mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
[NFC][MLGO] Just use the underlying protobuf object for logging
Avoid buffering just to copy the buffered data, in 'development mode', when logging. Instead, just populate the underlying protobuf. Differential Revision: https://reviews.llvm.org/D106592
This commit is contained in:
parent
89d6157c2c
commit
4559a48614
@ -12,6 +12,7 @@
|
||||
#include "llvm/Config/llvm-config.h"
|
||||
|
||||
#ifdef LLVM_HAVE_TF_API
|
||||
#include "llvm/ADT/StringMap.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/Support/JSON.h"
|
||||
|
||||
@ -120,56 +121,62 @@ loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
|
||||
/// The assumption is that, for an event to be logged (i.e. a set of feature
|
||||
/// values and a reward), the user calls the log* API for each feature exactly
|
||||
/// once, providing the index matching the position in the feature spec list
|
||||
/// provided at construction:
|
||||
/// provided at construction. The example assumes the first feature's element
|
||||
/// type is float, the second is int64, and the reward is float:
|
||||
///
|
||||
/// event 0:
|
||||
/// logTensorValue(0, ...)
|
||||
/// logTensorValue(1, ...)
|
||||
/// logFloatValue(0, ...)
|
||||
/// logInt64Value(1, ...)
|
||||
/// ...
|
||||
/// logReward(...)
|
||||
/// logFloatReward(...)
|
||||
/// event 1:
|
||||
/// logTensorValue(0, ...)
|
||||
/// logTensorValue(1, ...)
|
||||
/// logFloatValue(0, ...)
|
||||
/// logInt64Value(1, ...)
|
||||
/// ...
|
||||
/// logReward(...)
|
||||
/// logFloatReward(...)
|
||||
///
|
||||
/// At the end, call print to generate the protobuf.
|
||||
/// Alternatively, don't call logReward at the end of each event, just
|
||||
/// log{Float|Int32|Int64}FinalReward at the end.
|
||||
class LoggerDataImpl;
|
||||
class Logger final {
|
||||
public:
|
||||
/// Construct a Logger. If IncludeReward is false, then logReward shouldn't
|
||||
/// be called, and the reward feature won't be printed out.
|
||||
/// Construct a Logger. If IncludeReward is false, then logReward or
|
||||
/// logFinalReward shouldn't be called, and the reward feature won't be
|
||||
/// printed out.
|
||||
Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs,
|
||||
const TensorSpec &RewardSpec, bool IncludeReward)
|
||||
: FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec),
|
||||
RawLogData(FeatureSpecs.size() + IncludeReward),
|
||||
IncludeReward(IncludeReward) {}
|
||||
const TensorSpec &RewardSpec, bool IncludeReward);
|
||||
|
||||
template <typename T> void logReward(T Value) {
|
||||
assert(IncludeReward);
|
||||
logTensorValue(RawLogData.size() - 1, &Value);
|
||||
}
|
||||
~Logger();
|
||||
|
||||
template <typename T> void logFinalReward(T Value) {
|
||||
assert(RawLogData.back().empty());
|
||||
logReward(Value);
|
||||
}
|
||||
void logFloatReward(float Value);
|
||||
void logInt32Reward(int32_t Value);
|
||||
void logInt64Reward(int64_t Value);
|
||||
|
||||
template <typename T>
|
||||
void logTensorValue(size_t FeatureID, const T *Value, size_t Size = 1) {
|
||||
const char *Start = reinterpret_cast<const char *>(Value);
|
||||
const char *End = Start + sizeof(T) * Size;
|
||||
RawLogData[FeatureID].insert(RawLogData[FeatureID].end(), Start, End);
|
||||
}
|
||||
void logFloatFinalReward(float Value);
|
||||
void logInt32FinalReward(int32_t Value);
|
||||
void logInt64FinalReward(int64_t Value);
|
||||
|
||||
void logFloatValue(size_t FeatureID, const float *Value);
|
||||
void logInt32Value(size_t FeatureID, const int32_t *Value);
|
||||
void logInt64Value(size_t FeatureID, const int64_t *Value);
|
||||
|
||||
void logSpecifiedTensorValue(size_t FeatureID, const char *RawData);
|
||||
|
||||
// Warning! For int32_t, the return is set up for int64_t, so the caller needs
|
||||
// to piecemeal cast their int32_t values.
