mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
Move static functions closer to their usage.
llvm-svn: 34363
This commit is contained in:
parent
31731e9a99
commit
401a49c4e2
@ -19,229 +19,6 @@
|
||||
#include <cstdlib>
|
||||
using namespace llvm;
|
||||
|
||||
/// mul_1 - This function performs the multiplication operation on a
|
||||
/// large integer (represented as an integer array) and a uint64_t integer.
|
||||
/// @returns the carry of the multiplication.
|
||||
static uint64_t mul_1(uint64_t dest[], uint64_t x[],
|
||||
unsigned len, uint64_t y) {
|
||||
// Split y into high 32-bit part and low 32-bit part.
|
||||
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
|
||||
uint64_t carry = 0, lx, hx;
|
||||
for (unsigned i = 0; i < len; ++i) {
|
||||
lx = x[i] & 0xffffffffULL;
|
||||
hx = x[i] >> 32;
|
||||
// hasCarry - A flag to indicate if has carry.
|
||||
// hasCarry == 0, no carry
|
||||
// hasCarry == 1, has carry
|
||||
// hasCarry == 2, no carry and the calculation result == 0.
|
||||
uint8_t hasCarry = 0;
|
||||
dest[i] = carry + lx * ly;
|
||||
// Determine if the add above introduces carry.
|
||||
hasCarry = (dest[i] < carry) ? 1 : 0;
|
||||
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
|
||||
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
|
||||
// (2^32 - 1) + 2^32 = 2^64.
|
||||
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
|
||||
|
||||
carry += (lx * hy) & 0xffffffffULL;
|
||||
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
|
||||
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
|
||||
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
|
||||
}
|
||||
|
||||
return carry;
|
||||
}
|
||||
|
||||
/// mul - This function multiplies integer array x[] by integer array y[] and
|
||||
/// stores the result into integer array dest[].
|
||||
/// Note the array dest[]'s size should no less than xlen + ylen.
|
||||
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
|
||||
uint64_t y[], unsigned ylen) {
|
||||
dest[xlen] = mul_1(dest, x, xlen, y[0]);
|
||||
|
||||
for (unsigned i = 1; i < ylen; ++i) {
|
||||
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
|
||||
uint64_t carry = 0, lx, hx;
|
||||
for (unsigned j = 0; j < xlen; ++j) {
|
||||
lx = x[j] & 0xffffffffULL;
|
||||
hx = x[j] >> 32;
|
||||
// hasCarry - A flag to indicate if has carry.
|
||||
// hasCarry == 0, no carry
|
||||
// hasCarry == 1, has carry
|
||||
// hasCarry == 2, no carry and the calculation result == 0.
|
||||
uint8_t hasCarry = 0;
|
||||
uint64_t resul = carry + lx * ly;
|
||||
hasCarry = (resul < carry) ? 1 : 0;
|
||||
carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
|
||||
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
|
||||
|
||||
carry += (lx * hy) & 0xffffffffULL;
|
||||
resul = (carry << 32) | (resul & 0xffffffffULL);
|
||||
dest[i+j] += resul;
|
||||
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
|
||||
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
|
||||
((lx * hy) >> 32) + hx * hy;
|
||||
}
|
||||
dest[i+xlen] = carry;
|
||||
}
|
||||
}
|
||||
|
||||
/// add_1 - This function adds the integer array x[] by integer y and
|
||||
/// returns the carry.
|
||||
/// @returns the carry of the addition.
|
||||
static uint64_t add_1(uint64_t dest[], uint64_t x[],
|
||||
unsigned len, uint64_t y) {
|
||||
uint64_t carry = y;
|
||||
|
||||
for (unsigned i = 0; i < len; ++i) {
|
||||
dest[i] = carry + x[i];
|
||||
carry = (dest[i] < carry) ? 1 : 0;
|
||||
}
|
||||
return carry;
|
||||
}
|
||||
|
||||
/// add - This function adds the integer array x[] by integer array
|
||||
/// y[] and returns the carry.
