mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-31 20:51:52 +01:00
Fixed several correctness issues in SeparateConstOffsetFromGEP
Most issues are on mishandling s/zext. Fixes: 1. When rebuilding new indices, s/zext should be distributed to sub-expressions. e.g., sext(a +nsw (b +nsw 5)) = sext(a) + sext(b) + 5 but not sext(a + b) + 5. This also affects the logic of recursively looking for a constant offset, we need to include s/zext into the context of the searching. 2. Function find should return the bitwidth of the constant offset instead of always sign-extending it to i64. 3. Stop shortcutting zext'ed GEP indices. LLVM conceptually sign-extends GEP indices to pointer-size before computing the address. Therefore, gep base, zext(a + b) != gep base, a + b Improvements: 1. Add an optimization for splitting sext(a + b): if a + b is proven non-negative (e.g., used as an index of an inbound GEP) and one of a, b is non-negative, sext(a + b) = sext(a) + sext(b) 2. Function Distributable checks whether both sext and zext can be distributed to operands of a binary operator. This helps us split zext(sext(a + b)) to zext(sext(a) + zext(sext(b)) when a + b does not signed or unsigned overflow. Refactoring: Merge some common logic of handling add/sub/or in find. Testing: Add many tests in split-gep.ll and split-gep-and-gvn.ll to verify the changes we made. llvm-svn: 210291
This commit is contained in:
parent
48b570a54b
commit
490f50746a
@ -121,41 +121,75 @@ class ConstantOffsetExtractor {
|
||||
/// numeric value of the extracted constant offset (0 if failed), and a
|
||||
/// new index representing the remainder (equal to the original index minus
|
||||
/// the constant offset).
|
||||
/// \p Idx The given GEP index
|
||||
/// \p NewIdx The new index to replace
|
||||
/// \p DL The datalayout of the module
|
||||
/// \p IP Calculating the new index requires new instructions. IP indicates
|
||||
/// where to insert them (typically right before the GEP).
|
||||
/// \p Idx The given GEP index
|
||||
/// \p NewIdx The new index to replace (output)
|
||||
/// \p DL The datalayout of the module
|
||||
/// \p GEP The given GEP
|
||||
static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
|
||||
Instruction *IP);
|
||||
GetElementPtrInst *GEP);
|
||||
/// Looks for a constant offset without extracting it. The meaning of the
|
||||
/// arguments and the return value are the same as Extract.
|
||||
static int64_t Find(Value *Idx, const DataLayout *DL);
|
||||
static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
|
||||
|
||||
private:
|
||||
ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
|
||||
: DL(Layout), IP(InsertionPt) {}
|
||||
/// Searches the expression that computes V for a constant offset. If the
|
||||
/// searching is successful, update UserChain as a path from V to the constant
|
||||
/// offset.
|
||||
int64_t find(Value *V);
|
||||
/// A helper function to look into both operands of a binary operator U.
|
||||
/// \p IsSub Whether U is a sub operator. If so, we need to negate the
|
||||
/// constant offset at some point.
|
||||
int64_t findInEitherOperand(User *U, bool IsSub);
|
||||
/// After finding the constant offset and how it is reached from the GEP
|
||||
/// index, we build a new index which is a clone of the old one except the
|
||||
/// constant offset is removed. For example, given (a + (b + 5)) and knowning
|
||||
/// the constant offset is 5, this function returns (a + b).
|
||||
/// Searches the expression that computes V for a non-zero constant C s.t.
|
||||
/// V can be reassociated into the form V' + C. If the searching is
|
||||
/// successful, returns C and update UserChain as a def-use chain from C to V;
|
||||
/// otherwise, UserChain is empty.
|
||||
///
|
||||
/// We cannot simply change the constant to zero because the expression that
|
||||
/// computes the index or its intermediate result may be used by others.
|
||||
Value *rebuildWithoutConstantOffset();
|
||||
// A helper function for rebuildWithoutConstantOffset that rebuilds the direct
|
||||
// user (U) of the constant offset (C).
|
||||
Value *rebuildLeafWithoutConstantOffset(User *U, Value *C);
|
||||
/// Returns a clone of U except the first occurrence of From with To.