|
||||
// FIXME: let's drop int32_t support. While it's supported by evaluator, it's
|
||||
// not supported by the tensorflow::SequenceExample proto. For small values,
|
||||
// we can consider using bytes.
|
||||
char *addEntryAndGetFloatOrInt64Buffer(size_t FeatureID);
|
||||
|
||||
void print(raw_ostream &OS);
|
||||
|
||||
private:
|
||||
std::vector<LoggedFeatureSpec> FeatureSpecs;
|
||||
TensorSpec RewardSpec;
|
||||
/// RawData has one entry per feature, plus one more for the reward.
|
||||
/// Each feature's values are then stored in a vector, in succession.
|
||||
/// This means the ith event is stored at [*][i]
|
||||
std::vector<std::vector<char>> RawLogData;
|
||||
const bool IncludeReward;
|
||||
std::unique_ptr<LoggerDataImpl> LoggerData;
|
||||
};
|
||||
|
||||
class TFModelEvaluator final {
|
||||
|
@ -353,24 +353,22 @@ void TrainingLogger::logInlineEvent(const InlineEvent &Event,
|
||||
size_t CurrentFeature = 0;
|
||||
for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature) {
|
||||
int64_t F = ModelRunner.getFeature(CurrentFeature);
|
||||
L->logTensorValue(CurrentFeature, &F);
|
||||
L->logInt64Value(CurrentFeature, &F);
|
||||
}
|
||||
|
||||
for (size_t I = 1; I < OutputCount; ++I) {
|
||||
const auto &Result = *MUTR->lastEvaluationResult();
|
||||
auto &Spec = MUTR->outputLoggedFeatureSpecs()[I].Spec;
|
||||
const char *RawData =
|
||||
reinterpret_cast<const char *>(Result.getUntypedTensorValue(I));
|
||||
L->logTensorValue(CurrentFeature, RawData,
|
||||
Spec.getElementCount() * Spec.getElementByteSize());
|
||||
L->logSpecifiedTensorValue(CurrentFeature, RawData);
|
||||
++CurrentFeature;
|
||||
}
|
||||
|
||||
assert(CurrentFeature == DefaultDecisionPos);
|
||||
L->logTensorValue(DefaultDecisionPos, &Event.DefaultDecision);
|
||||
L->logTensorValue(DecisionPos, &Event.AdvisedDecision);
|
||||
L->logInt64Value(DefaultDecisionPos, &Event.DefaultDecision);
|
||||
L->logInt64Value(DecisionPos, &Event.AdvisedDecision);
|
||||
if (InlineSizeEstimatorAnalysis::isEvaluatorRequested())
|
||||
L->logReward(Event.Reward);
|
||||
L->logInt64Reward(Event.Reward);
|
||||
|
||||
// For debugging / later use
|
||||
Effects.push_back(Event.Effect);
|
||||
|
@ -32,6 +32,9 @@
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
using google::protobuf::Message;
|
||||
using google::protobuf::TextFormat;
|
||||
|
||||
static cl::opt<bool>
|
||||
ProtobufTextMode("tfutils-text-log", cl::init(false), cl::Hidden,
|
||||
cl::desc("Output textual (human-readable) protobuf."));
|
||||
@ -70,55 +73,6 @@ TFStatusPtr createTFStatus() {
|
||||
TFSessionOptionsPtr createTFSessionOptions() {
|
||||
return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions);
|
||||
}
|
||||
|
||||
/// Write a list of tensors as a sequence of TensorFlow FeatureList protobufs.
|
||||
/// The tensors are assumed to be stored contiguously, in row-major format,
|
||||
/// in the TensorData buffer. Each tensor has the shape given by Spec. The
|
||||
/// feature name in the output is either the provided LoggingName, if
|
||||
/// specified, otherwise it's the name of the tensor (as given by Spec).
