1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00

Updated dependence analyzer. Fixed numerous bugs. Same stage scheduling, etc.

llvm-svn: 21444
This commit is contained in:
Tanya Lattner 2005-04-22 06:32:48 +00:00
parent c638ca05a0
commit 3f4d35ca74
6 changed files with 646 additions and 302 deletions

View File

@ -1,4 +1,4 @@
//===-- DependenceAnalyzer.cpp - DependenceAnalyzer ----------------*- C++ -*-===//
//===-- DependenceAnalyzer.cpp - DependenceAnalyzer ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@ -16,92 +16,279 @@
#include "DependenceAnalyzer.h"
#include "llvm/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
using namespace llvm;
namespace llvm {
/// Create ModuloSchedulingPass
///
namespace llvm {
FunctionPass *createDependenceAnalyzer() {
return new DependenceAnalyzer();
}
}
Statistic<> NoDeps("depanalyzer-nodeps", "Number of dependences eliminated");
Statistic<> NumDeps("depanalyzer-deps",
"Number of dependences could not eliminate");
Statistic<> AdvDeps("depanalyzer-advdeps",
"Number of dependences using advanced techniques");
bool DependenceAnalyzer::runOnFunction(Function &F) {
AA = &getAnalysis<AliasAnalysis>();
TD = &getAnalysis<TargetData>();
SE = &getAnalysis<ScalarEvolution>();
return false;
}
static RegisterAnalysis<DependenceAnalyzer>X("depanalyzer", "Dependence Analyzer");
static RegisterAnalysis<DependenceAnalyzer>X("depanalyzer",
"Dependence Analyzer");
DependenceResult DependenceAnalyzer::getDependenceInfo(Instruction *inst1, Instruction *inst2) {
// - Get inter and intra dependences between loads and stores
//
// Overview of Method:
// Step 1: Use alias analysis to determine dependencies if values are loop
// invariant
// Step 2: If pointers are not GEP, then there is a dependence.
// Step 3: Compare GEP base pointers with AA. If no alias, no dependence.
// If may alias, then add a dependence. If must alias, then analyze
// further (Step 4)
// Step 4: do advanced analysis
void DependenceAnalyzer::AnalyzeDeps(Value *val, Value *val2, bool valLoad,
bool val2Load,
std::vector<Dependence> &deps,
BasicBlock *BB,
bool srcBeforeDest) {
bool loopInvariant = true;
//Check if both are instructions and prove not loop invariant if possible
if(Instruction *valInst = dyn_cast<Instruction>(val))
if(valInst->getParent() == BB)
loopInvariant = false;
if(Instruction *val2Inst = dyn_cast<Instruction>(val2))
if(val2Inst->getParent() == BB)
loopInvariant = false;
//If Loop invariant, let AA decide
if(loopInvariant) {
if(AA->alias(val, (unsigned)TD->getTypeSize(val->getType()),
val2,(unsigned)TD->getTypeSize(val2->getType()))
!= AliasAnalysis::NoAlias) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
}
else
++NoDeps;
return;
}
//Otherwise, continue with step 2
GetElementPtrInst *GP = dyn_cast<GetElementPtrInst>(val);
GetElementPtrInst *GP2 = dyn_cast<GetElementPtrInst>(val2);
//If both are not GP instructions, we can not do further analysis
if(!GP || !GP2) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
//Otherwise, compare GEP bases (op #0) with Alias Analysis
Value *GPop = GP->getOperand(0);
Value *GP2op = GP2->getOperand(0);
int alias = AA->alias(GPop, (unsigned)TD->getTypeSize(GPop->getType()),
GP2op,(unsigned)TD->getTypeSize(GP2op->getType()));
if(alias == AliasAnalysis::MustAlias) {
//Further dep analysis to do
advancedDepAnalysis(GP, GP2, valLoad, val2Load, deps, srcBeforeDest);
++AdvDeps;
}
else if(alias == AliasAnalysis::MayAlias) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
}
//Otherwise no dependence since there is no alias
else
++NoDeps;
}
// advancedDepAnalysis - Do advanced data dependence tests
void DependenceAnalyzer::advancedDepAnalysis(GetElementPtrInst *gp1,
GetElementPtrInst *gp2,
bool valLoad,
bool val2Load,
std::vector<Dependence> &deps,
bool srcBeforeDest) {
//Check if both GEPs are in a simple form: 3 ops, constant 0 as second arg
if(gp1->getNumOperands() != 3 || gp2->getNumOperands() != 3) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
//Check second arg is constant 0
bool GPok = false;
if(Constant *c1 = dyn_cast<Constant>(gp1->getOperand(1)))
if(Constant *c2 = dyn_cast<Constant>(gp2->getOperand(1)))
if(c1->isNullValue() && c2->isNullValue())
GPok = true;
if(!GPok) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
Value *Gep1Idx = gp1->getOperand(2);
Value *Gep2Idx = gp2->getOperand(2);
