1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00

merge preds/chainpreds -> preds set

merge succs/chainsuccs -> succs set

This has no functionality change, simplifies the code, and reduces the size
of sunits.

llvm-svn: 26711
This commit is contained in:
Chris Lattner 2006-03-11 22:24:20 +00:00
parent 19b93158c1
commit 40c02c01a5

View File

@ -41,10 +41,12 @@ namespace {
struct SUnit {
SDNode *Node; // Representative node.
std::vector<SDNode*> FlaggedNodes; // All nodes flagged to Node.
std::set<SUnit*> Preds; // All real predecessors.
std::set<SUnit*> ChainPreds; // All chain predecessors.
std::set<SUnit*> Succs; // All real successors.
std::set<SUnit*> ChainSuccs; // All chain successors.
// Preds/Succs - The SUnits before/after us in the graph. The boolean value
// is true if the edge is a token chain edge, false if it is a value edge.
std::set<std::pair<SUnit*,bool> > Preds; // All sunit predecessors.
std::set<std::pair<SUnit*,bool> > Succs; // All sunit successors.
short NumPredsLeft; // # of preds not scheduled.
short NumSuccsLeft; // # of succs not scheduled.
short NumChainPredsLeft; // # of chain preds not scheduled.
@ -93,34 +95,24 @@ void SUnit::dumpAll(const SelectionDAG *G) const {
if (Preds.size() != 0) {
std::cerr << " Predecessors:\n";
for (std::set<SUnit*>::const_iterator I = Preds.begin(),
for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(),
E = Preds.end(); I != E; ++I) {
std::cerr << " ";
(*I)->dump(G);
}
}
if (ChainPreds.size() != 0) {
std::cerr << " Chained Preds:\n";
for (std::set<SUnit*>::const_iterator I = ChainPreds.begin(),
E = ChainPreds.end(); I != E; ++I) {
std::cerr << " ";
(*I)->dump(G);
if (I->second)
std::cerr << " ch ";
else
std::cerr << " val ";
I->first->dump(G);
}
}
if (Succs.size() != 0) {
std::cerr << " Successors:\n";
for (std::set<SUnit*>::const_iterator I = Succs.begin(),
for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(),
E = Succs.end(); I != E; ++I) {
std::cerr << " ";
(*I)->dump(G);
}
}
if (ChainSuccs.size() != 0) {
std::cerr << " Chained succs:\n";
for (std::set<SUnit*>::const_iterator I = ChainSuccs.begin(),
E = ChainSuccs.end(); I != E; ++I) {
std::cerr << " ";
(*I)->dump(G);
if (I->second)
std::cerr << " ch ";
else
std::cerr << " val ";
I->first->dump(G);
}
}
std::cerr << "\n";
@ -205,8 +197,8 @@ public:
private:
SUnit *NewSUnit(SDNode *N);
void ReleasePred(SUnit *PredSU, bool isChain = false);
void ReleaseSucc(SUnit *SuccSU, bool isChain = false);
void ReleasePred(SUnit *PredSU, bool isChain);
void ReleaseSucc(SUnit *SuccSU, bool isChain);
void ScheduleNodeBottomUp(SUnit *SU);
void ScheduleNodeTopDown(SUnit *SU);
void ListScheduleTopDown();
@ -296,15 +288,12 @@ void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU) {
Sequence.push_back(SU);
// Bottom up: release predecessors
for (std::set<SUnit*>::iterator I1 = SU->Preds.begin(),
E1 = SU->Preds.end(); I1 != E1; ++I1) {
ReleasePred(*I1);
SU->NumPredsLeft--;
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
E = SU->Preds.end(); I != E; ++I) {
ReleasePred(I->first, I->second);
if (!I->second)
SU->NumPredsLeft--;
}
for (std::set<SUnit*>::iterator I2 = SU->ChainPreds.begin(),
E2 = SU->ChainPreds.end(); I2 != E2; ++I2)
ReleasePred(*I2, true);
CurrCycle++;
}
@ -318,15 +307,12 @@ void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU) {
Sequence.push_back(SU);
// Bottom up: release successors.
for (std::set<SUnit*>::iterator I1 = SU->Succs.begin(),
E1 = SU->Succs.end(); I1 != E1; ++I1) {
ReleaseSucc(*I1);
SU->NumSuccsLeft--;
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
E = SU->Succs.end(); I != E; ++I) {
ReleaseSucc(I->first, I->second);
if (!I->second)
SU->NumSuccsLeft--;
}
for (std::set<SUnit*>::iterator I2 = SU->ChainSuccs.begin(),
E2 = SU->ChainSuccs.end(); I2 != E2; ++I2)
ReleaseSucc(*I2, true);
CurrCycle++;
}
@ -399,8 +385,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
// All leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if ((SUnits[i].Preds.size() + SUnits[i].ChainPreds.size()) == 0 &&
&SUnits[i] != Entry)
if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry)
PriorityQueue->push(&SUnits[i]);
}
@ -586,26 +571,30 @@ void ScheduleDAGList::BuildSchedUnits() {
MVT::ValueType OpVT = N->getOperand(i).getValueType();
assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
if (OpVT == MVT::Other) {
if (SU->ChainPreds.insert(OpSU).second)