|
||||
Value *cloneAndReplace(User *U, Value *From, Value *To);
|
||||
/// \p V The given expression
|
||||
/// \p SignExtended Whether V will be sign-extended in the computation of the
|
||||
/// GEP index
|
||||
/// \p ZeroExtended Whether V will be zero-extended in the computation of the
|
||||
/// GEP index
|
||||
/// \p NonNegative Whether V is guaranteed to be non-negative. For example,
|
||||
/// an index of an inbounds GEP is guaranteed to be
|
||||
/// non-negative. Levaraging this, we can better split
|
||||
/// inbounds GEPs.
|
||||
APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
|
||||
/// A helper function to look into both operands of a binary operator.
|
||||
APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
|
||||
bool ZeroExtended);
|
||||
/// After finding the constant offset C from the GEP index I, we build a new
|
||||
/// index I' s.t. I' + C = I. This function builds and returns the new
|
||||
/// index I' according to UserChain produced by function "find".
|
||||
///
|
||||
/// The building conceptually takes two steps:
|
||||
/// 1) iteratively distribute s/zext towards the leaves of the expression tree
|
||||
/// that computes I
|
||||
/// 2) reassociate the expression tree to the form I' + C.
|
||||
///
|
||||
/// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
|
||||
/// sext to a, b and 5 so that we have
|
||||
/// sext(a) + (sext(b) + 5).
|
||||
/// Then, we reassociate it to
|
||||
/// (sext(a) + sext(b)) + 5.
|
||||
/// Given this form, we know I' is sext(a) + sext(b).
|
||||
Value *rebuildWithoutConstOffset();
|
||||
/// After the first step of rebuilding the GEP index without the constant
|
||||
/// offset, distribute s/zext to the operands of all operators in UserChain.
|
||||
/// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
|
||||
/// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
|
||||
///
|
||||
/// The function also updates UserChain to point to new subexpressions after
|
||||
/// distributing s/zext. e.g., the old UserChain of the above example is
|
||||
/// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
|
||||
/// and the new UserChain is
|
||||
/// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
|
||||
/// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
|
||||
///
|
||||
/// \p ChainIndex The index to UserChain. ChainIndex is initially
|
||||
/// UserChain.size() - 1, and is decremented during
|
||||
/// the recursion.
|
||||
Value *distributeExtsAndCloneChain(unsigned ChainIndex);
|
||||
/// Reassociates the GEP index to the form I' + C and returns I'.
|
||||
Value *removeConstOffset(unsigned ChainIndex);
|
||||
/// A helper function to apply ExtInsts, a list of s/zext, to value V.
|
||||
/// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
|
||||
/// returns "sext i32 (zext i16 V to i32) to i64".
|
||||
Value *applyExts(Value *V);
|
||||
|
||||
/// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
|
||||
bool NoCommonBits(Value *LHS, Value *RHS) const;
|
||||
@ -163,20 +197,26 @@ class ConstantOffsetExtractor {
|
||||
/// \p KnownOne Mask of all bits that are known to be one.
|
||||
/// \p KnownZero Mask of all bits that are known to be zero.
|
||||
void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
|
||||
/// Finds the first use of Used in U. Returns -1 if not found.
|
||||
static unsigned FindFirstUse(User *U, Value *Used);
|
||||
/// Returns whether OPC (sext or zext) can be distributed to the operands of
|
||||
/// BO. e.g., sext can be distributed to the operands of an "add nsw" because
|
||||
/// sext (add nsw a, b) == add nsw (sext a), (sext b).
|
||||
static bool Distributable(unsigned OPC, BinaryOperator *BO);
|
||||
/// A helper function that returns whether we can trace into the operands
|
||||
/// of binary operator BO for a constant offset.
|
||||
///
|
||||
/// \p SignExtended Whether BO is surrounded by sext
|
||||
/// \p ZeroExtended Whether BO is surrounded by zext
|
||||
/// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
|
||||
/// array index.
|
||||
bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
|
||||
bool NonNegative);
|
||||
|
||||
/// The path from the constant offset to the old GEP index. e.g., if the GEP
|
||||
/// index is "a * b + (c + 5)". After running function find, UserChain[0] will
|
||||
/// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
|
||||
/// UserChain[2] will be the entire expression "a * b + (c + 5)".
|
||||
///
|
||||
/// This path helps rebuildWithoutConstantOffset rebuild the new GEP index.