if(CastInst *c1 = dyn_cast<CastInst>(Gep1Idx))
Gep1Idx = c1->getOperand(0);
if(CastInst *c2 = dyn_cast<CastInst>(Gep2Idx))
Gep2Idx = c2->getOperand(0);
//Get SCEV for each index into the area
SCEVHandle SV1 = SE->getSCEV(Gep1Idx);
SCEVHandle SV2 = SE->getSCEV(Gep2Idx);
//Now handle special cases of dependence analysis
SV1->print(std::cerr);
std::cerr << "\n";
SV2->print(std::cerr);
std::cerr << "\n";
//Check if we have an SCEVAddExpr, cause we can only handle those
SCEVAddRecExpr *SVAdd1 = dyn_cast<SCEVAddRecExpr>(SV1);
SCEVAddRecExpr *SVAdd2 = dyn_cast<SCEVAddRecExpr>(SV2);
//Default to having a dependence since we can't analyze further
if(!SVAdd1 || !SVAdd2) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
//Check if not Affine, we can't handle those
if(!SVAdd1->isAffine( ) || !SVAdd2->isAffine()) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
//We know the SCEV is in the form A + B*x, check that B is the same for both
SCEVConstant *B1 = dyn_cast<SCEVConstant>(SVAdd1->getOperand(1));
SCEVConstant *B2 = dyn_cast<SCEVConstant>(SVAdd2->getOperand(1));
if(B1->getValue() != B2->getValue()) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
if(B1->getValue()->getRawValue() != 1 || B2->getValue()->getRawValue() != 1) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
SCEVConstant *A1 = dyn_cast<SCEVConstant>(SVAdd1->getOperand(0));
SCEVConstant *A2 = dyn_cast<SCEVConstant>(SVAdd2->getOperand(0));
//Come back and deal with nested SCEV!
if(!A1 || !A2) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
//If equal, create dep as normal
if(A1->getValue() == A2->getValue()) {
createDep(deps, valLoad, val2Load, srcBeforeDest);
return;
}
//Eliminate a dep if this is a intra dep
else if(srcBeforeDest) {
++NoDeps;
return;
}
//Find constant index difference
int diff = A1->getValue()->getRawValue() - A2->getValue()->getRawValue();
std::cerr << diff << "\n";
if(diff > 0)
createDep(deps, valLoad, val2Load, srcBeforeDest, diff);
//assert(diff > 0 && "Expected diff to be greater then 0");
}
// Create dependences once its determined these two instructions
// references the same memory
void DependenceAnalyzer::createDep(std::vector<Dependence> &deps,
bool valLoad, bool val2Load,
bool srcBeforeDest, int diff) {
//If the source instruction occurs after the destination instruction
//(execution order), then this dependence is across iterations
if(!srcBeforeDest && (diff==0))
diff = 1;
//If load/store pair
if(valLoad && !val2Load) {
//Anti Dep
deps.push_back(Dependence(diff, Dependence::AntiDep));
++NumDeps;
}
//If store/load pair
else if(!valLoad && val2Load) {
//True Dep
deps.push_back(Dependence(diff, Dependence::TrueDep));
++NumDeps;
}
//If store/store pair
else if(!valLoad && !val2Load) {
//True Dep
deps.push_back(Dependence(diff, Dependence::OutputDep));
++NumDeps;
}
}
//Get Dependence Info for a pair of Instructions
DependenceResult DependenceAnalyzer::getDependenceInfo(Instruction *inst1,
Instruction *inst2,
bool srcBeforeDest) {
std::vector<Dependence> deps;
DEBUG(std::cerr << "Inst1: " << *inst1 << "\n");
DEBUG(std::cerr << "Inst2: " << *inst2 << "\n");
//No self deps
if(inst1 == inst2)
return DependenceResult(deps);
if(LoadInst *ldInst = dyn_cast<LoadInst>(inst1)) {
if(StoreInst *stInst = dyn_cast<StoreInst>(inst2)) {
//Get load mem ref
Value *ldOp = ldInst->getOperand(0);
//Get store mem ref
Value *stOp = stInst->getOperand(1);
if(AA->alias(ldOp, (unsigned)TD->getTypeSize(ldOp->getType()),
stOp,(unsigned)TD->getTypeSize(stOp->getType()))
!= AliasAnalysis::NoAlias) {
//Anti Dep
deps.push_back(Dependence(0, Dependence::AntiDep));
if(StoreInst *stInst = dyn_cast<StoreInst>(inst2))
AnalyzeDeps(ldInst->getOperand(0), stInst->getOperand(1),
true, false, deps, ldInst->getParent(), srcBeforeDest);
}
}
}
else if(StoreInst *stInst = dyn_cast<StoreInst>(inst1)) {
if(LoadInst *ldInst = dyn_cast<LoadInst>(inst2)) {
//Get load mem ref
Value *ldOp = ldInst->getOperand(0);
//Get store mem ref
Value *stOp = stInst->getOperand(1);
if(AA->alias(ldOp, (unsigned)TD->getTypeSize(ldOp->getType()),
stOp,(unsigned)TD->getTypeSize(stOp->getType()))
!= AliasAnalysis::NoAlias) {
//Anti Dep
deps.push_back(Dependence(0, Dependence::TrueDep));
}
}
else if(StoreInst *stInst2 = dyn_cast<StoreInst>(inst2)) {
//Get load mem ref
Value *stOp1 = stInst->getOperand(1);
//Get store mem ref
Value *stOp2 = stInst2->getOperand(1);
