1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00

Add a new TypeBuilder helper class, which eases making LLVM IR types.

Patch by Jeffrey Yasskin!

llvm-svn: 70084
This commit is contained in:
Chris Lattner 2009-04-25 22:14:04 +00:00
parent f1cc8abdda
commit 46c25c1285
2 changed files with 696 additions and 0 deletions

View File

@ -0,0 +1,463 @@
//===---- llvm/Support/TypeBuilder.h - Builder for LLVM types ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeBuilder class, which is used as a convenient way to
// create LLVM types with a consistent and simplified interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_TYPEBUILDER_H
#define LLVM_SUPPORT_TYPEBUILDER_H
#include "llvm/DerivedTypes.h"
namespace llvm {
/// TypeBuilder - This provides a uniform API for looking up types
/// known at compile time. To support cross-compilation, we define a
/// series of tag types in the llvm::types namespace, like i<N>,
/// ieee_float, ppc_fp128, etc. TypeBuilder<T, false> allows T to be
/// any of these, a native C type (whose size may depend on the host
/// compiler), or a pointer, function, or struct type built out of
/// these. TypeBuilder<T, true> removes native C types from this set
/// to guarantee that its result is suitable for cross-compilation.
/// We define the primitive types, pointer types, and functions up to
/// 5 arguments here, but to use this class with your own types,
/// you'll need to specialize it. For example, say you want to call a
/// function defined externally as:
///
/// struct MyType {
/// int32 a;
/// int32 *b;
/// void *array[1]; // Intended as a flexible array.
/// };
/// int8 AFunction(struct MyType *value);
///
/// You'll want to use
/// Function::Create(TypeBuilder<types::i<8>(MyType*)>::get(), ...)
/// to declare the function, but when you first try this, your compiler will
/// complain that TypeBuilder<MyType>::get() doesn't exist. To fix this, write:
///
/// namespace llvm {
/// using types::i;
/// template<bool xcompile> class TypeBuilder<MyType, xcompile> {
/// public:
/// static const StructType *get() {
/// // Using the static result variable ensures that the type is
/// // only looked up once.
/// static const StructType *const result = StructType::get(
/// TypeBuilder<i<32>, xcompile>::get(),
/// TypeBuilder<i<32>*, xcompile>::get(),
/// TypeBuilder<i<8>*[], xcompile>::get(),
/// NULL);
/// return result;
/// }
///
/// // You may find this a convenient place to put some constants
/// // to help with getelementptr. They don't have any effect on
/// // the operation of TypeBuilder.
/// enum Fields {
/// FIELD_A,
/// FIELD_B,
/// FIELD_ARRAY
/// };
/// }
/// } // namespace llvm
///
/// Using the static result variable ensures that the type is only looked up
/// once.
///
/// TypeBuilder cannot handle recursive types or types you only know at runtime.
/// If you try to give it a recursive type, it will deadlock, infinitely
/// recurse, or throw a recursive_init exception.
template<typename T, bool cross_compilable> class TypeBuilder {};
// Types for use with cross-compilable TypeBuilders. These correspond
// exactly with an LLVM-native type.
namespace types {
/// i<N> corresponds to the LLVM IntegerType with N bits.
template<uint32_t num_bits> class i {};
// The following classes represent the LLVM floating types.
class ieee_float {};
class ieee_double {};
class x86_fp80 {};
class fp128 {};
class ppc_fp128 {};
} // namespace types
// LLVM doesn't have const or volatile types.
template<typename T, bool cross> class TypeBuilder<const T, cross>
: public TypeBuilder<T, cross> {};
template<typename T, bool cross> class TypeBuilder<volatile T, cross>
: public TypeBuilder<T, cross> {};
template<typename T, bool cross> class TypeBuilder<const volatile T, cross>
: public TypeBuilder<T, cross> {};
// Pointers
template<typename T, bool cross> class TypeBuilder<T*, cross> {
public:
static const PointerType *get() {
static const PointerType *const result =
PointerType::getUnqual(TypeBuilder<T,cross>::get());
return result;
}
};
/// There is no support for references
template<typename T, bool cross> class TypeBuilder<T&, cross> {};
// Arrays
template<typename T, size_t N, bool cross> class TypeBuilder<T[N], cross> {
public:
static const ArrayType *get() {
static const ArrayType *const result =
ArrayType::get(TypeBuilder<T, cross>::get(), N);
return result;
}
};
/// LLVM uses an array of length 0 to represent an unknown-length array.
template<typename T, bool cross> class TypeBuilder<T[], cross> {
public:
static const ArrayType *get() {
static const ArrayType *const result =
ArrayType::get(TypeBuilder<T, cross>::get(), 0);
return result;
}
};
// Define the C integral types only for TypeBuilder<T, false>.