|
||||
/// This path helps to rebuild the new GEP index.
|
||||
SmallVector<User *, 8> UserChain;
|
||||
/// A data structure used in rebuildWithoutConstOffset. Contains all
|
||||
/// sext/zext instructions along UserChain.
|
||||
SmallVector<CastInst *, 16> ExtInsts;
|
||||
/// The data layout of the module. Used in ComputeKnownBits.
|
||||
const DataLayout *DL;
|
||||
Instruction *IP; /// Insertion position of cloned instructions.
|
||||
@ -227,181 +267,273 @@ FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
|
||||
return new SeparateConstOffsetFromGEP();
|
||||
}
|
||||
|
||||
bool ConstantOffsetExtractor::Distributable(unsigned OPC, BinaryOperator *BO) {
|
||||
assert(OPC == Instruction::SExt || OPC == Instruction::ZExt);
|
||||
bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
|
||||
bool ZeroExtended,
|
||||
BinaryOperator *BO,
|
||||
bool NonNegative) {
|
||||
// We only consider ADD, SUB and OR, because a non-zero constant found in
|
||||
// expressions composed of these operations can be easily hoisted as a
|
||||
// constant offset by reassociation.
|
||||
if (BO->getOpcode() != Instruction::Add &&
|
||||
BO->getOpcode() != Instruction::Sub &&
|
||||
BO->getOpcode() != Instruction::Or) {
|
||||
return false;
|
||||
}
|
||||
|
||||
Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
|
||||
// Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
|
||||
// don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
|
||||
if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
|
||||
return false;
|
||||
|
||||
// In addition, tracing into BO requires that its surrounding s/zext (if
|
||||
// any) is distributable to both operands.
|
||||
//
|
||||
// Suppose BO = A op B.
|
||||
// SignExtended | ZeroExtended | Distributable?
|
||||
// --------------+--------------+----------------------------------
|
||||
// 0 | 0 | true because no s/zext exists
|
||||
// 0 | 1 | zext(BO) == zext(A) op zext(B)
|
||||
// 1 | 0 | sext(BO) == sext(A) op sext(B)
|
||||
// 1 | 1 | zext(sext(BO)) ==
|
||||
// | | zext(sext(A)) op zext(sext(B))
|
||||
if (BO->getOpcode() == Instruction::Add && NonNegative) {
|
||||
// If a + b >= 0 and (a >= 0 or b >= 0), then
|
||||
// s/zext(a + b) = s/zext(a) + s/zext(b)
|
||||
// even if the addition is not marked nsw.
|
||||
//
|
||||
// Leveraging this invarient, we can trace into an sext'ed inbound GEP
|
||||
// index if the constant offset is non-negative.
|
||||
//
|
||||
// Verified in @sext_add in split-gep.ll.
|
||||
if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
|
||||
if (!ConstLHS->isNegative())
|
||||
return true;
|
||||
}
|
||||
if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
|
||||
if (!ConstRHS->isNegative())
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
|
||||
// zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
|
||||
if (BO->getOpcode() == Instruction::Add ||
|
||||
BO->getOpcode() == Instruction::Sub) {
|
||||
return (OPC == Instruction::SExt && BO->hasNoSignedWrap()) ||
|
||||
(OPC == Instruction::ZExt && BO->hasNoUnsignedWrap());
|
||||
if (SignExtended && !BO->hasNoSignedWrap())
|
||||
return false;
|
||||
if (ZeroExtended && !BO->hasNoUnsignedWrap())
|
||||
return false;
|
||||
}
|
||||
|
||||
// sext/zext (and/or/xor A, B) == and/or/xor (sext/zext A), (sext/zext B)
|
||||
// -instcombine also leverages this invariant to do the reverse
|
||||
// transformation to reduce integer casts.
|
||||
return BO->getOpcode() == Instruction::And ||
|
||||
BO->getOpcode() == Instruction::Or ||
|
||||
BO->getOpcode() == Instruction::Xor;
|
||||
return true;
|
||||
}
|
||||
|
||||
int64_t ConstantOffsetExtractor::findInEitherOperand(User *U, bool IsSub) {
|
||||
assert(U->getNumOperands() == 2);
|
||||
int64_t ConstantOffset = find(U->getOperand(0));
|
||||
APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
|
||||
bool SignExtended,
|
||||
bool ZeroExtended) {
|
||||
// BO being non-negative does not shed light on whether its operands are
|
||||
// non-negative. Clear the NonNegative flag here.