if(AA->alias(stOp1, (unsigned)TD->getTypeSize(stOp1->getType()),
stOp2,(unsigned)TD->getTypeSize(stOp2->getType()))
!= AliasAnalysis::NoAlias) {
//Anti Dep
deps.push_back(Dependence(0, Dependence::OutputDep));
}
}
if(LoadInst *ldInst = dyn_cast<LoadInst>(inst2))
AnalyzeDeps(stInst->getOperand(1), ldInst->getOperand(0), false, true,
deps, ldInst->getParent(), srcBeforeDest);
else if(StoreInst *stInst2 = dyn_cast<StoreInst>(inst2))
AnalyzeDeps(stInst->getOperand(1), stInst2->getOperand(1), false, false,
deps, stInst->getParent(), srcBeforeDest);
}
else
assert("Expected a load or a store\n");
assert(0 && "Expected a load or a store\n");
DependenceResult dr = DependenceResult(deps);
return dr;

View File

@ -17,11 +17,13 @@
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Target/TargetData.h"
#include <vector>
namespace llvm {
//class to represent a dependence
struct Dependence {
@ -47,11 +49,25 @@ namespace llvm {
class DependenceAnalyzer : public FunctionPass {
AliasAnalysis *AA;
TargetData *TD;
ScalarEvolution *SE;
void advancedDepAnalysis(GetElementPtrInst *gp1, GetElementPtrInst *gp2,
bool valLoad, bool val2Load,
std::vector<Dependence> &deps, bool srcBeforeDest);
void AnalyzeDeps(Value *val, Value *val2, bool val1Load, bool val2Load,
std::vector<Dependence> &deps, BasicBlock *BB,
bool srcBeforeDest);
void createDep(std::vector<Dependence> &deps, bool valLoad, bool val2Load,
bool srcBeforeDest, int diff = 0);
public:
DependenceAnalyzer() { AA = 0; TD = 0; }
DependenceAnalyzer() { AA = 0; TD = 0; SE = 0; }
virtual bool runOnFunction(Function &F);
virtual const char* getPassName() const { return "DependenceAnalyzer"; }
@ -59,10 +75,13 @@ namespace llvm {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetData>();
AU.addRequired<ScalarEvolution>();
AU.setPreservesAll();
}
//get dependence info
DependenceResult getDependenceInfo(Instruction *inst1, Instruction *inst2);
DependenceResult getDependenceInfo(Instruction *inst1, Instruction *inst2,
bool srcBeforeDest);
};

View File

@ -19,6 +19,7 @@
#include "../SparcV9RegisterInfo.h"
#include "../MachineCodeForInstruction.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
@ -34,7 +35,8 @@ using namespace llvm;
MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst,
MSchedGraph *graph, unsigned idx,
unsigned late, bool isBranch)
: Inst(inst), Parent(graph), index(idx), latency(late), isBranchInstr(isBranch) {
: Inst(inst), Parent(graph), index(idx), latency(late),
isBranchInstr(isBranch) {
//Add to the graph
graph->addNode(inst, this);
@ -73,7 +75,8 @@ MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) {
//Get the iteration difference for the edge from this node to its successor
unsigned MSchedGraphNode::getIteDiff(MSchedGraphNode *succ) {
for(std::vector<MSchedGraphEdge>::iterator I = Successors.begin(), E = Successors.end();
for(std::vector<MSchedGraphEdge>::iterator I = Successors.begin(),
E = Successors.end();
I != E; ++I) {
if(I->getDest() == succ)
return I->getIteDiff();
@ -86,7 +89,8 @@ unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) {
//Loop over all the successors of our predecessor
//return the edge the corresponds to this in edge
int count = 0;
for(MSchedGraphNode::succ_iterator I = pred->succ_begin(), E = pred->succ_end();
for(MSchedGraphNode::succ_iterator I = pred->succ_begin(),
E = pred->succ_end();
I != E; ++I) {
if(*I == this)
return count;
@ -106,7 +110,8 @@ bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) {
//Dtermine if pred is a predecessor of this node
bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) {
if(std::find( Predecessors.begin(), Predecessors.end(), pred) != Predecessors.end())
if(std::find( Predecessors.begin(), Predecessors.end(),
pred) != Predecessors.end())
return true;
else
return false;
@ -138,13 +143,16 @@ void MSchedGraph::deleteNode(MSchedGraphNode *node) {
}
//Create a graph for a machine block. The ignoreInstrs map is so that we ignore instructions
//associated to the index variable since this is a special case in Modulo Scheduling.
//We only want to deal with the body of the loop.
MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ,
//Create a graph for a machine block. The ignoreInstrs map is so that
//we ignore instructions associated to the index variable since this
//is a special case in Modulo Scheduling. We only want to deal with
//the body of the loop.