SU->NumChainPredsLeft++;
if (OpSU->ChainSuccs.insert(SU).second)
OpSU->NumChainSuccsLeft++;
} else {
if (SU->Preds.insert(OpSU).second)
bool isChain = OpVT == MVT::Other;
if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) {
if (!isChain) {
SU->NumPredsLeft++;
if (OpSU->Succs.insert(SU).second)
} else {
SU->NumChainPredsLeft++;
}
}
if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) {
if (!isChain) {
OpSU->NumSuccsLeft++;
} else {
OpSU->NumChainSuccsLeft++;
}
}
}
}
// Remove MainNode from FlaggedNodes again.
SU->FlaggedNodes.pop_back();
DEBUG(SU->dumpAll(&DAG));
}
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(&DAG));
}
/// EmitSchedule - Emit the machine code in scheduled order.
@ -779,9 +768,10 @@ int RegReductionPriorityQueue::CalcNodePriority(const SUnit *SU) {
SethiUllmanNumber = 1;
} else {
int Extra = 0;
for (std::set<SUnit*>::const_iterator I = SU->Preds.begin(),
E = SU->Preds.end(); I != E; ++I) {
SUnit *PredSU = *I;
for (std::set<std::pair<SUnit*, bool> >::const_iterator
I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
if (I->second) continue; // ignore chain preds.
SUnit *PredSU = I->first;
int PredSethiUllman = CalcNodePriority(PredSU);
if (PredSethiUllman > SethiUllmanNumber) {
SethiUllmanNumber = PredSethiUllman;
@ -950,13 +940,9 @@ int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
return Latency;
int MaxSuccLatency = 0;
for (std::set<SUnit*>::const_iterator I = SU.Succs.begin(),
for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU.Succs.begin(),
E = SU.Succs.end(); I != E; ++I)
MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(**I));
for (std::set<SUnit*>::const_iterator I = SU.ChainSuccs.begin(),
E = SU.ChainSuccs.end(); I != E; ++I)
MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(**I));
MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->first));
return Latency = MaxSuccLatency + SU.Latency;
}
@ -974,24 +960,14 @@ void LatencyPriorityQueue::CalculatePriorities() {
/// of SU, return it, otherwise return null.
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
SUnit *OnlyAvailablePred = 0;
for (std::set<SUnit*>::const_iterator I = SU->Preds.begin(),
for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(),
E = SU->Preds.end(); I != E; ++I)
if (!(*I)->isScheduled) {
if (!I->first->isScheduled) {
// We found an available, but not scheduled, predecessor. If it's the
// only one we have found, keep track of it... otherwise give up.
if (OnlyAvailablePred && OnlyAvailablePred != *I)
if (OnlyAvailablePred && OnlyAvailablePred != I->first)
return 0;
OnlyAvailablePred = *I;
}
for (std::set<SUnit*>::const_iterator I = SU->ChainSuccs.begin(),
E = SU->ChainSuccs.end(); I != E; ++I)
if (!(*I)->isScheduled) {
// We found an available, but not scheduled, predecessor. If it's the
// only one we have found, keep track of it... otherwise give up.
if (OnlyAvailablePred && OnlyAvailablePred != *I)
return 0;
OnlyAvailablePred = *I;
OnlyAvailablePred = I->first;
}
return OnlyAvailablePred;
@ -1001,15 +977,11 @@ void LatencyPriorityQueue::push_impl(SUnit *SU) {
// Look at all of the successors of this node. Count the number of nodes that
// this node is the sole unscheduled node for.
unsigned NumNodesBlocking = 0;
for (std::set<SUnit*>::const_iterator I = SU->Succs.begin(),
for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
E = SU->Succs.end(); I != E; ++I)
if (getSingleUnscheduledPred(*I) == SU)
++NumNodesBlocking;
for (std::set<SUnit*>::const_iterator I = SU->ChainSuccs.begin(),
E = SU->ChainSuccs.end(); I != E; ++I)
if (getSingleUnscheduledPred(*I) == SU)
if (getSingleUnscheduledPred(I->first) == SU)
++NumNodesBlocking;
NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
Queue.push(SU);
}
@ -1020,13 +992,9 @@ void LatencyPriorityQueue::push_impl(SUnit *SU) {
// single predecessor has a higher priority, since scheduling it will make
// the node available.
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
for (std::set<SUnit*>::const_iterator I = SU->Succs.begin(),
for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
E = SU->Succs.end(); I != E; ++I)
AdjustPriorityOfUnscheduledPreds(*I);
for (std::set<SUnit*>::const_iterator I = SU->ChainSuccs.begin(),
E = SU->ChainSuccs.end(); I != E; ++I)
AdjustPriorityOfUnscheduledPreds(*I);
AdjustPriorityOfUnscheduledPreds(I->first);
}
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just