|
||||
void writeRawTensorsAsFeatureLists(tensorflow::FeatureLists *FE,
|
||||
const LoggedFeatureSpec &LoggedSpec,
|
||||
const char *TensorData, size_t TensorCount,
|
||||
bool FinalReward = false) {
|
||||
const auto &Spec = LoggedSpec.Spec;
|
||||
// The 'Feature' protobuf only has 3 possible fields: float_list,
|
||||
// int64_list, or bytes_list, so we capture int32 values as int64. We don't
|
||||
// support any other types.
|
||||
tensorflow::FeatureList &FL = (*FE->mutable_feature_list())[(
|
||||
LoggedSpec.LoggingName ? *LoggedSpec.LoggingName : Spec.name())];
|
||||
|
||||
const char *CurrentTensor = TensorData;
|
||||
const size_t TensorByteSize =
|
||||
Spec.getElementCount() * Spec.getElementByteSize();
|
||||
const size_t ElemCount = Spec.getElementCount();
|
||||
for (size_t E = 0; E < TensorCount; ++E) {
|
||||
const bool ShouldWrite = E + 1 == TensorCount || !FinalReward;
|
||||
|
||||
if (Spec.isElementType<int64_t>()) {
|
||||
auto *MF = FL.add_feature()->mutable_int64_list()->mutable_value();
|
||||
MF->Resize(ElemCount, 0);
|
||||
if (ShouldWrite)
|
||||
memcpy(MF->mutable_data(), CurrentTensor, TensorByteSize);
|
||||
} else if (Spec.isElementType<int32_t>()) {
|
||||
auto *MF = FL.add_feature()->mutable_int64_list()->mutable_value();
|
||||
MF->Resize(ElemCount, 0);
|
||||
if (ShouldWrite) {
|
||||
const int32_t *TD = reinterpret_cast<const int32_t *>(CurrentTensor);
|
||||
for (size_t I = 0; I < ElemCount; ++I)
|
||||
(*MF)[I] = TD[I];
|
||||
}
|
||||
} else if (Spec.isElementType<float>()) {
|
||||
auto *MF = FL.add_feature()->mutable_float_list()->mutable_value();
|
||||
MF->Resize(ElemCount, 0.0);
|
||||
if (ShouldWrite)
|
||||
memcpy(MF->mutable_data(), CurrentTensor, TensorByteSize);
|
||||
} else {
|
||||
llvm_unreachable("Unsupported tensor type.");
|
||||
}
|
||||
if (ShouldWrite)
|
||||
CurrentTensor += TensorByteSize;
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
namespace llvm {
|
||||
@ -304,6 +258,76 @@ private:
|
||||
bool checkReportAndInvalidate(const TF_Output &Output,
|
||||
const TensorSpec &OutputSpec);
|
||||
};
|
||||
|
||||
class LoggerDataImpl {
|
||||
const std::vector<LoggedFeatureSpec> LoggedFeatureSpecs;
|
||||
const TensorSpec RewardSpec;
|
||||
|
||||
tensorflow::SequenceExample SE;
|
||||
std::vector<tensorflow::FeatureList *> FeatureLists;
|
||||
tensorflow::FeatureList *Reward = nullptr;
|
||||
|
||||
public:
|
||||
LoggerDataImpl(const std::vector<LoggedFeatureSpec> &LoggedSpecs,
|
||||
const TensorSpec &RewardSpec, bool IncludeReward)
|
||||
: LoggedFeatureSpecs(LoggedSpecs), RewardSpec(RewardSpec) {
|
||||
auto *FL = SE.mutable_feature_lists()->mutable_feature_list();
|
||||
if (IncludeReward)
|
||||
Reward = &(*FL)[RewardSpec.name()];
|
||||
// Allocate first the map entries, then capture their address. We will not
|
||||
// mutate the set of features after this (i.e. the pointers won't dangle).