MSchedGraph::MSchedGraph(const MachineBasicBlock *bb,
const TargetMachine &targ,
std::map<const MachineInstr*, unsigned> &ignoreInstrs,
DependenceAnalyzer &DA, std::map<MachineInstr*, Instruction*> &machineTollvm
)
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm)
: BB(bb), Target(targ) {
//Make sure BB is not null,
@ -160,13 +168,15 @@ MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ,
}
//Copies the graph and keeps a map from old to new nodes
MSchedGraph::MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes)
MSchedGraph::MSchedGraph(const MSchedGraph &G,
std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes)
: BB(G.BB), Target(G.Target) {
std::map<MSchedGraphNode*, MSchedGraphNode*> oldToNew;
//Copy all nodes
for(MSchedGraph::const_iterator N = G.GraphMap.begin(), NE = G.GraphMap.end();
N != NE; ++N) {
for(MSchedGraph::const_iterator N = G.GraphMap.begin(),
NE = G.GraphMap.end(); N != NE; ++N) {
MSchedGraphNode *newNode = new MSchedGraphNode(*(N->second));
oldToNew[&*(N->second)] = newNode;
newNodes[newNode] = &*(N->second);
@ -174,7 +184,8 @@ MSchedGraph::MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSched
}
//Loop over nodes and update edges to point to new nodes
for(MSchedGraph::iterator N = GraphMap.begin(), NE = GraphMap.end(); N != NE; ++N) {
for(MSchedGraph::iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphNode *node = &*(N->second);
@ -196,11 +207,45 @@ MSchedGraph::MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSched
//Deconstructor, deletes all nodes in the graph
MSchedGraph::~MSchedGraph () {
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I)
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
I != E; ++I)
delete I->second;
}
//Print out graph
void MSchedGraph::print(std::ostream &os) const {
for(MSchedGraph::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphNode *node = &*(N->second);
os << "Node Start\n";
node->print(os);
os << "Successors:\n";
//print successors
for(unsigned i = 0; i < node->succ_size(); ++i) {
MSchedGraphEdge *edge = node->getSuccessor(i);
MSchedGraphNode *oldDest = edge->getDest();
oldDest->print(os);
}
os << "Node End\n";
}
}
//Calculate total delay
int MSchedGraph::totalDelay() {
int sum = 0;
for(MSchedGraph::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphNode *node = &*(N->second);
sum += node->getLatency();
}
return sum;
}
//Experimental code to add edges from the branch to all nodes dependent upon it.
void hasPath(MSchedGraphNode *node, std::set<MSchedGraphNode*> &visited,
std::set<MSchedGraphNode*> &branches, MSchedGraphNode *startNode,
@ -229,7 +274,8 @@ void MSchedGraph::addBranchEdges() {
std::set<MSchedGraphNode*> branches;
std::set<MSchedGraphNode*> nodes;
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I) {
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
I != E; ++I) {
if(I->second->isBranch())
if(I->second->hasPredecessors())
branches.insert(I->second);
@ -238,7 +284,8 @@ void MSchedGraph::addBranchEdges() {
//See if there is a path first instruction to the branches, if so, add an
//iteration dependence between that node and the branch
std::set<std::pair<MSchedGraphNode*, MSchedGraphNode*> > newEdges;
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I) {
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
I != E; ++I) {
std::set<MSchedGraphNode*> visited;
hasPath((I->second), visited, branches, (I->second), newEdges);
}
@ -277,6 +324,7 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm) {
//Get Machine target information for calculating latency
const TargetInstrInfo *MTI = Target.getInstrInfo();
@ -289,7 +337,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
unsigned index = 0;
//Loop over instructions in MBB and add nodes and edges
for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end(); MI != e; ++MI) {
for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end();
MI != e; ++MI) {
//Ignore indvar instructions
if(ignoreInstrs.count(MI)) {
@ -329,11 +378,13 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
isBranch = true;
//Node is created and added to the graph automatically
MSchedGraphNode *node = new MSchedGraphNode(MI, this, index, delay, isBranch);
MSchedGraphNode *node = new MSchedGraphNode(MI, this, index, delay,
isBranch);
DEBUG(std::cerr << "Created Node: " << *node << "\n");
//Check OpCode to keep track of memory operations to add memory dependencies later.
//Check OpCode to keep track of memory operations to add memory
//dependencies later.
if(MTI->isLoad(opCode) || MTI->isStore(opCode))
memInstructions.push_back(node);
@ -359,7 +410,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
//Add virtual registers dependencies
//Check if any exist in the value map already and create dependencies
//between them.