|
||||
APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
|
||||
/* NonNegative */ false);
|
||||
// If we found a constant offset in the left operand, stop and return that.
|
||||
// This shortcut might cause us to miss opportunities of combining the
|
||||
// constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
|
||||
// However, such cases are probably already handled by -instcombine,
|
||||
// given this pass runs after the standard optimizations.
|
||||
if (ConstantOffset != 0) return ConstantOffset;
|
||||
ConstantOffset = find(U->getOperand(1));
|
||||
ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
|
||||
/* NonNegative */ false);
|
||||
// If U is a sub operator, negate the constant offset found in the right
|
||||
// operand.
|
||||
return IsSub ? -ConstantOffset : ConstantOffset;
|
||||
if (BO->getOpcode() == Instruction::Sub)
|
||||
ConstantOffset = -ConstantOffset;
|
||||
return ConstantOffset;
|
||||
}
|
||||
|
||||
int64_t ConstantOffsetExtractor::find(Value *V) {
|
||||
// TODO(jingyue): We can even trace into integer/pointer casts, such as
|
||||
APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
|
||||
bool ZeroExtended, bool NonNegative) {
|
||||
// TODO(jingyue): We could trace into integer/pointer casts, such as
|
||||
// inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
|
||||
// integers because it gives good enough results for our benchmarks.
|
||||
assert(V->getType()->isIntegerTy());
|
||||
unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
|
||||
|
||||
// We cannot do much with Values that are not a User, such as an Argument.
|
||||
User *U = dyn_cast<User>(V);
|
||||
// We cannot do much with Values that are not a User, such as BasicBlock and
|
||||
// MDNode.
|
||||
if (U == nullptr) return 0;
|
||||
if (U == nullptr) return APInt(BitWidth, 0);
|
||||
|
||||
int64_t ConstantOffset = 0;
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(U)) {
|
||||
APInt ConstantOffset(BitWidth, 0);
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
||||
// Hooray, we found it!
|
||||
ConstantOffset = CI->getSExtValue();
|
||||
} else if (Operator *O = dyn_cast<Operator>(U)) {
|
||||
// The GEP index may be more complicated than a simple addition of a
|
||||
// varaible and a constant. Therefore, we trace into subexpressions for more
|
||||
// hoisting opportunities.
|
||||
switch (O->getOpcode()) {
|
||||
case Instruction::Add: {
|
||||
ConstantOffset = findInEitherOperand(U, false);
|
||||
break;
|
||||
}
|
||||
case Instruction::Sub: {
|
||||
ConstantOffset = findInEitherOperand(U, true);
|
||||
break;
|
||||
}
|
||||
case Instruction::Or: {
|
||||
// If LHS and RHS don't have common bits, (LHS | RHS) is equivalent to
|
||||
// (LHS + RHS).
|
||||
if (NoCommonBits(U->getOperand(0), U->getOperand(1)))
|
||||
ConstantOffset = findInEitherOperand(U, false);
|
||||
break;
|
||||
}
|
||||
case Instruction::SExt:
|
||||
case Instruction::ZExt: {
|
||||
// We trace into sext/zext if the operator can be distributed to its
|
||||
// operand. e.g., we can transform into "sext (add nsw a, 5)" and
|
||||
// extract constant 5, because
|
||||
// sext (add nsw a, 5) == add nsw (sext a), 5
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) {
|
||||
if (Distributable(O->getOpcode(), BO))
|
||||
ConstantOffset = find(U->getOperand(0));
|
||||
}
|
||||
break;
|
||||
}
|
||||
ConstantOffset = CI->getValue();
|
||||
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
|
||||
// Trace into subexpressions for more hoisting opportunities.
|
||||
if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
|
||||
ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
|
||||
}
|
||||
} else if (isa<SExtInst>(V)) {
|
||||
ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
|
||||
ZeroExtended, NonNegative).sext(BitWidth);
|
||||
} else if (isa<ZExtInst>(V)) {
|
||||
// As an optimization, we can clear the SignExtended flag because
|
||||
// sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
|
||||
//
|
||||
// Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
|
||||
// TODO: if zext(a) < 2 ^ (bitwidth(a) - 1), we can prove a >= 0.