|
||||
for (const auto &LFS : LoggedSpecs) {
|
||||
(*FL)[LFS.LoggingName ? *LFS.LoggingName : LFS.Spec.name()] = {};
|
||||
}
|
||||
for (const auto &LFS : LoggedSpecs)
|
||||
FeatureLists.push_back(
|
||||
&(*FL)[LFS.LoggingName ? *LFS.LoggingName : LFS.Spec.name()]);
|
||||
}
|
||||
|
||||
void print(raw_ostream &OS) {
|
||||
std::string OutStr;
|
||||
if (ProtobufTextMode)
|
||||
google::protobuf::TextFormat::PrintToString(SE, &OutStr);
|
||||
else
|
||||
OutStr = SE.SerializeAsString();
|
||||
|
||||
OS << OutStr;
|
||||
}
|
||||
|
||||
char *addNewTensor(size_t FeatureID) {
|
||||
const auto &Spec = LoggedFeatureSpecs[FeatureID].Spec;
|
||||
if (Spec.isElementType<float>()) {
|
||||
auto *RF = FeatureLists[FeatureID]
|
||||
->add_feature()
|
||||
->mutable_float_list()
|
||||
->mutable_value();
|
||||
RF->Resize(Spec.getElementCount(), 0.0);
|
||||
return reinterpret_cast<char *>(RF->mutable_data());
|
||||
} else if (Spec.isElementType<int32_t>() || Spec.isElementType<int64_t>()) {
|
||||
auto *RF = FeatureLists[FeatureID]
|
||||
->add_feature()
|
||||
->mutable_int64_list()
|
||||
->mutable_value();
|
||||
RF->Resize(Spec.getElementCount(), 0);
|
||||
return reinterpret_cast<char *>(RF->mutable_data());
|
||||
}
|
||||
llvm_unreachable("Unsupported tensor type.");
|
||||
}
|
||||
|
||||
template <typename T> void logReward(T Value) {
|
||||
if (RewardSpec.isElementType<float>())
|
||||
Reward->add_feature()->mutable_float_list()->add_value(Value);
|
||||
else if (RewardSpec.isElementType<int32_t>() ||
|
||||
RewardSpec.isElementType<int64_t>())
|
||||
Reward->add_feature()->mutable_int64_list()->add_value(Value);
|
||||
else
|
||||
llvm_unreachable("Unsupported tensor type.");
|
||||
}
|
||||
|
||||
size_t getNrRecords() const {
|
||||
return FeatureLists.empty() ? 0 : FeatureLists[0]->feature().size();
|
||||
}
|
||||
};
|
||||
} // namespace llvm
|
||||
|
||||
TFModelEvaluatorImpl::TFModelEvaluatorImpl(
|
||||
@ -448,37 +472,71 @@ TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL)
|
||||
TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
|
||||
TFModelEvaluator::~TFModelEvaluator() {}
|
||||
|
||||
void Logger::print(raw_ostream &OS) {
|
||||
tensorflow::SequenceExample SE;
|
||||
Logger::Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs,
|
||||
const TensorSpec &RewardSpec, bool IncludeReward)
|
||||
: FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec),
|
||||
IncludeReward(IncludeReward),
|
||||
LoggerData(std::make_unique<LoggerDataImpl>(FeatureSpecs, RewardSpec,
|
||||
IncludeReward)) {}
|
||||
|
||||
if (RawLogData.empty())
|
||||
return;
|
||||
if (RawLogData[0].empty())
|
||||
return;
|
||||
size_t Tensor0Size = FeatureSpecs[0].Spec.getElementCount() *
|
||||
FeatureSpecs[0].Spec.getElementByteSize();
|
||||
size_t NumberOfRecords = RawLogData[0].size() / Tensor0Size;
|
||||
if (NumberOfRecords == 0)
|
||||
return;
|
||||
size_t RewardSize =
|
||||
RewardSpec.getElementCount() * RewardSpec.getElementByteSize();
|
||||
size_t NumberOfRewards = RawLogData.back().size() / RewardSize;
|
||||
Logger::~Logger() {}
|
||||
|
||||
tensorflow::FeatureLists *FE = SE.mutable_feature_lists();
|
||||
for (size_t I = 0; I < FeatureSpecs.size(); ++I)
|
||||