|
||||
static uint64_t add(uint64_t dest[], uint64_t x[],
|
||||
uint64_t y[], unsigned len) {
|
||||
unsigned carry = 0;
|
||||
|
||||
for (unsigned i = 0; i< len; ++i) {
|
||||
carry += x[i];
|
||||
dest[i] = carry + y[i];
|
||||
carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
|
||||
}
|
||||
return carry;
|
||||
}
|
||||
|
||||
/// sub_1 - This function subtracts the integer array x[] by
|
||||
/// integer y and returns the borrow-out carry.
|
||||
static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
|
||||
uint64_t cy = y;
|
||||
|
||||
for (unsigned i = 0; i < len; ++i) {
|
||||
uint64_t X = x[i];
|
||||
x[i] -= cy;
|
||||
if (cy > X)
|
||||
cy = 1;
|
||||
else {
|
||||
cy = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return cy;
|
||||
}
|
||||
|
||||
/// sub - This function subtracts the integer array x[] by
|
||||
/// integer array y[], and returns the borrow-out carry.
|
||||
static uint64_t sub(uint64_t dest[], uint64_t x[],
|
||||
uint64_t y[], unsigned len) {
|
||||
// Carry indicator.
|
||||
uint64_t cy = 0;
|
||||
|
||||
for (unsigned i = 0; i < len; ++i) {
|
||||
uint64_t Y = y[i], X = x[i];
|
||||
Y += cy;
|
||||
|
||||
cy = Y < cy ? 1 : 0;
|
||||
Y = X - Y;
|
||||
cy += Y > X ? 1 : 0;
|
||||
dest[i] = Y;
|
||||
}
|
||||
return cy;
|
||||
}
|
||||
|
||||
/// UnitDiv - This function divides N by D,
|
||||
/// and returns (remainder << 32) | quotient.
|
||||
/// Assumes (N >> 32) < D.
|
||||
static uint64_t unitDiv(uint64_t N, unsigned D) {
|
||||
uint64_t q, r; // q: quotient, r: remainder.
|
||||
uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
|
||||
uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
|
||||
if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
|
||||
q = N / D;
|
||||
r = N % D;
|
||||
}
|
||||
else {
|
||||
// Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
|
||||
uint64_t c = N - ((uint64_t) D << 31);
|
||||
// Divide (c1*2^32 + c0) by d
|
||||
q = c / D;
|
||||
r = c % D;
|
||||
// Add 2^31 to quotient
|
||||
q += 1 << 31;
|
||||
}
|
||||
|
||||
return (r << 32) | (q & 0xFFFFFFFFl);
|
||||
}
|
||||
|
||||
/// subMul - This function substracts x[len-1:0] * y from
|
||||
/// dest[offset+len-1:offset], and returns the most significant
|
||||
/// word of the product, minus the borrow-out from the subtraction.
|
||||
static unsigned subMul(unsigned dest[], unsigned offset,
|
||||
unsigned x[], unsigned len, unsigned y) {
|
||||
uint64_t yl = (uint64_t) y & 0xffffffffL;
|
||||
unsigned carry = 0;
|
||||
unsigned j = 0;
|
||||
do {
|
||||
uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
|
||||
unsigned prod_low = (unsigned) prod;
|
||||
unsigned prod_high = (unsigned) (prod >> 32);
|
||||
prod_low += carry;
|
||||
carry = (prod_low < carry ? 1 : 0) + prod_high;
|
||||
unsigned x_j = dest[offset+j];
|
||||
prod_low = x_j - prod_low;
|
||||
if (prod_low > x_j) ++carry;
|
||||
dest[offset+j] = prod_low;
|
||||
} while (++j < len);
|
||||
return carry;
|
||||
}
|
||||
|
||||
/// div - This is basically Knuth's formulation of the classical algorithm.
|
||||
/// Correspondance with Knuth's notation:
|
||||
/// Knuth's u[0:m+n] == zds[nx:0].
|
||||
/// Knuth's v[1:n] == y[ny-1:0]
|
||||
/// Knuth's n == ny.