if(mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) {
if(mOp.getType() == MachineOperand::MO_VirtualRegister
|| mOp.getType() == MachineOperand::MO_CCRegister) {
//Make sure virtual register value is not null
assert((mOp.getVRegValue() != NULL) && "Null value is defined");
@ -395,9 +447,11 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
++index;
}
//Loop over LLVM BB, examine phi instructions, and add them to our phiInstr list to process
//Loop over LLVM BB, examine phi instructions, and add them to our
//phiInstr list to process
const BasicBlock *llvm_bb = BB->getBasicBlock();
for(BasicBlock::const_iterator I = llvm_bb->begin(), E = llvm_bb->end(); I != E; ++I) {
for(BasicBlock::const_iterator I = llvm_bb->begin(), E = llvm_bb->end();
I != E; ++I) {
if(const PHINode *PN = dyn_cast<PHINode>(I)) {
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(PN);
for (unsigned j = 0; j < tempMvec.size(); j++) {
@ -414,7 +468,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
addMachRegEdges(regNumtoNodeMap);
//Finally deal with PHI Nodes and Value*
for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(), E = phiInstrs.end(); I != E; ++I) {
for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(),
E = phiInstrs.end(); I != E; ++I) {
//Get Node for this instruction
std::map<const MachineInstr*, MSchedGraphNode*>::iterator X;
@ -431,7 +486,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
for(unsigned i=0; i < (*I)->getNumOperands(); ++i) {
//Get Operand
const MachineOperand &mOp = (*I)->getOperand(i);
if((mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
if((mOp.getType() == MachineOperand::MO_VirtualRegister
|| mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
//find the value in the map
if (const Value* srcI = mOp.getVRegValue()) {
@ -444,7 +500,8 @@ void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ig
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), phiInstrs, 1);
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(),
phiInstrs, 1);
}
}
}
@ -496,7 +553,8 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
//Loop over all machine registers in the map, and add dependencies
//between the instructions that use it
typedef std::map<int, std::vector<OpIndexNodePair> > regNodeMap;
for(regNodeMap::iterator I = regNumtoNodeMap.begin(); I != regNumtoNodeMap.end(); ++I) {
for(regNodeMap::iterator I = regNumtoNodeMap.begin();
I != regNumtoNodeMap.end(); ++I) {
//Get the register number
int regNum = (*I).first;
@ -527,24 +585,29 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
//Src only uses the register (read)
if(srcIsUse)
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep);
else if(srcIsUseandDef) {
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep);
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep);
}
else
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep);
}
//Dest node is a read
else {
if(!srcIsUse || srcIsUseandDef)
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::TrueDep);
}
@ -557,24 +620,28 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
//Src only uses the register (read)
if(srcIsUse)
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep, 1);
else if(srcIsUseandDef) {
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep, 1);
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep, 1);
}
else
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep, 1);
}
//Dest node is a read
else {
if(!srcIsUse || srcIsUseandDef)
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::TrueDep,1 );
}
@ -589,7 +656,8 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
//Add edges between all loads and stores
//Can be less strict with alias analysis and data dependence analysis.
void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst, DependenceAnalyzer &DA,
void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst,
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm) {
//Get Target machine instruction info
@ -604,101 +672,104 @@ void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst, Depe
//Get the machine opCode to determine type of memory instruction
MachineOpCode srcNodeOpCode = srcInst->getOpcode();
//All instructions after this one in execution order have an iteration delay of 0
for(unsigned destIndex = srcIndex + 1; destIndex < memInst.size(); ++destIndex) {
//All instructions after this one in execution order have an
//iteration delay of 0
for(unsigned destIndex = 0; destIndex < memInst.size(); ++destIndex) {
//No self loops
if(destIndex == srcIndex)
continue;
MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
DEBUG(std::cerr << "MInst1: " << *srcInst << "\n");
DEBUG(std::cerr << "Inst1: " << *machineTollvm[srcInst] << "\n");
DEBUG(std::cerr << "MInst2: " << *destInst << "\n");
DEBUG(std::cerr << "Inst2: " << *machineTollvm[destInst] << "\n");
DependenceResult dr = DA.getDependenceInfo(machineTollvm[srcInst], machineTollvm[destInst]);
//Assuming instructions without corresponding llvm instructions
//are from constant pools.