writeRawTensorsAsFeatureLists(FE, FeatureSpecs[I], RawLogData[I].data(),
|
||||
NumberOfRecords);
|
||||
|
||||
if (IncludeReward)
|
||||
writeRawTensorsAsFeatureLists(FE, {RewardSpec, None},
|
||||
RawLogData.back().data(), NumberOfRecords,
|
||||
NumberOfRewards == 1);
|
||||
std::string OutStr;
|
||||
if (ProtobufTextMode) {
|
||||
google::protobuf::TextFormat::PrintToString(SE, &OutStr);
|
||||
} else {
|
||||
OutStr = SE.SerializeAsString();
|
||||
#define LOG_REWARD(NAME, TYPE) \
|
||||
void Logger::log##NAME##Reward(TYPE Value) { \
|
||||
assert(IncludeReward); \
|
||||
LoggerData->logReward(Value); \
|
||||
}
|
||||
OS << OutStr;
|
||||
|
||||
LOG_REWARD(Float, float)
|
||||
LOG_REWARD(Int32, int32_t)
|
||||
LOG_REWARD(Int64, int64_t)
|
||||
#undef LOG_REWARD
|
||||
|
||||
#define LOG_FINAL_REWARD(NAME, TYPE) \
|
||||
void Logger::log##NAME##FinalReward(TYPE Value) { \
|
||||
assert(RewardSpec.isElementType<TYPE>()); \
|
||||
for (size_t I = 1; I < LoggerData->getNrRecords(); ++I) \
|
||||
log##NAME##Reward(0); \
|
||||
log##NAME##Reward(Value); \
|
||||
}
|
||||
|
||||
LOG_FINAL_REWARD(Float, float)
|
||||
LOG_FINAL_REWARD(Int32, int32_t)
|
||||
LOG_FINAL_REWARD(Int64, int64_t)
|
||||
#undef LOG_FINAL_REWARD
|
||||
|
||||
void Logger::logFloatValue(size_t FeatureID, const float *Value) {
|
||||
assert(FeatureSpecs[FeatureID].Spec.isElementType<float>());
|
||||
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
|
||||
}
|
||||
|
||||
void Logger::logInt64Value(size_t FeatureID, const int64_t *Value) {
|
||||
assert(FeatureSpecs[FeatureID].Spec.isElementType<int64_t>());
|
||||
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
|
||||
}
|
||||
|
||||
void Logger::logInt32Value(size_t FeatureID, const int32_t *Value) {
|
||||
assert(FeatureSpecs[FeatureID].Spec.isElementType<int32_t>());
|
||||
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
|
||||
}
|
||||
|
||||
void Logger::logSpecifiedTensorValue(size_t FeatureID, const char *RawData) {
|
||||
const auto &Spec = FeatureSpecs[FeatureID].Spec;
|
||||
char *Buff = addEntryAndGetFloatOrInt64Buffer(FeatureID);
|
||||
if (Spec.isElementType<int32_t>())
|
||||
for (size_t I = 0; I < Spec.getElementCount(); ++I)
|
||||
(reinterpret_cast<int64_t *>(Buff))[I] =
|
||||
static_cast<int64_t>((reinterpret_cast<const int32_t *>(RawData))[I]);
|
||||
else if (Spec.isElementType<int64_t>() || Spec.isElementType<float>())
|
||||
std::memcpy(Buff, RawData,
|
||||
Spec.getElementCount() * Spec.getElementByteSize());
|
||||
else
|
||||
llvm_unreachable("Unsupported tensor type");
|
||||
}
|
||||
|
||||
char *Logger::addEntryAndGetFloatOrInt64Buffer(size_t FeatureID) {
|
||||
return reinterpret_cast<char *>(LoggerData->addNewTensor(FeatureID));
|
||||
}
|
||||
|
||||
void Logger::print(raw_ostream &OS) { LoggerData->print(OS); }
|
||||
#endif // defined(LLVM_HAVE_TF_API)
|
||||
|
@ -169,14 +169,14 @@ TEST(TFUtilsTest, Logger) {
|
||||
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
|
||||
const int64_t F01[]{2, 3};
|
||||
|
||||
L.logTensorValue(0, F00, 6);
|
||||
L.logTensorValue(1, F01, 2);
|
||||
L.logReward<float>(3.4);
|
||||
L.logFloatValue(0, F00);
|
||||
L.logInt64Value(1, F01);
|
||||
L.logFloatReward(3.4);
|
||||