|
||||
/// Knuth's m == nx-ny.
|
||||
/// Our nx == Knuth's m+n.
|
||||
/// Could be re-implemented using gmp's mpn_divrem:
|
||||
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
|
||||
static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
|
||||
unsigned j = nx;
|
||||
do { // loop over digits of quotient
|
||||
// Knuth's j == our nx-j.
|
||||
// Knuth's u[j:j+n] == our zds[j:j-ny].
|
||||
unsigned qhat; // treated as unsigned
|
||||
if (zds[j] == y[ny-1])
|
||||
qhat = -1U; // 0xffffffff
|
||||
else {
|
||||
uint64_t w = (((uint64_t)(zds[j])) << 32) +
|
||||
((uint64_t)zds[j-1] & 0xffffffffL);
|
||||
qhat = (unsigned) unitDiv(w, y[ny-1]);
|
||||
}
|
||||
if (qhat) {
|
||||
unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
|
||||
unsigned save = zds[j];
|
||||
uint64_t num = ((uint64_t)save&0xffffffffL) -
|
||||
((uint64_t)borrow&0xffffffffL);
|
||||
while (num) {
|
||||
qhat--;
|
||||
uint64_t carry = 0;
|
||||
for (unsigned i = 0; i < ny; i++) {
|
||||
carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
|
||||
+ ((uint64_t) y[i] & 0xffffffffL);
|
||||
zds[j-ny+i] = (unsigned) carry;
|
||||
carry >>= 32;
|
||||
}
|
||||
zds[j] += carry;
|
||||
num = carry - 1;
|
||||
}
|
||||
}
|
||||
zds[j] = qhat;
|
||||
} while (--j >= ny);
|
||||
}
|
||||
|
||||
#if 0
|
||||
/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and
|
||||
/// store the len least significant words of the result in
|
||||
@ -313,78 +90,6 @@ APInt::APInt(unsigned numbits, const std::string& Val, uint8_t radix) {
|
||||
fromString(numbits, Val.c_str(), Val.size(), radix);
|
||||
}
|
||||
|
||||
/// @brief Converts a char array into an integer.
|
||||
void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen,
|
||||
uint8_t radix) {
|
||||
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
|
||||
"Radix should be 2, 8, 10, or 16!");
|
||||
assert(StrStart && "String is null?");
|
||||
unsigned size = 0;
|
||||
// If the radix is a power of 2, read the input
|
||||
// from most significant to least significant.
|
||||
if ((radix & (radix - 1)) == 0) {
|
||||
unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
|
||||
uint64_t resDigit = 0;
|
||||
BitWidth = slen * bits_per_digit;
|
||||
if (getNumWords() > 1)
|
||||
assert((pVal = new uint64_t[getNumWords()]) &&
|
||||
"APInt memory allocation fails!");
|
||||
for (int i = slen - 1; i >= 0; --i) {
|
||||
uint64_t digit = StrStart[i] - 48; // '0' == 48.
|
||||
resDigit |= digit << nextBitPos;
|
||||
nextBitPos += bits_per_digit;
|
||||
if (nextBitPos >= 64) {
|
||||
if (isSingleWord()) {
|
||||
VAL = resDigit;
|
||||
break;
|
||||
}
|
||||
pVal[size++] = resDigit;
|
||||
nextBitPos -= 64;
|
||||
resDigit = digit >> (bits_per_digit - nextBitPos);
|
||||
}
|
||||
}
|
||||
if (!isSingleWord() && size <= getNumWords())
|
||||
pVal[size] = resDigit;
|
||||
} else { // General case. The radix is not a power of 2.
|
||||
// For 10-radix, the max value of 64-bit integer is 18446744073709551615,
|
||||
// and its digits number is 20.