//
// C integral types do not have a defined size. It would be nice to use the
// stdint.h-defined typedefs that do have defined sizes, but we'd run into the
// following problem:
//
// On an ILP32 machine, stdint.h might define:
//
// typedef int int32_t;
// typedef long long int64_t;
// typedef long size_t;
//
// If we defined TypeBuilder<int32_t> and TypeBuilder<int64_t>, then any use of
// TypeBuilder<size_t> would fail. We couldn't define TypeBuilder<size_t> in
// addition to the defined-size types because we'd get duplicate definitions on
// platforms where stdint.h instead defines:
//
// typedef int int32_t;
// typedef long long int64_t;
// typedef int size_t;
//
// So we define all the primitive C types and nothing else.
#define DEFINE_INTEGRAL_TYPEBUILDER(T) \
template<> class TypeBuilder<T, false> { \
public: \
static const IntegerType *get() { \
static const IntegerType *const result = \
IntegerType::get(sizeof(T) * CHAR_BIT); \
return result; \
} \
}; \
template<> class TypeBuilder<T, true> { \
/* We provide a definition here so users don't accidentally */ \
/* define these types to work. */ \
}
DEFINE_INTEGRAL_TYPEBUILDER(char);
DEFINE_INTEGRAL_TYPEBUILDER(signed char);
DEFINE_INTEGRAL_TYPEBUILDER(unsigned char);
DEFINE_INTEGRAL_TYPEBUILDER(short);
DEFINE_INTEGRAL_TYPEBUILDER(unsigned short);
DEFINE_INTEGRAL_TYPEBUILDER(int);
DEFINE_INTEGRAL_TYPEBUILDER(unsigned int);
DEFINE_INTEGRAL_TYPEBUILDER(long);
DEFINE_INTEGRAL_TYPEBUILDER(unsigned long);
#ifdef _MSC_VER
DEFINE_INTEGRAL_TYPEBUILDER(__int64);
DEFINE_INTEGRAL_TYPEBUILDER(unsigned __int64);
#else /* _MSC_VER */
DEFINE_INTEGRAL_TYPEBUILDER(long long);
DEFINE_INTEGRAL_TYPEBUILDER(unsigned long long);
#endif /* _MSC_VER */
#undef DEFINE_INTEGRAL_TYPEBUILDER
template<uint32_t num_bits, bool cross>
class TypeBuilder<types::i<num_bits>, cross> {
public:
static const IntegerType *get() {
static const IntegerType *const result = IntegerType::get(num_bits);
return result;
}
};
template<> class TypeBuilder<float, false> {
public:
static const Type *get() {
return Type::FloatTy;
}
};
template<> class TypeBuilder<float, true> {};
template<> class TypeBuilder<double, false> {
public:
static const Type *get() {
return Type::DoubleTy;
}
};
template<> class TypeBuilder<double, true> {};
template<bool cross> class TypeBuilder<types::ieee_float, cross> {
public:
static const Type *get() { return Type::FloatTy; }
};
template<bool cross> class TypeBuilder<types::ieee_double, cross> {
public:
static const Type *get() { return Type::DoubleTy; }
};
template<bool cross> class TypeBuilder<types::x86_fp80, cross> {
public:
static const Type *get() { return Type::X86_FP80Ty; }
};
template<bool cross> class TypeBuilder<types::fp128, cross> {
public:
static const Type *get() { return Type::FP128Ty; }
};
template<bool cross> class TypeBuilder<types::ppc_fp128, cross> {
public:
static const Type *get() { return Type::PPC_FP128Ty; }
};
template<bool cross> class TypeBuilder<void, cross> {
public:
static const Type *get() {
return Type::VoidTy;
}
};
/// void* is disallowed in LLVM types, but it occurs often enough in C code that
/// we special case it.