|
||||
ConstantOffset =
|
||||
find(U->getOperand(0), /* SignExtended */ false,
|
||||
/* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
|
||||
}
|
||||
// If we found a non-zero constant offset, adds it to the path for future
|
||||
// transformation (rebuildWithoutConstantOffset). Zero is a valid constant
|
||||
// offset, but doesn't help this optimization.
|
||||
|
||||
// If we found a non-zero constant offset, add it to the path for
|
||||
// rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
|
||||
// help this optimization.
|
||||
if (ConstantOffset != 0)
|
||||
UserChain.push_back(U);
|
||||
return ConstantOffset;
|
||||
}
|
||||
|
||||
unsigned ConstantOffsetExtractor::FindFirstUse(User *U, Value *Used) {
|
||||
for (unsigned I = 0, E = U->getNumOperands(); I < E; ++I) {
|
||||
if (U->getOperand(I) == Used)
|
||||
return I;
|
||||
Value *ConstantOffsetExtractor::applyExts(Value *V) {
|
||||
Value *Current = V;
|
||||
// ExtInsts is built in the use-def order. Therefore, we apply them to V
|
||||
// in the reversed order.
|
||||
for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
|
||||
if (Constant *C = dyn_cast<Constant>(Current)) {
|
||||
// If Current is a constant, apply s/zext using ConstantExpr::getCast.
|
||||
// ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
|
||||
Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
|
||||
} else {
|
||||
Instruction *Ext = (*I)->clone();
|
||||
Ext->setOperand(0, Current);
|
||||
Ext->insertBefore(IP);
|
||||
Current = Ext;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
return Current;
|
||||
}
|
||||
|
||||
Value *ConstantOffsetExtractor::cloneAndReplace(User *U, Value *From,
|
||||
Value *To) {
|
||||
// Finds in U the first use of From. It is safe to ignore future occurrences
|
||||
// of From, because findInEitherOperand similarly stops searching the right
|
||||
// operand when the first operand has a non-zero constant offset.
|
||||
unsigned OpNo = FindFirstUse(U, From);
|
||||
assert(OpNo != (unsigned)-1 && "UserChain wasn't built correctly");
|
||||
|
||||
// ConstantOffsetExtractor::find only follows Operators (i.e., Instructions
|
||||
// and ConstantExprs). Therefore, U is either an Instruction or a
|
||||
// ConstantExpr.
|
||||
if (Instruction *I = dyn_cast<Instruction>(U)) {
|
||||
Instruction *Clone = I->clone();
|
||||
Clone->setOperand(OpNo, To);
|
||||
Clone->insertBefore(IP);
|
||||
return Clone;
|
||||
Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
|
||||
distributeExtsAndCloneChain(UserChain.size() - 1);
|
||||
// Remove all nullptrs (used to be s/zext) from UserChain.
|
||||
unsigned NewSize = 0;
|
||||
for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
|
||||
if (*I != nullptr) {
|
||||
UserChain[NewSize] = *I;
|
||||
NewSize++;
|
||||
}
|
||||
}
|
||||
// cast<Constant>(To) is safe because a ConstantExpr only uses Constants.
|
||||
return cast<ConstantExpr>(U)
|
||||
->getWithOperandReplaced(OpNo, cast<Constant>(To));
|
||||
UserChain.resize(NewSize);
|
||||
return removeConstOffset(UserChain.size() - 1);
|
||||
}
|
||||
|
||||
Value *ConstantOffsetExtractor::rebuildLeafWithoutConstantOffset(User *U,
|
||||
Value *C) {
|
||||
assert(U->getNumOperands() <= 2 &&
|
||||
"We didn't trace into any operator with more than 2 operands");
|
||||
// If U has only one operand which is the constant offset, removing the
|
||||
// constant offset leaves U as a null value.
|
||||
if (U->getNumOperands() == 1)
|
||||
return Constant::getNullValue(U->getType());
|
||||
Value *
|
||||
ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
|
||||
User *U = UserChain[ChainIndex];
|
||||
if (ChainIndex == 0) {
|
||||
assert(isa<ConstantInt>(U));
|
||||
// If U is a ConstantInt, applyExts will return a ConstantInt as well.