|
||||
const unsigned chars_per_word = 20;
|
||||
if (slen < chars_per_word ||
|
||||
(slen == chars_per_word && // In case the value <= 2^64 - 1
|
||||
strcmp(StrStart, "18446744073709551615") <= 0)) {
|
||||
BitWidth = 64;
|
||||
VAL = strtoull(StrStart, 0, 10);
|
||||
} else { // In case the value > 2^64 - 1
|
||||
BitWidth = (slen / chars_per_word + 1) * 64;
|
||||
assert((pVal = new uint64_t[getNumWords()]) &&
|
||||
"APInt memory allocation fails!");
|
||||
memset(pVal, 0, getNumWords() * 8);
|
||||
unsigned str_pos = 0;
|
||||
while (str_pos < slen) {
|
||||
unsigned chunk = slen - str_pos;
|
||||
if (chunk > chars_per_word - 1)
|
||||
chunk = chars_per_word - 1;
|
||||
uint64_t resDigit = StrStart[str_pos++] - 48; // 48 == '0'.
|
||||
uint64_t big_base = radix;
|
||||
while (--chunk > 0) {
|
||||
resDigit = resDigit * radix + StrStart[str_pos++] - 48;
|
||||
big_base *= radix;
|
||||
}
|
||||
|
||||
uint64_t carry;
|
||||
if (!size)
|
||||
carry = resDigit;
|
||||
else {
|
||||
carry = mul_1(pVal, pVal, size, big_base);
|
||||
carry += add_1(pVal, pVal, size, resDigit);
|
||||
}
|
||||
|
||||
if (carry) pVal[size++] = carry;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
APInt::APInt(const APInt& APIVal)
|
||||
: BitWidth(APIVal.BitWidth) {
|
||||
if (isSingleWord()) VAL = APIVal.VAL;
|
||||
@ -428,6 +133,19 @@ APInt& APInt::operator=(uint64_t RHS) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// add_1 - This function adds the integer array x[] by integer y and
|
||||
/// returns the carry.
|
||||
/// @returns the carry of the addition.
|
||||
static uint64_t add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
|
||||
uint64_t carry = y;
|
||||
|
||||
for (unsigned i = 0; i < len; ++i) {
|
||||
dest[i] = carry + x[i];
|
||||
carry = (dest[i] < carry) ? 1 : 0;
|
||||
}
|
||||
return carry;
|
||||
}
|
||||
|
||||
/// @brief Prefix increment operator. Increments the APInt by one.
|
||||
APInt& APInt::operator++() {
|
||||
if (isSingleWord())
|
||||
@ -438,6 +156,25 @@ APInt& APInt::operator++() {
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// sub_1 - This function subtracts the integer array x[] by
|
||||
/// integer y and returns the borrow-out carry.
|
||||
static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
|
||||
uint64_t cy = y;
|
||||
|
||||
for (unsigned i = 0; i < len; ++i) {
|
||||
uint64_t X = x[i];
|
||||
x[i] -= cy;
|
||||
if (cy > X)
|
||||
cy = 1;
|
||||
else {
|
||||
cy = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return cy;
|
||||
}
|
||||
|
||||
/// @brief Prefix decrement operator. Decrements the APInt by one.
|
||||
APInt& APInt::operator--() {
|
||||
if (isSingleWord()) --VAL;
|
||||
@ -447,6 +184,20 @@ APInt& APInt::operator--() {
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// add - This function adds the integer array x[] by integer array
|
||||
/// y[] and returns the carry.
|
||||
static uint64_t add(uint64_t dest[], uint64_t x[],
|
||||
uint64_t y[], unsigned len) {
|
||||
unsigned carry = 0;
|
||||
|
||||
for (unsigned i = 0; i< len; ++i) {
|
||||
carry += x[i];
|
||||
dest[i] = carry + y[i];
|
||||
carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
|
||||
}
|
||||
return carry;
|
||||
}
|
||||
|
||||
/// @brief Addition assignment operator. Adds this APInt by the given APInt&
|
||||
/// RHS and assigns the result to this APInt.
|
||||
APInt& APInt::operator+=(const APInt& RHS) {
|
||||
@ -468,6 +219,25 @@ APInt& APInt::operator+=(const APInt& RHS) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// sub - This function subtracts the integer array x[] by
|
||||
/// integer array y[], and returns the borrow-out carry.