template<> class TypeBuilder<void*, false>
: public TypeBuilder<types::i<8>*, false> {};
template<typename R, bool cross> class TypeBuilder<R(), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
return FunctionType::get(TypeBuilder<R, cross>::get(), params, false);
}
};
template<typename R, typename A1, bool cross> class TypeBuilder<R(A1), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(1);
params.push_back(TypeBuilder<A1, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, false);
}
};
template<typename R, typename A1, typename A2, bool cross>
class TypeBuilder<R(A1, A2), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(2);
params.push_back(TypeBuilder<A1, cross>::get());
params.push_back(TypeBuilder<A2, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, false);
}
};
template<typename R, typename A1, typename A2, typename A3, bool cross>
class TypeBuilder<R(A1, A2, A3), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(3);
params.push_back(TypeBuilder<A1, cross>::get());
params.push_back(TypeBuilder<A2, cross>::get());
params.push_back(TypeBuilder<A3, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, false);
}
};
template<typename R, typename A1, typename A2, typename A3, typename A4,
bool cross>
class TypeBuilder<R(A1, A2, A3, A4), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(4);
params.push_back(TypeBuilder<A1, cross>::get());
params.push_back(TypeBuilder<A2, cross>::get());
params.push_back(TypeBuilder<A3, cross>::get());
params.push_back(TypeBuilder<A4, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, false);
}
};
template<typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, bool cross>
class TypeBuilder<R(A1, A2, A3, A4, A5), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(5);
params.push_back(TypeBuilder<A1, cross>::get());
params.push_back(TypeBuilder<A2, cross>::get());
params.push_back(TypeBuilder<A3, cross>::get());
params.push_back(TypeBuilder<A4, cross>::get());
params.push_back(TypeBuilder<A5, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, false);
}
};
template<typename R, bool cross> class TypeBuilder<R(...), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
return FunctionType::get(TypeBuilder<R, cross>::get(), params, true);
}
};
template<typename R, typename A1, bool cross>
class TypeBuilder<R(A1, ...), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(1);
params.push_back(TypeBuilder<A1, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, true);
}
};
template<typename R, typename A1, typename A2, bool cross>
class TypeBuilder<R(A1, A2, ...), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(2);
params.push_back(TypeBuilder<A1, cross>::get());
params.push_back(TypeBuilder<A2, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, true);
}
};
template<typename R, typename A1, typename A2, typename A3, bool cross>
class TypeBuilder<R(A1, A2, A3, ...), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(3);
params.push_back(TypeBuilder<A1, cross>::get());
params.push_back(TypeBuilder<A2, cross>::get());
params.push_back(TypeBuilder<A3, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, true);
}
};
template<typename R, typename A1, typename A2, typename A3, typename A4,
bool cross>
class TypeBuilder<R(A1, A2, A3, A4, ...), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(4);
params.push_back(TypeBuilder<A1, cross>::get());
params.push_back(TypeBuilder<A2, cross>::get());
params.push_back(TypeBuilder<A3, cross>::get());
params.push_back(TypeBuilder<A4, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, true);
}
};
template<typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, bool cross>
class TypeBuilder<R(A1, A2, A3, A4, A5, ...), cross> {
public:
static const FunctionType *get() {
static const FunctionType *const result = create();
return result;
}
private:
static const FunctionType *create() {
std::vector<const Type*> params;
params.reserve(5);
params.push_back(TypeBuilder<A1, cross>::get());
params.push_back(TypeBuilder<A2, cross>::get());
params.push_back(TypeBuilder<A3, cross>::get());
params.push_back(TypeBuilder<A4, cross>::get());