if (!machineTollvm.count(srcInst) || !machineTollvm.count(destInst))
continue;
for(std::vector<Dependence>::iterator d = dr.dependences.begin(), de = dr.dependences.end();
d != de; ++d) {
bool useDepAnalyzer = true;
//Some machine loads and stores are generated by casts, so be
//conservative and always add deps
Instruction *srcLLVM = machineTollvm[srcInst];
Instruction *destLLVM = machineTollvm[destInst];
if(!isa<LoadInst>(srcLLVM)
&& !isa<StoreInst>(srcLLVM)) {
if(isa<BinaryOperator>(srcLLVM)) {
if(isa<ConstantFP>(srcLLVM->getOperand(0)) || isa<ConstantFP>(srcLLVM->getOperand(1)))
continue;
}
useDepAnalyzer = false;
}
if(!isa<LoadInst>(destLLVM)
&& !isa<StoreInst>(destLLVM)) {
if(isa<BinaryOperator>(destLLVM)) {
if(isa<ConstantFP>(destLLVM->getOperand(0)) || isa<ConstantFP>(destLLVM->getOperand(1)))
continue;
}
useDepAnalyzer = false;
}
//Use dep analysis when we have corresponding llvm loads/stores
if(useDepAnalyzer) {
bool srcBeforeDest = true;
if(destIndex < srcIndex)
srcBeforeDest = false;
DependenceResult dr = DA.getDependenceInfo(machineTollvm[srcInst],
machineTollvm[destInst],
srcBeforeDest);
for(std::vector<Dependence>::iterator d = dr.dependences.begin(),
de = dr.dependences.end(); d != de; ++d) {
//Add edge from load to store
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
d->getDepType(), d->getIteDiff());
}
}
//Otherwise, we can not do any further analysis and must make a dependence
else {
//All instructions before the src in execution order have an iteration delay of 1
for(unsigned destIndex = 0; destIndex < srcIndex; ++destIndex) {
//Get the machine opCode to determine type of memory instruction
MachineOpCode destNodeOpCode = destInst->getOpcode();
MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
bool malias = false;
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
const MachineOperand &mOp2 = destInst->getOperand(0);
//source is a Load, so add anti-dependencies (store after load)
if(mOp.hasAllocatedReg())
if(mOp.getReg() == SparcV9::g0)
continue;
if(mOp2.hasAllocatedReg())
if(mOp2.getReg() == SparcV9::g0)
continue;
DEBUG(std::cerr << "Adding dependence for machine instructions\n");
//Load-Store deps
if(TMI->isLoad(srcNodeOpCode)) {
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
const MachineOperand &mOp2 = destInst->getOperand(0);
if(mOp.hasAllocatedReg())
if(mOp.getReg() == SparcV9::g0)
continue;
else
malias = true;
if(mOp2.hasAllocatedReg())
if(mOp2.getReg() == SparcV9::g0)
continue;
else
malias = true;
//Only add the edge if we can't verify that they do not alias
/*if(AA.alias(mOp2.getVRegValue(),
(unsigned)TD.getTypeSize(mOp2.getVRegValue()->getType()),
mOp.getVRegValue(),
(unsigned)TD.getTypeSize(mOp.getVRegValue()->getType()))
!= AliasAnalysis::NoAlias) {*/
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
if(TMI->isStore(destNodeOpCode))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::AntiDep, 1);
//}
MSchedGraphEdge::AntiDep, 0);
}
if(TMI->isStore(srcNodeOpCode)) {
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
const MachineOperand &mOp2 = destInst->getOperand(0);
if(mOp.hasAllocatedReg())
if(mOp.getReg() == SparcV9::g0)
continue;
else
malias = true;
if(mOp2.hasAllocatedReg())
if(mOp2.getReg() == SparcV9::g0)
continue;
else
malias = true;
//Only add the edge if we can't verify that they do not alias
/*if(AA.alias(mOp2.getVRegValue(),
(unsigned)TD.getTypeSize(mOp2.getVRegValue()->getType()),
mOp.getVRegValue(),
(unsigned)TD.getTypeSize(mOp.getVRegValue()->getType()))
!= AliasAnalysis::NoAlias) {*/
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
else if(TMI->isStore(srcNodeOpCode)) {
if(TMI->isStore(destNodeOpCode))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::OutputDep, 1);
MSchedGraphEdge::OutputDep, 0);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::TrueDep, 1);
//}
}
}
MSchedGraphEdge::TrueDep, 0);
}
}
}
}
}

View File

@ -259,12 +259,16 @@ namespace llvm {
//Copy constructor with maps to link old nodes to new nodes
MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes);
//Print graph
void print(std::ostream &os) const;
//Deconstructor!
~MSchedGraph();
//Add or delete nodes from the Graph
void addNode(const MachineInstr* MI, MSchedGraphNode *node);
void deleteNode(MSchedGraphNode *node);
int totalDelay();
//iterators
typedef std::map<const MachineInstr*, MSchedGraphNode*>::iterator iterator;

View File

@ -74,12 +74,23 @@ static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
//Graph Traits for printing out the dependence graph
namespace llvm {
//Loop statistics
Statistic<> ValidLoops("modulosched-validLoops", "Number of candidate loops modulo-scheduled");
Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
Statistic<> IncreasedII("modulosched-increasedII", "Number of times we had to increase II");
Statistic<> JumboBB("modulosched-jumboBB", "Basic Blocks with more then 100 instructions");
Statistic<> LoopsWithCalls("modulosched-loopCalls", "Loops with calls");
Statistic<> LoopsWithCondMov("modulosched-loopCondMov", "Loops with conditional moves");
Statistic<> InvalidLoops("modulosched-invalidLoops", "Loops with unknown trip counts or loop invariant trip counts");
Statistic<> SingleBBLoops("modulosched-singeBBLoops", "Number of single basic block loops");
//Scheduling Statistics
Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
Statistic<> NoSched("modulosched-noSched", "No schedule");
Statistic<> SameStage("modulosched-sameStage", "Max stage is 0");
Statistic<> ResourceConstraint("modulosched-resourceConstraint", "Loops constrained by resources");