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
|
||||
const int64_t F11[]{-2, -3};
|
||||
L.logTensorValue(0, F10, 6);
|
||||
L.logTensorValue(1, F11, 2);
|
||||
L.logReward<float>(-3.0);
|
||||
L.logFloatValue(0, F10);
|
||||
L.logInt64Value(1, F11);
|
||||
L.logFloatReward(-3.0);
|
||||
std::string Result;
|
||||
raw_string_ostream OS(Result);
|
||||
L.print(OS);
|
||||
@ -193,6 +193,42 @@ TEST(TFUtilsTest, Logger) {
|
||||
PROTO_CHECKER("reward", float_list, 1, R1);
|
||||
}
|
||||
|
||||
TEST(TFUtilsTest, LoggerInt32FeaturesAndReward) {
|
||||
std::vector<LoggedFeatureSpec> Features;
|
||||
Features.push_back(
|
||||
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
|
||||
Features.push_back({TensorSpec::createSpec<int32_t>("the_int", {2}),
|
||||
std::string("alternate_name")});
|
||||
|
||||
auto Rewards = TensorSpec::createSpec<int32_t>("reward", {1});
|
||||
Logger L(Features, Rewards, true);
|
||||
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
|
||||
const int32_t F01[]{2, 3};
|
||||
|
||||
L.logFloatValue(0, F00);
|
||||
L.logInt32Value(1, F01);
|
||||
L.logInt32Reward(3);
|
||||
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
|
||||
const int32_t F11[]{-2, -3};
|
||||
L.logFloatValue(0, F10);
|
||||
L.logInt32Value(1, F11);
|
||||
L.logInt32Reward(-3);
|
||||
std::string Result;
|
||||
raw_string_ostream OS(Result);
|
||||
L.print(OS);
|
||||
|
||||
tensorflow::SequenceExample Expected;
|
||||
EXPECT_TRUE(Expected.ParseFromString(Result));
|
||||
PROTO_CHECKER("the_float", float_list, 0, F00);
|
||||
PROTO_CHECKER("the_float", float_list, 1, F10);
|
||||
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
|
||||
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
|
||||
int32_t R0[]{3};
|
||||
int32_t R1[]{-3};
|
||||
PROTO_CHECKER("reward", int64_list, 0, R0);
|
||||
PROTO_CHECKER("reward", int64_list, 1, R1);
|
||||
}
|
||||
|
||||
TEST(TFUtilsTest, LoggerNoReward) {
|
||||
std::vector<LoggedFeatureSpec> Features;
|
||||
Features.push_back(
|
||||
@ -205,12 +241,12 @@ TEST(TFUtilsTest, LoggerNoReward) {
|
||||
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
|
||||
const int64_t F01[]{2, 3};
|
||||
|
||||
L.logTensorValue(0, F00, 6);
|
||||
L.logTensorValue(1, F01, 2);
|
||||
L.logFloatValue(0, F00);
|
||||
L.logInt64Value(1, F01);
|
||||
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
|
||||
const int64_t F11[]{-2, -3};
|
||||
L.logTensorValue(0, F10, 6);
|
||||
L.logTensorValue(1, F11, 2);
|
||||
L.logFloatValue(0, F10);
|
||||
L.logInt64Value(1, F11);
|
||||
|
||||
std::string Result;
|
||||
raw_string_ostream OS(Result);
|
||||
@ -230,12 +266,12 @@ TEST(TFUtilsTest, LoggerFinalReward) {
|
||||
|
||||
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
|
||||
Logger L(Features, Rewards, true);
|
||||
for (size_t I = 0; I < 3; ++I) {
|
||||
for (int64_t I = 0; I < 3; ++I) {
|
||||
float F = static_cast<float>(I);
|
||||
L.logTensorValue(0, &F);
|
||||
L.logTensorValue(1, &I);
|
||||
L.logFloatValue(0, &F);
|
||||
L.logInt64Value(1, &I);
|
||||
}
|
||||
L.logFinalReward<float>(3.14);
|
||||
L.logFloatFinalReward(3.14);
|
||||
std::string Result;
|
||||
raw_string_ostream OS(Result);
|
||||
L.print(OS);
|
||||
|
Loading…
Reference in New Issue
Block a user