params.push_back(TypeBuilder<A5, cross>::get());
return FunctionType::get(TypeBuilder<R, cross>::get(), params, true);
}
};
} // namespace llvm
#endif

View File

@ -0,0 +1,233 @@
//===- llvm/unittest/Support/TypeBuilderTest.cpp - TypeBuilder tests -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/TypeBuilder.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
TEST(TypeBuilderTest, Void) {
EXPECT_EQ(Type::VoidTy, (TypeBuilder<void, true>::get()));
EXPECT_EQ(Type::VoidTy, (TypeBuilder<void, false>::get()));
// Special case for C compatibility:
EXPECT_EQ(PointerType::getUnqual(Type::Int8Ty),
(TypeBuilder<void*, false>::get()));
}
TEST(TypeBuilderTest, HostIntegers) {
EXPECT_EQ(Type::Int8Ty, (TypeBuilder<int8_t, false>::get()));
EXPECT_EQ(Type::Int8Ty, (TypeBuilder<uint8_t, false>::get()));
EXPECT_EQ(Type::Int16Ty, (TypeBuilder<int16_t, false>::get()));
EXPECT_EQ(Type::Int16Ty, (TypeBuilder<uint16_t, false>::get()));
EXPECT_EQ(Type::Int32Ty, (TypeBuilder<int32_t, false>::get()));
EXPECT_EQ(Type::Int32Ty, (TypeBuilder<uint32_t, false>::get()));
EXPECT_EQ(Type::Int64Ty, (TypeBuilder<int64_t, false>::get()));
EXPECT_EQ(Type::Int64Ty, (TypeBuilder<uint64_t, false>::get()));
EXPECT_EQ(IntegerType::get(sizeof(size_t) * CHAR_BIT),
(TypeBuilder<size_t, false>::get()));
EXPECT_EQ(IntegerType::get(sizeof(ptrdiff_t) * CHAR_BIT),
(TypeBuilder<ptrdiff_t, false>::get()));
}
TEST(TypeBuilderTest, CrossCompilableIntegers) {
EXPECT_EQ(IntegerType::get(1), (TypeBuilder<types::i<1>, true>::get()));
EXPECT_EQ(IntegerType::get(1), (TypeBuilder<types::i<1>, false>::get()));
EXPECT_EQ(IntegerType::get(72), (TypeBuilder<types::i<72>, true>::get()));
EXPECT_EQ(IntegerType::get(72), (TypeBuilder<types::i<72>, false>::get()));
}
TEST(TypeBuilderTest, Float) {
EXPECT_EQ(Type::FloatTy, (TypeBuilder<float, false>::get()));
EXPECT_EQ(Type::DoubleTy, (TypeBuilder<double, false>::get()));
// long double isn't supported yet.
EXPECT_EQ(Type::FloatTy, (TypeBuilder<types::ieee_float, true>::get()));
EXPECT_EQ(Type::FloatTy, (TypeBuilder<types::ieee_float, false>::get()));
EXPECT_EQ(Type::DoubleTy, (TypeBuilder<types::ieee_double, true>::get()));
EXPECT_EQ(Type::DoubleTy, (TypeBuilder<types::ieee_double, false>::get()));
EXPECT_EQ(Type::X86_FP80Ty, (TypeBuilder<types::x86_fp80, true>::get()));
EXPECT_EQ(Type::X86_FP80Ty, (TypeBuilder<types::x86_fp80, false>::get()));
EXPECT_EQ(Type::FP128Ty, (TypeBuilder<types::fp128, true>::get()));
EXPECT_EQ(Type::FP128Ty, (TypeBuilder<types::fp128, false>::get()));
EXPECT_EQ(Type::PPC_FP128Ty, (TypeBuilder<types::ppc_fp128, true>::get()));
EXPECT_EQ(Type::PPC_FP128Ty, (TypeBuilder<types::ppc_fp128, false>::get()));
}
TEST(TypeBuilderTest, Derived) {
EXPECT_EQ(PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)),
(TypeBuilder<int8_t**, false>::get()));
EXPECT_EQ(ArrayType::get(Type::Int8Ty, 7),
(TypeBuilder<int8_t[7], false>::get()));
EXPECT_EQ(ArrayType::get(Type::Int8Ty, 0),
(TypeBuilder<int8_t[], false>::get()));
EXPECT_EQ(PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)),
(TypeBuilder<types::i<8>**, false>::get()));
EXPECT_EQ(ArrayType::get(Type::Int8Ty, 7),
(TypeBuilder<types::i<8>[7], false>::get()));
EXPECT_EQ(ArrayType::get(Type::Int8Ty, 0),
(TypeBuilder<types::i<8>[], false>::get()));
EXPECT_EQ(PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)),
(TypeBuilder<types::i<8>**, true>::get()));
EXPECT_EQ(ArrayType::get(Type::Int8Ty, 7),
(TypeBuilder<types::i<8>[7], true>::get()));
EXPECT_EQ(ArrayType::get(Type::Int8Ty, 0),
(TypeBuilder<types::i<8>[], true>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<const int8_t, false>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<volatile int8_t, false>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<const volatile int8_t, false>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<const types::i<8>, false>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<volatile types::i<8>, false>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<const volatile types::i<8>, false>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<const types::i<8>, true>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<volatile types::i<8>, true>::get()));