|
||||
static uint64_t sub(uint64_t dest[], uint64_t x[],
|
||||
uint64_t y[], unsigned len) {
|
||||
// Carry indicator.
|
||||
uint64_t cy = 0;
|
||||
|
||||
for (unsigned i = 0; i < len; ++i) {
|
||||
uint64_t Y = y[i], X = x[i];
|
||||
Y += cy;
|
||||
|
||||
cy = Y < cy ? 1 : 0;
|
||||
Y = X - Y;
|
||||
cy += Y > X ? 1 : 0;
|
||||
dest[i] = Y;
|
||||
}
|
||||
return cy;
|
||||
}
|
||||
|
||||
/// @brief Subtraction assignment operator. Subtracts this APInt by the given
|
||||
/// APInt &RHS and assigns the result to this APInt.
|
||||
APInt& APInt::operator-=(const APInt& RHS) {
|
||||
@ -490,6 +260,73 @@ APInt& APInt::operator-=(const APInt& RHS) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// mul_1 - This function performs the multiplication operation on a
|
||||
/// large integer (represented as an integer array) and a uint64_t integer.
|
||||
/// @returns the carry of the multiplication.
|
||||
static uint64_t mul_1(uint64_t dest[], uint64_t x[],
|
||||
unsigned len, uint64_t y) {
|
||||
// Split y into high 32-bit part and low 32-bit part.
|
||||
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
|
||||
uint64_t carry = 0, lx, hx;
|
||||
for (unsigned i = 0; i < len; ++i) {
|
||||
lx = x[i] & 0xffffffffULL;
|
||||
hx = x[i] >> 32;
|
||||
// hasCarry - A flag to indicate if has carry.
|
||||
// hasCarry == 0, no carry
|
||||
// hasCarry == 1, has carry
|
||||
// hasCarry == 2, no carry and the calculation result == 0.
|
||||
uint8_t hasCarry = 0;
|
||||
dest[i] = carry + lx * ly;
|
||||
// Determine if the add above introduces carry.
|
||||
hasCarry = (dest[i] < carry) ? 1 : 0;
|
||||
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
|
||||
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
|
||||
// (2^32 - 1) + 2^32 = 2^64.
|
||||
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
|
||||
|
||||
carry += (lx * hy) & 0xffffffffULL;
|
||||
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
|
||||
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
|
||||
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
|
||||
}
|
||||
|
||||
return carry;
|
||||
}
|
||||
|
||||
/// mul - This function multiplies integer array x[] by integer array y[] and
|
||||
/// stores the result into integer array dest[].
|
||||
/// Note the array dest[]'s size should no less than xlen + ylen.
|
||||
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
|
||||
uint64_t y[], unsigned ylen) {
|
||||
dest[xlen] = mul_1(dest, x, xlen, y[0]);
|
||||
|
||||
for (unsigned i = 1; i < ylen; ++i) {
|
||||
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
|
||||
uint64_t carry = 0, lx, hx;
|
||||
for (unsigned j = 0; j < xlen; ++j) {
|
||||
lx = x[j] & 0xffffffffULL;
|
||||
hx = x[j] >> 32;
|
||||
// hasCarry - A flag to indicate if has carry.
|
||||
// hasCarry == 0, no carry
|
||||
// hasCarry == 1, has carry
|
||||
// hasCarry == 2, no carry and the calculation result == 0.
|
||||
uint8_t hasCarry = 0;
|
||||
uint64_t resul = carry + lx * ly;
|
||||
hasCarry = (resul < carry) ? 1 : 0;
|
||||
carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
|
||||
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
|
||||
|
||||
carry += (lx * hy) & 0xffffffffULL;
|
||||
resul = (carry << 32) | (resul & 0xffffffffULL);
|
||||
dest[i+j] += resul;
|
||||
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
|
||||
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
|
||||
((lx * hy) >> 32) + hx * hy;
|
||||
}
|
||||
dest[i+xlen] = carry;
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief Multiplication assignment operator. Multiplies this APInt by the
|
||||
/// given APInt& RHS and assigns the result to this APInt.
