1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00

[X86] Fix tls variable lowering issue with large code model

Summary:
The problem here is the lowering for tls variable. Below is the DAG for the code.
SelectionDAG has 11 nodes:

t0: ch = EntryToken
      t8: i64,ch = load<(load 8 from `i8 addrspace(257)* null`, addrspace 257)> t0, Constant:i64<0>, undef:i64
        t10: i64 = X86ISD::WrapperRIP TargetGlobalTLSAddress:i64<i32* @x> 0 [TF=10]
      t11: i64,ch = load<(load 8 from got)> t0, t10, undef:i64
    t12: i64 = add t8, t11
  t4: i32,ch = load<(dereferenceable load 4 from @x)> t0, t12, undef:i64
t6: ch = CopyToReg t0, Register:i32 %0, t4
And when mcmodel is large, below instruction can NOT be folded.

  t10: i64 = X86ISD::WrapperRIP TargetGlobalTLSAddress:i64<i32* @x> 0 [TF=10]
t11: i64,ch = load<(load 8 from got)> t0, t10, undef:i64
So "t11: i64,ch = load<(load 8 from got)> t0, t10, undef:i64" is lowered to " Morphed node: t11: i64,ch = MOV64rm<Mem:(load 8 from got)> t10, TargetConstant:i8<1>, Register:i64 $noreg, TargetConstant:i32<0>, Register:i32 $noreg, t0"

When llvm start to lower "t10: i64 = X86ISD::WrapperRIP TargetGlobalTLSAddress:i64<i32* @x> 0 [TF=10]", it fails.

The patch is to fold the load and X86ISD::WrapperRIP.

Fixes PR26906

Patch by LuoYuanke

Reviewers: craig.topper, rnk, annita.zhang, wxiao3

Reviewed By: rnk

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D58336

llvm-svn: 354756
This commit is contained in:
Craig Topper 2019-02-24 19:33:37 +00:00
parent bbd0f9664b
commit 3fff3f791a
2 changed files with 79 additions and 5 deletions

View File

@ -1137,15 +1137,23 @@ bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
if (AM.hasSymbolicDisplacement())
return true;
bool IsRIPRelTLS = false;
bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
if (IsRIPRel) {
SDValue Val = N.getOperand(0);
if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
IsRIPRelTLS = true;
}
// We can't use an addressing mode in the 64-bit large code model. In the
// medium code model, we use can use an mode when RIP wrappers are present.
// That signifies access to globals that are known to be "near", such as the
// GOT itself.
// We can't use an addressing mode in the 64-bit large code model.
// Global TLS addressing is an exception. In the medium code model,
// we use can use a mode when RIP wrappers are present.
// That signifies access to globals that are known to be "near",
// such as the GOT itself.
CodeModel::Model M = TM.getCodeModel();
if (Subtarget->is64Bit() &&
(M == CodeModel::Large || (M == CodeModel::Medium && !IsRIPRel)))
((M == CodeModel::Large && !IsRIPRelTLS) ||
(M == CodeModel::Medium && !IsRIPRel)))
return true;
// Base and index reg must be 0 in order to use %rip as base.

View File

@ -37,6 +37,8 @@ target triple = "x86_64--linux"
@global_data = dso_local global [10 x i32] [i32 1, i32 2, i32 0, i32 0, i32 0, i32 0, i32 0, i32 0, i32 0, i32 0], align 16
@static_data = internal global [10 x i32] zeroinitializer, align 16
@extern_data = external global [10 x i32], align 16
@thread_data = external thread_local global i32, align 4
define dso_local i32* @lea_static_data() #0 {
; SMALL-STATIC-LABEL: lea_static_data:
@ -373,6 +375,70 @@ define dso_local void ()* @lea_extern_fn() #0 {
ret void ()* @extern_fn
}
; FIXME: The result is same for small, medium and large model, because we
; specify pie option in the test case. And the type of tls is initial exec tls.
; For pic code. The large model code for pic tls should be emitted as below.
; .L3:
; leaq .L3(%rip), %rbx
; movabsq $_GLOBAL_OFFSET_TABLE_-.L3, %r11
; addq %r11, %rbx
; leaq thread_data@TLSGD(%rip), %rdi
; movabsq $__tls_get_addr@PLTOFF, %rax
; addq %rbx, %rax
; call *%rax
; movl (%rax), %eax
; The medium and small model code for pic tls should be emitted as below.
; data16
; leaq thread_data@TLSGD(%rip), %rdi
; data16
; data16
; rex64
; callq __tls_get_addr@PLT
; movl (%rax), %eax
define dso_local i32 @load_thread_data() #0 {
; SMALL-STATIC-LABEL: load_thread_data:
; SMALL-STATIC: # %bb.0:
; SMALL-STATIC-NEXT: movq thread_data@GOTTPOFF(%rip), %rax
; SMALL-STATIC-NEXT: movl %fs:(%rax), %eax
; SMALL-STATIC-NEXT: retq
;
; MEDIUM-STATIC-LABEL: load_thread_data:
; MEDIUM-STATIC: # %bb.0:
; MEDIUM-STATIC-NEXT: movq thread_data@GOTTPOFF(%rip), %rax
; MEDIUM-STATIC-NEXT: movl %fs:(%rax), %eax
; MEDIUM-STATIC-NEXT: retq
;
; LARGE-STATIC-LABEL: load_thread_data:
; LARGE-STATIC: # %bb.0:
; LARGE-STATIC-NEXT: movq thread_data@GOTTPOFF(%rip), %rax
; LARGE-STATIC-NEXT: movl %fs:(%rax), %eax
; LARGE-STATIC-NEXT: retq
;
; SMALL-PIC-LABEL: load_thread_data:
; SMALL-PIC: # %bb.0:
; SMALL-PIC-NEXT: movq thread_data@GOTTPOFF(%rip), %rax
; SMALL-PIC-NEXT: movl %fs:(%rax), %eax
; SMALL-PIC-NEXT: retq
;
; MEDIUM-PIC-LABEL: load_thread_data:
; MEDIUM-PIC: # %bb.0:
; MEDIUM-PIC-NEXT: movq thread_data@GOTTPOFF(%rip), %rax
; MEDIUM-PIC-NEXT: movl %fs:(%rax), %eax
; MEDIUM-PIC-NEXT: retq
;
; LARGE-PIC-LABEL: load_thread_data:
; LARGE-PIC: # %bb.0:
; LARGE-PIC-NEXT: movq thread_data@GOTTPOFF(%rip), %rax
; LARGE-PIC-NEXT: movl %fs:(%rax), %eax
; LARGE-PIC-NEXT: retq
;
%1 = load i32, i32* @thread_data, align 4
ret i32 %1
}
attributes #0 = { noinline nounwind uwtable }
!llvm.module.flags = !{!0, !1, !2}