EXPECT_EQ(Type::Int8Ty,
(TypeBuilder<const volatile types::i<8>, true>::get()));
EXPECT_EQ(PointerType::getUnqual(Type::Int8Ty),
(TypeBuilder<const volatile int8_t*const volatile, false>::get()));
}
TEST(TypeBuilderTest, Functions) {
std::vector<const Type*> params;
EXPECT_EQ(FunctionType::get(Type::VoidTy, params, false),
(TypeBuilder<void(), true>::get()));
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, true),
(TypeBuilder<int8_t(...), false>::get()));
params.push_back(TypeBuilder<int32_t*, false>::get());
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, false),
(TypeBuilder<int8_t(const int32_t*), false>::get()));
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, true),
(TypeBuilder<int8_t(const int32_t*, ...), false>::get()));
params.push_back(TypeBuilder<char*, false>::get());
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, false),
(TypeBuilder<int8_t(int32_t*, void*), false>::get()));
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, true),
(TypeBuilder<int8_t(int32_t*, char*, ...), false>::get()));
params.push_back(TypeBuilder<char, false>::get());
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, false),
(TypeBuilder<int8_t(int32_t*, void*, char), false>::get()));
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, true),
(TypeBuilder<int8_t(int32_t*, char*, char, ...), false>::get()));
params.push_back(TypeBuilder<char, false>::get());
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, false),
(TypeBuilder<int8_t(int32_t*, void*, char, char), false>::get()));
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, true),
(TypeBuilder<int8_t(int32_t*, char*, char, char, ...),
false>::get()));
params.push_back(TypeBuilder<char, false>::get());
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, false),
(TypeBuilder<int8_t(int32_t*, void*, char, char, char),
false>::get()));
EXPECT_EQ(FunctionType::get(Type::Int8Ty, params, true),
(TypeBuilder<int8_t(int32_t*, char*, char, char, char, ...),
false>::get()));
}
class MyType {
int a;
int *b;
void *array[1];
};
class MyPortableType {
int32_t a;
int32_t *b;
void *array[1];
};
} // anonymous namespace
namespace llvm {
template<bool cross> class TypeBuilder<MyType, cross> {
public:
static const StructType *get() {
// Using the static result variable ensures that the type is
// only looked up once.
static const StructType *const result = StructType::get(
TypeBuilder<int, cross>::get(),
TypeBuilder<int*, cross>::get(),
TypeBuilder<void*[], cross>::get(),
NULL);
return result;
}
// You may find this a convenient place to put some constants
// to help with getelementptr. They don't have any effect on
// the operation of TypeBuilder.
enum Fields {
FIELD_A,
FIELD_B,
FIELD_ARRAY
};
};
template<bool cross> class TypeBuilder<MyPortableType, cross> {
public:
static const StructType *get() {
// Using the static result variable ensures that the type is
// only looked up once.
static const StructType *const result = StructType::get(
TypeBuilder<types::i<32>, cross>::get(),
TypeBuilder<types::i<32>*, cross>::get(),
TypeBuilder<types::i<8>*[], cross>::get(),
NULL);
return result;
}
// You may find this a convenient place to put some constants
// to help with getelementptr. They don't have any effect on
// the operation of TypeBuilder.
enum Fields {
FIELD_A,
FIELD_B,
FIELD_ARRAY
};
};
} // namespace llvm
namespace {
TEST(TypeBuilderTest, Extensions) {
EXPECT_EQ(PointerType::getUnqual(StructType::get(
TypeBuilder<int, false>::get(),
TypeBuilder<int*, false>::get(),
TypeBuilder<void*[], false>::get(),
NULL)),
(TypeBuilder<MyType*, false>::get()));
EXPECT_EQ(PointerType::getUnqual(StructType::get(
TypeBuilder<types::i<32>, false>::get(),
TypeBuilder<types::i<32>*, false>::get(),
TypeBuilder<types::i<8>*[], false>::get(),
NULL)),
(TypeBuilder<MyPortableType*, false>::get()));
EXPECT_EQ(PointerType::getUnqual(StructType::get(
TypeBuilder<types::i<32>, false>::get(),
TypeBuilder<types::i<32>*, false>::get(),
TypeBuilder<types::i<8>*[], false>::get(),
NULL)),
(TypeBuilder<MyPortableType*, true>::get()));
}
} // anonymous namespace