|
||||
APInt& APInt::operator*=(const APInt& RHS) {
|
||||
@ -1134,6 +971,96 @@ APInt APInt::shl(unsigned shiftAmt) const {
|
||||
return API;
|
||||
}
|
||||
|
||||
/// subMul - This function substracts x[len-1:0] * y from
|
||||
/// dest[offset+len-1:offset], and returns the most significant
|
||||
/// word of the product, minus the borrow-out from the subtraction.
|
||||
static unsigned subMul(unsigned dest[], unsigned offset,
|
||||
unsigned x[], unsigned len, unsigned y) {
|
||||
uint64_t yl = (uint64_t) y & 0xffffffffL;
|
||||
unsigned carry = 0;
|
||||
unsigned j = 0;
|
||||
do {
|
||||
uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
|
||||
unsigned prod_low = (unsigned) prod;
|
||||
unsigned prod_high = (unsigned) (prod >> 32);
|
||||
prod_low += carry;
|
||||
carry = (prod_low < carry ? 1 : 0) + prod_high;
|
||||
unsigned x_j = dest[offset+j];
|
||||
prod_low = x_j - prod_low;
|
||||
if (prod_low > x_j) ++carry;
|
||||
dest[offset+j] = prod_low;
|
||||
} while (++j < len);
|
||||
return carry;
|
||||
}
|
||||
|
||||
/// unitDiv - This function divides N by D,
|
||||
/// and returns (remainder << 32) | quotient.
|
||||
/// Assumes (N >> 32) < D.
|
||||
static uint64_t unitDiv(uint64_t N, unsigned D) {
|
||||
uint64_t q, r; // q: quotient, r: remainder.
|
||||
uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
|
||||
uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
|
||||
if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
|
||||
q = N / D;
|
||||
r = N % D;
|
||||
}
|
||||
else {
|
||||
// Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
|
||||
uint64_t c = N - ((uint64_t) D << 31);
|
||||
// Divide (c1*2^32 + c0) by d
|
||||
q = c / D;
|
||||
r = c % D;
|
||||
// Add 2^31 to quotient
|
||||
q += 1 << 31;
|
||||
}
|
||||
|
||||
return (r << 32) | (q & 0xFFFFFFFFl);
|
||||
}
|
||||
|
||||
/// div - This is basically Knuth's formulation of the classical algorithm.
|
||||
/// Correspondance with Knuth's notation:
|
||||
/// Knuth's u[0:m+n] == zds[nx:0].
|
||||
/// Knuth's v[1:n] == y[ny-1:0]
|
||||
/// Knuth's n == ny.
|
||||
/// Knuth's m == nx-ny.
|
||||
/// Our nx == Knuth's m+n.
|
||||
/// Could be re-implemented using gmp's mpn_divrem:
|
||||
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
|
||||
static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
|
||||
unsigned j = nx;
|
||||
do { // loop over digits of quotient
|
||||
// Knuth's j == our nx-j.
|
||||
// Knuth's u[j:j+n] == our zds[j:j-ny].
|
||||
unsigned qhat; // treated as unsigned
|
||||
if (zds[j] == y[ny-1])
|
||||
qhat = -1U; // 0xffffffff
|
||||
else {
|
||||
uint64_t w = (((uint64_t)(zds[j])) << 32) +
|
||||
((uint64_t)zds[j-1] & 0xffffffffL);
|
||||
qhat = (unsigned) unitDiv(w, y[ny-1]);
|
||||
}
|
||||
if (qhat) {
|
||||
unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
|
||||
unsigned save = zds[j];
|
||||
uint64_t num = ((uint64_t)save&0xffffffffL) -
|
||||
((uint64_t)borrow&0xffffffffL);
|
||||
while (num) {
|
||||
qhat--;
|
||||
uint64_t carry = 0;
|
||||
for (unsigned i = 0; i < ny; i++) {
|
||||
carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
|
||||
+ ((uint64_t) y[i] & 0xffffffffL);
|
||||
zds[j-ny+i] = (unsigned) carry;
|
||||
carry >>= 32;
|
||||
}
|
||||
zds[j] += carry;
|
||||
num = carry - 1;
|
||||
}
|
||||
}
|
||||
zds[j] = qhat;
|
||||
} while (--j >= ny);
|
||||
}
|
||||
|
||||
/// Unsigned divide this APInt by APInt RHS.