Statistic<> RecurrenceConstraint("modulosched-recurrenceConstraint", "Loops constrained by recurrences");
Statistic<> FinalIISum("modulosched-finalIISum", "Sum of all final II");
Statistic<> IISum("modulosched-IISum", "Sum of all theoretical II");
template<>
struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
@ -142,7 +153,7 @@ namespace llvm {
/// 3) Scheduling
///
bool ModuloSchedulingPass::runOnFunction(Function &F) {
alarm(300);
alarm(100);
bool Changed = false;
int numMS = 0;
@ -161,9 +172,14 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
//Iterate over BasicBlocks and put them into our worklist if they are valid
for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
if(MachineBBisValid(BI)) {
if(BI->size() < 100) {
Worklist.push_back(&*BI);
++ValidLoops;
}
else
++JumboBB;
std::cerr << "BB Size: " << BI->size() << "\n";
}
defaultInst = 0;
@ -174,6 +190,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
BE = Worklist.end(); BI != BE; ++BI) {
//Print out BB for debugging
DEBUG(std::cerr << "BB Size: " << (*BI)->size() << "\n");
DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
//Print out LLVM BB
@ -195,6 +212,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
//Write Graph out to file
DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
DEBUG(MSG->print(std::cerr));
//Calculate Resource II
int ResMII = calculateResMII(*BI);
@ -204,11 +222,15 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
//Our starting initiation interval is the maximum of RecMII and ResMII
if(RecMII < ResMII)
++RecurrenceConstraint;
else
++ResourceConstraint;
II = std::max(RecMII, ResMII);
int mII = II;
IISum += mII;
//Print out II, RecMII, and ResMII
DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
@ -252,7 +274,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
});
//Finally schedule nodes
bool haveSched = computeSchedule(*BI);
bool haveSched = computeSchedule(*BI, MSG);
//Print out final schedule
DEBUG(schedule.print(std::cerr));
@ -363,8 +385,10 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
MachineOpCode OC = I->getOpcode();
//Look for calls
if(TMI->isCall(OC))
if(TMI->isCall(OC)) {
++LoopsWithCalls;
return false;
}
//Look for conditional move
if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi
@ -373,8 +397,10 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
|| OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
|| OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
|| OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
|| OC == V9::MOVFNEr || OC == V9::MOVFNEi)
|| OC == V9::MOVFNEr || OC == V9::MOVFNEi) {
++LoopsWithCondMov;
return false;
}
indexMap[I] = count;
@ -406,14 +432,19 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
if(Instruction *I = dyn_cast<Instruction>(cond))
if(I->getParent() == BB) {
if (!assocIndVar(I, indVar, stack, BB))
if (!assocIndVar(I, indVar, stack, BB)) {
++InvalidLoops;
return false;
}
else
}
else {
++InvalidLoops;
return false;
else
}
else {
++InvalidLoops;
return false;
}
//The indVar set must be >= 3 instructions for this loop to match (FIX ME!)
if(indVar.size() < 3 )
return false;
@ -523,7 +554,7 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
//Loop over resources in each cycle and increments their usage count
for(unsigned i=0; i < resources.size(); ++i)
for(unsigned j=0; j < resources[i].size(); ++j) {
if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
if(!resourceUsageCount.count(resources[i][j])) {
resourceUsageCount[resources[i][j]] = 1;
}
else {
@ -913,67 +944,8 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
if(*I == s) {
//We have a circuit, so add it to our list
std::vector<MSchedGraphNode*> recc;
//Dump recurrence for now
DEBUG(std::cerr << "Starting Recc\n");
int totalDelay = 0;
int totalDistance = 0;
MSchedGraphNode *lastN = 0;
MSchedGraphNode *start = 0;
MSchedGraphNode *end = 0;
//Loop over recurrence, get delay and distance
for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
totalDelay += (*N)->getLatency();
if(lastN) {
int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
totalDistance += iteDiff;
if(iteDiff > 0) {
start = lastN;
end = *N;
}
}
//Get the original node
lastN = *N;
recc.push_back(newNodes[*N]);
DEBUG(std::cerr << *lastN << "\n");
}
//Get the loop edge
totalDistance += lastN->getIteDiff(*stack.begin());
DEBUG(std::cerr << "End Recc\n");
addRecc(stack, newNodes);
f = true;
CircCount++;
if(start && end) {
//Insert reccurrence into the list
DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
}
else {
//Insert reccurrence into the list
DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
}
//Adjust II until we get close to the inequality delay - II*distance <= 0
int RecMII = II; //Starting value
int value = totalDelay-(RecMII * totalDistance);
int lastII = II;
while(value <= 0) {
lastII = RecMII;
RecMII--;
value = totalDelay-(RecMII * totalDistance);
}
recurrenceList.insert(std::make_pair(lastII, recc));
}
else if(!blocked.count(*I)) {
if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes))
@ -1000,6 +972,70 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
}
void ModuloSchedulingPass::addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
std::vector<MSchedGraphNode*> recc;
//Dump recurrence for now
DEBUG(std::cerr << "Starting Recc\n");
int totalDelay = 0;
int totalDistance = 0;
MSchedGraphNode *lastN = 0;
MSchedGraphNode *start = 0;
MSchedGraphNode *end = 0;
//Loop over recurrence, get delay and distance
