1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00

Fix a corner case in the new indvars promotion logic: if there

are multiple IV's in a loop, some of them may under go signed
or unsigned wrapping even if the IV that's used in the loop
exit condition doesn't. Restrict sign-extension-elimination
and zero-extension-elimination to only those that operate on
the original loop-controlling IV.

llvm-svn: 64866
This commit is contained in:
Dan Gohman 2009-02-18 00:52:00 +00:00
parent 4f0fccdf9b
commit 3fc2e67140
2 changed files with 63 additions and 19 deletions

View File

@ -463,21 +463,24 @@ static const Type *getEffectiveIndvarType(const PHINode *Phi) {
}
/// TestOrigIVForWrap - Analyze the original induction variable
/// in the loop to determine whether it would ever undergo signed
/// or unsigned overflow.
/// that controls the loop's iteration to determine whether it
/// would ever undergo signed or unsigned overflow.
///
/// In addition to setting the NoSignedWrap and NoUnsignedWrap
/// variables, return the PHI for this induction variable.
///
/// TODO: This duplicates a fair amount of ScalarEvolution logic.
/// Perhaps this can be merged with ScalarEvolution::getIterationCount
/// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
///
static void TestOrigIVForWrap(const Loop *L,
static const PHINode *TestOrigIVForWrap(const Loop *L,
const BranchInst *BI,
const Instruction *OrigCond,
bool &NoSignedWrap,
bool &NoUnsignedWrap) {
// Verify that the loop is sane and find the exit condition.
const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
if (!Cmp) return;
if (!Cmp) return 0;
const Value *CmpLHS = Cmp->getOperand(0);
const Value *CmpRHS = Cmp->getOperand(1);
@ -530,7 +533,7 @@ static void TestOrigIVForWrap(const Loop *L,
}
// For now, analyze only LT loops for signed overflow.
if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_ULT)
return;
return 0;
bool isSigned = Pred == ICmpInst::ICMP_SLT;
@ -543,7 +546,7 @@ static void TestOrigIVForWrap(const Loop *L,
if (!isa<ConstantInt>(CmpRHS) ||
!cast<ConstantInt>(CmpRHS)->getValue()
.isSignedIntN(IncrVal->getType()->getPrimitiveSizeInBits()))
return;
return 0;
IncrVal = SI->getOperand(0);
}
} else {
@ -551,7 +554,7 @@ static void TestOrigIVForWrap(const Loop *L,
if (!isa<ConstantInt>(CmpRHS) ||
!cast<ConstantInt>(CmpRHS)->getValue()
.isIntN(IncrVal->getType()->getPrimitiveSizeInBits()))
return;
return 0;
IncrVal = ZI->getOperand(0);
}
}
@ -562,26 +565,26 @@ static void TestOrigIVForWrap(const Loop *L,
IncrOp->getOpcode() != Instruction::Add ||
!isa<ConstantInt>(IncrOp->getOperand(1)) ||
!cast<ConstantInt>(IncrOp->getOperand(1))->equalsInt(1))
return;
return 0;
// Make sure the PHI looks like a normal IV.
const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
if (!PN || PN->getNumIncomingValues() != 2)
return;
return 0;
unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
unsigned BackEdge = !IncomingEdge;
if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
PN->getIncomingValue(BackEdge) != IncrOp)
return;
return 0;
if (!L->contains(TrueBB))
return;
return 0;
// For now, only analyze loops with a constant start value, so that
// we can easily determine if the start value is not a maximum value
// which would wrap on the first iteration.
const Value *InitialVal = PN->getIncomingValue(IncomingEdge);
if (!isa<ConstantInt>(InitialVal))
return;
return 0;
// The original induction variable will start at some non-max value,
// it counts up by one, and the loop iterates only while it remans
@ -592,6 +595,7 @@ static void TestOrigIVForWrap(const Loop *L,
else if (!isSigned &&
!cast<ConstantInt>(InitialVal)->getValue().isMaxValue())
NoUnsignedWrap = true;
return PN;
}
bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
@ -675,11 +679,13 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// using it. We can currently only handle loops with a single exit.
bool NoSignedWrap = false;
bool NoUnsignedWrap = false;
const PHINode *OrigControllingPHI = 0;
if (!isa<SCEVCouldNotCompute>(IterationCount) && ExitingBlock)
// Can't rewrite non-branch yet.
if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
// Determine if the OrigIV will ever undergo overflow.
OrigControllingPHI =
TestOrigIVForWrap(L, BI, OrigCond,
NoSignedWrap, NoUnsignedWrap);
@ -722,7 +728,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
/// If the new canonical induction variable is wider than the original,
/// and the original has uses that are casts to wider types, see if the
/// truncate and extend can be omitted.
if (PN->getType() != LargestType)
if (PN == OrigControllingPHI && PN->getType() != LargestType)
for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
UI != UE; ++UI) {
if (isa<SExtInst>(UI) && NoSignedWrap) {

View File

@ -0,0 +1,38 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
; RUN: grep sext %t | count 1
; RUN: grep phi %t | count 1
; RUN: grep {phi i64} %t
; Indvars should insert a 64-bit induction variable to eliminate the
; sext for the addressing, however it shouldn't eliminate the sext
; on the other phi, since that value undergoes signed wrapping.
define void @foo(i32* nocapture %d, i32 %n) nounwind {
entry:
%0 = icmp sgt i32 %n, 0 ; <i1> [#uses=1]
br i1 %0, label %bb.nph, label %return
bb.nph: ; preds = %entry
br label %bb
bb: ; preds = %bb1, %bb.nph
%i.02 = phi i32 [ %5, %bb1 ], [ 0, %bb.nph ] ; <i32> [#uses=2]
%p.01 = phi i8 [ %4, %bb1 ], [ -1, %bb.nph ] ; <i8> [#uses=2]
%1 = sext i8 %p.01 to i32 ; <i32> [#uses=1]
%2 = sext i32 %i.02 to i64 ; <i64> [#uses=1]
%3 = getelementptr i32* %d, i64 %2 ; <i32*> [#uses=1]
store i32 %1, i32* %3, align 4
%4 = add i8 %p.01, 1 ; <i8> [#uses=1]
%5 = add i32 %i.02, 1 ; <i32> [#uses=2]
br label %bb1
bb1: ; preds = %bb
%6 = icmp slt i32 %5, %n ; <i1> [#uses=1]
br i1 %6, label %bb, label %bb1.return_crit_edge
bb1.return_crit_edge: ; preds = %bb1
br label %return
return: ; preds = %bb1.return_crit_edge, %entry
ret void
}