|
||||
/// @brief Unsigned division function for APInt.
|
||||
APInt APInt::udiv(const APInt& RHS) const {
|
||||
@ -1235,3 +1162,76 @@ APInt APInt::urem(const APInt& RHS) const {
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
/// @brief Converts a char array into an integer.
|
||||
void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen,
|
||||
uint8_t radix) {
|
||||
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
|
||||
"Radix should be 2, 8, 10, or 16!");
|
||||
assert(StrStart && "String is null?");
|
||||
unsigned size = 0;
|
||||
// If the radix is a power of 2, read the input
|
||||
// from most significant to least significant.
|
||||
if ((radix & (radix - 1)) == 0) {
|
||||
unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
|
||||
uint64_t resDigit = 0;
|
||||
BitWidth = slen * bits_per_digit;
|
||||
if (getNumWords() > 1)
|
||||
assert((pVal = new uint64_t[getNumWords()]) &&
|
||||
"APInt memory allocation fails!");
|
||||
for (int i = slen - 1; i >= 0; --i) {
|
||||
uint64_t digit = StrStart[i] - 48; // '0' == 48.
|
||||
resDigit |= digit << nextBitPos;
|
||||
nextBitPos += bits_per_digit;
|
||||
if (nextBitPos >= 64) {
|
||||
if (isSingleWord()) {
|
||||
VAL = resDigit;
|
||||
break;
|
||||
}
|
||||
pVal[size++] = resDigit;
|
||||
nextBitPos -= 64;
|
||||
resDigit = digit >> (bits_per_digit - nextBitPos);
|
||||
}
|
||||
}
|
||||
if (!isSingleWord() && size <= getNumWords())
|
||||
pVal[size] = resDigit;
|
||||
} else { // General case. The radix is not a power of 2.
|
||||
// For 10-radix, the max value of 64-bit integer is 18446744073709551615,
|
||||
// and its digits number is 20.
|
||||
const unsigned chars_per_word = 20;
|
||||
if (slen < chars_per_word ||
|
||||
(slen == chars_per_word && // In case the value <= 2^64 - 1
|
||||
strcmp(StrStart, "18446744073709551615") <= 0)) {
|
||||
BitWidth = 64;
|
||||
VAL = strtoull(StrStart, 0, 10);
|
||||
} else { // In case the value > 2^64 - 1
|
||||
BitWidth = (slen / chars_per_word + 1) * 64;
|
||||
assert((pVal = new uint64_t[getNumWords()]) &&
|
||||
"APInt memory allocation fails!");
|
||||
memset(pVal, 0, getNumWords() * 8);
|
||||
unsigned str_pos = 0;
|
||||
while (str_pos < slen) {
|
||||
unsigned chunk = slen - str_pos;
|
||||
if (chunk > chars_per_word - 1)
|
||||
chunk = chars_per_word - 1;
|
||||
uint64_t resDigit = StrStart[str_pos++] - 48; // 48 == '0'.
|
||||
uint64_t big_base = radix;
|
||||
while (--chunk > 0) {
|
||||
resDigit = resDigit * radix + StrStart[str_pos++] - 48;
|
||||
big_base *= radix;
|
||||
}
|
||||
|
||||
uint64_t carry;
|
||||
if (!size)
|
||||
carry = resDigit;
|
||||
else {
|
||||
carry = mul_1(pVal, pVal, size, big_base);
|
||||
carry += add_1(pVal, pVal, size, resDigit);
|
||||
}
|
||||
|
||||
if (carry) pVal[size++] = carry;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user