for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
DEBUG(std::cerr << **N << "\n");
totalDelay += (*N)->getLatency();
if(lastN) {
int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
totalDistance += iteDiff;
if(iteDiff > 0) {
start = lastN;
end = *N;
}
}
//Get the original node
lastN = *N;
recc.push_back(newNodes[*N]);
}
//Get the loop edge
totalDistance += lastN->getIteDiff(*stack.begin());
DEBUG(std::cerr << "End Recc\n");
CircCount++;
if(start && end) {
//Insert reccurrence into the list
DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
}
else {
//Insert reccurrence into the list
DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
}
//Adjust II until we get close to the inequality delay - II*distance <= 0
int RecMII = II; //Starting value
int value = totalDelay-(RecMII * totalDistance);
int lastII = II;
while(value < 0) {
lastII = RecMII;
RecMII--;
value = totalDelay-(RecMII * totalDistance);
}
recurrenceList.insert(std::make_pair(lastII, recc));
}
void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
CircCount = 0;
@ -1086,6 +1122,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
if(Vk.size() > 1) {
circuit(s, stack, blocked, Vk, s, B, II, newNodes);
//Delete nodes from the graph
//Find all nodes up to s and delete them
std::vector<MSchedGraphNode*> nodesToRemove;
nodesToRemove.push_back(s);
@ -1254,15 +1291,19 @@ void ModuloSchedulingPass::computePartialOrder() {
TIME_REGION(X, "calculatePartialOrder");
//Only push BA branches onto the final node order, we put other branches after it
//FIXME: Should we really be pushing branches on it a specific order instead of relying
//on BA being there?
DEBUG(std::cerr << "Computing Partial Order\n");
//Only push BA branches onto the final node order, we put other
//branches after it FIXME: Should we really be pushing branches on
//it a specific order instead of relying on BA being there?
std::vector<MSchedGraphNode*> branches;
//Steps to add a recurrence to the partial order
// 1) Find reccurrence with the highest RecMII. Add it to the partial order.
// 2) For each recurrence with decreasing RecMII, add it to the partial order along with
// any nodes that connect this recurrence to recurrences already in the partial order
//Steps to add a recurrence to the partial order 1) Find reccurrence
//with the highest RecMII. Add it to the partial order. 2) For each
//recurrence with decreasing RecMII, add it to the partial order
//along with any nodes that connect this recurrence to recurrences
//already in the partial order
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator
I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
@ -1296,6 +1337,10 @@ void ModuloSchedulingPass::computePartialOrder() {
std::vector<MSchedGraphNode*> path;
std::set<MSchedGraphNode*> nodesToAdd;
//Dump recc we are dealing with (minus nodes already in PO)
DEBUG(std::cerr << "Recc: ");
DEBUG(for(std::set<MSchedGraphNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; });
//Add nodes that connect this recurrence to recurrences in the partial path
for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(),
NE = new_recurrence.end(); N != NE; ++N)
@ -1318,6 +1363,15 @@ void ModuloSchedulingPass::computePartialOrder() {
partialOrder.push_back(new_recurrence);
//Dump out partial order
DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
E = partialOrder.end(); I !=E; ++I) {
std::cerr << "Start set in PO\n";
for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
std::cerr << "PO:" << **J << "\n";
});
}
}
@ -1649,7 +1703,7 @@ void ModuloSchedulingPass::orderNodes() {
//return FinalNodeOrder;
}
bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB, MSchedGraph *MSG) {
TIME_REGION(X, "computeSchedule");
@ -1657,7 +1711,7 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
//FIXME: Should be set to max II of the original loop
//Cap II in order to prevent infinite loop
int capII = 100;
int capII = MSG->totalDelay();
while(!success) {
@ -1768,7 +1822,6 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
if(!success) {
++IncreasedII;
++II;
schedule.clear();
break;
@ -1781,11 +1834,11 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
success = schedule.constructKernel(II, branches, indVarInstrs[BB]);
DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
if(!success) {
++IncreasedII;
++II;
schedule.clear();
}
DEBUG(std::cerr << "Final II: " << II << "\n");
FinalIISum += II;
}
if(II >= capII) {

View File

@ -19,6 +19,8 @@
#include "llvm/Pass.h"
#include "DependenceAnalyzer.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include <set>
namespace llvm {
@ -107,6 +109,8 @@ namespace llvm {
void unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*> &blocked,
std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B);
void addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes);
void searchPath(MSchedGraphNode *node,
std::vector<MSchedGraphNode*> &path,
std::set<MSchedGraphNode*> &nodesToAdd);
@ -117,7 +121,7 @@ namespace llvm {
void computePartialOrder();
bool computeSchedule(const MachineBasicBlock *BB);
bool computeSchedule(const MachineBasicBlock *BB, MSchedGraph *MSG);
bool scheduleNode(MSchedGraphNode *node,
int start, int end);
@ -148,6 +152,12 @@ namespace llvm {
// getAnalysisUsage
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
/// HACK: We don't actually need loopinfo or scev, but we have
/// to say we do so that the pass manager does not delete it
/// before we run.
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<DependenceAnalyzer>();
}