}
|
||||
|
||||
|
||||
void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
|
||||
|
||||
CircCount = 0;
|
||||
@ -1086,12 +1122,13 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
|
||||
if(Vk.size() > 1) {
|
||||
circuit(s, stack, blocked, Vk, s, B, II, newNodes);
|
||||
|
||||
//Delete nodes from the graph
|
||||
//Find all nodes up to s and delete them
|
||||
std::vector<MSchedGraphNode*> nodesToRemove;
|
||||
nodesToRemove.push_back(s);
|
||||
for(MSchedGraph::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) {
|
||||
if(N->second < s )
|
||||
nodesToRemove.push_back(N->second);
|
||||
nodesToRemove.push_back(N->second);
|
||||
}
|
||||
for(std::vector<MSchedGraphNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) {
|
||||
DEBUG(std::cerr << "Deleting Node: " << **N << "\n");
|
||||
@ -1100,7 +1137,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
DEBUG(std::cerr << "Num Circuits found: " << CircCount << "\n");
|
||||
}
|
||||
|
||||
@ -1253,17 +1290,21 @@ void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
|
||||
void ModuloSchedulingPass::computePartialOrder() {
|
||||
|
||||
TIME_REGION(X, "calculatePartialOrder");
|
||||
|
||||
DEBUG(std::cerr << "Computing Partial Order\n");
|
||||
|
||||
//Only push BA branches onto the final node order, we put other
|
||||
//branches after it FIXME: Should we really be pushing branches on
|
||||
//it a specific order instead of relying on BA being there?
|
||||
|
||||
//Only push BA branches onto the final node order, we put other branches after it
|
||||
//FIXME: Should we really be pushing branches on it a specific order instead of relying
|
||||
//on BA being there?
|
||||
std::vector<MSchedGraphNode*> branches;
|
||||
|
||||
//Steps to add a recurrence to the partial order
|
||||
// 1) Find reccurrence with the highest RecMII. Add it to the partial order.
|
||||
// 2) For each recurrence with decreasing RecMII, add it to the partial order along with
|
||||
// any nodes that connect this recurrence to recurrences already in the partial order
|
||||
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator
|
||||
|
||||
//Steps to add a recurrence to the partial order 1) Find reccurrence
|
||||
//with the highest RecMII. Add it to the partial order. 2) For each
|
||||
//recurrence with decreasing RecMII, add it to the partial order
|
||||
//along with any nodes that connect this recurrence to recurrences
|
||||
//already in the partial order
|
||||
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator
|
||||
I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
|
||||
|
||||
std::set<MSchedGraphNode*> new_recurrence;
|
||||
@ -1296,6 +1337,10 @@ void ModuloSchedulingPass::computePartialOrder() {
|
||||
std::vector<MSchedGraphNode*> path;
|
||||
std::set<MSchedGraphNode*> nodesToAdd;
|
||||
|
||||
//Dump recc we are dealing with (minus nodes already in PO)
|
||||
DEBUG(std::cerr << "Recc: ");
|
||||
DEBUG(for(std::set<MSchedGraphNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; });
|
||||
|
||||
//Add nodes that connect this recurrence to recurrences in the partial path
|
||||
for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(),
|
||||
NE = new_recurrence.end(); N != NE; ++N)
|
||||
@ -1318,6 +1363,15 @@ void ModuloSchedulingPass::computePartialOrder() {
|
||||
|
||||
partialOrder.push_back(new_recurrence);
|
||||
|
||||
|
||||
//Dump out partial order
|
||||
DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
|
||||
E = partialOrder.end(); I !=E; ++I) {
|
||||
std::cerr << "Start set in PO\n";
|
||||
for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
|
||||
std::cerr << "PO:" << **J << "\n";
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -1649,7 +1703,7 @@ void ModuloSchedulingPass::orderNodes() {
|
||||
//return FinalNodeOrder;
|
||||
}
|
||||
|
||||
bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
|
||||
bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB, MSchedGraph *MSG) {
|
||||
|
||||
TIME_REGION(X, "computeSchedule");
|
||||
|
||||
@ -1657,7 +1711,7 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
|
||||
|
||||
//FIXME: Should be set to max II of the original loop
|
||||
//Cap II in order to prevent infinite loop
|
||||
int capII = 100;
|
||||
int capII = MSG->totalDelay();
|
||||
|
||||
while(!success) {
|
||||
|
||||
@ -1768,8 +1822,7 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
|
||||
success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
|
||||
|
||||
if(!success) {
|
||||
++IncreasedII;
|
||||
++II;
|
||||
++II;
|
||||
schedule.clear();
|
||||
break;
|
||||
}
|
||||
@ -1781,11 +1834,11 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
|
||||
success = schedule.constructKernel(II, branches, indVarInstrs[BB]);
|
||||
DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
|
||||
if(!success) {
|
||||
++IncreasedII;
|
||||
++II;
|
||||
schedule.clear();
|
||||
}
|
||||
DEBUG(std::cerr << "Final II: " << II << "\n");
|
||||
FinalIISum += II;
|
||||
}
|
||||
|
||||
if(II >= capII) {
|
||||
|
@ -19,6 +19,8 @@
|
||||
#include "llvm/Pass.h"
|
||||
#include "DependenceAnalyzer.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include <set>
|
||||
|
||||
namespace llvm {
|
||||
@ -107,7 +109,9 @@ namespace llvm {
|
||||
void unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*> &blocked,
|
||||
std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B);
|
||||
|
||||
void searchPath(MSchedGraphNode *node,
|
||||
void addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes);
|
||||
|
||||
void searchPath(MSchedGraphNode *node,
|
||||
std::vector<MSchedGraphNode*> &path,
|
||||
std::set<MSchedGraphNode*> &nodesToAdd);
|
||||
|
||||
@ -117,8 +121,8 @@ namespace llvm {
|
||||
|
||||
void computePartialOrder();
|
||||
|
||||
bool computeSchedule(const MachineBasicBlock *BB);
|
||||
bool scheduleNode(MSchedGraphNode *node,
|
||||
bool computeSchedule(const MachineBasicBlock *BB, MSchedGraph *MSG);
|
||||
bool scheduleNode(MSchedGraphNode *node,
|
||||
int start, int end);
|
||||
|
||||
void predIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult);
|
||||
@ -148,6 +152,12 @@ namespace llvm {
|
||||
|
||||
// getAnalysisUsage
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
/// HACK: We don't actually need loopinfo or scev, but we have
|
||||
/// to say we do so that the pass manager does not delete it
|
||||
/// before we run.
|
||||
AU.addRequired<LoopInfo>();
|
||||
AU.addRequired<ScalarEvolution>();
|
||||
|
||||
AU.addRequired<DependenceAnalyzer>();
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user