|
||||
return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
|
||||
}
|
||||
|
||||
// U->getNumOperands() == 2
|
||||
unsigned OpNo = FindFirstUse(U, C); // U->getOperand(OpNo) == C
|
||||
assert(OpNo < 2 && "UserChain wasn't built correctly");
|
||||
Value *TheOther = U->getOperand(1 - OpNo); // The other operand of U
|
||||
// If U = C - X, removing C makes U = -X; otherwise U will simply be X.
|
||||
if (!isa<SubOperator>(U) || OpNo == 1)
|
||||
return TheOther;
|
||||
if (isa<ConstantExpr>(U))
|
||||
return ConstantExpr::getNeg(cast<Constant>(TheOther));
|
||||
return BinaryOperator::CreateNeg(TheOther, "", IP);
|
||||
if (CastInst *Cast = dyn_cast<CastInst>(U)) {
|
||||
assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
|
||||
"We only traced into two types of CastInst: sext and zext");
|
||||
ExtInsts.push_back(Cast);
|
||||
UserChain[ChainIndex] = nullptr;
|
||||
return distributeExtsAndCloneChain(ChainIndex - 1);
|
||||
}
|
||||
|
||||
// Function find only trace into BinaryOperator and CastInst.
|
||||
BinaryOperator *BO = cast<BinaryOperator>(U);
|
||||
// OpNo = which operand of BO is UserChain[ChainIndex - 1]
|
||||
unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
|
||||
Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
|
||||
Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
|
||||
|
||||
BinaryOperator *NewBO = nullptr;
|
||||
if (OpNo == 0) {
|
||||
NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
|
||||
BO->getName(), IP);
|
||||
} else {
|
||||
NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
|
||||
BO->getName(), IP);
|
||||
}
|
||||
return UserChain[ChainIndex] = NewBO;
|
||||
}
|
||||
|
||||
Value *ConstantOffsetExtractor::rebuildWithoutConstantOffset() {
|
||||
assert(UserChain.size() > 0 && "you at least found a constant, right?");
|
||||
// Start with the constant and go up through UserChain, each time building a
|
||||
// clone of the subexpression but with the constant removed.
|
||||
// e.g., to build a clone of (a + (b + (c + 5)) but with the 5 removed, we
|
||||
// first c, then (b + c), and finally (a + (b + c)).
|
||||
//
|
||||
// Fast path: if the GEP index is a constant, simply returns 0.
|
||||
if (UserChain.size() == 1)
|
||||
return ConstantInt::get(UserChain[0]->getType(), 0);
|
||||
Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
|
||||
if (ChainIndex == 0) {
|
||||
assert(isa<ConstantInt>(UserChain[ChainIndex]));
|
||||
return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
|
||||
}
|
||||
|
||||
Value *Remainder =
|
||||
rebuildLeafWithoutConstantOffset(UserChain[1], UserChain[0]);
|
||||
for (size_t I = 2; I < UserChain.size(); ++I)
|
||||
Remainder = cloneAndReplace(UserChain[I], UserChain[I - 1], Remainder);
|
||||
return Remainder;
|
||||
BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
|
||||
unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
|
||||
assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
|
||||
Value *NextInChain = removeConstOffset(ChainIndex - 1);
|
||||
Value *TheOther = BO->getOperand(1 - OpNo);
|
||||
|
||||
// If NextInChain is 0 and not the LHS of a sub, we can simplify the
|
||||
// sub-expression to be just TheOther.
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
|
||||
if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
|
||||
return TheOther;
|
||||
}
|
||||
|
||||
if (BO->getOpcode() == Instruction::Or) {
|
||||
// Rebuild "or" as "add", because "or" may be invalid for the new
|
||||
// epxression.
|
||||
//
|
||||
// For instance, given
|
||||
// a | (b + 5) where a and b + 5 have no common bits,
|
||||
// we can extract 5 as the constant offset.
|
||||
//
|
||||
// However, reusing the "or" in the new index would give us
|
||||
// (a | b) + 5
|
||||
// which does not equal a | (b + 5).
|
||||
//
|
||||
// Replacing the "or" with "add" is fine, because
|
||||
// a | (b + 5) = a + (b + 5) = (a + b) + 5
|
||||
return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1),
|
||||
BO->getName(), IP);
|
||||
}
|
||||
|
||||
// We can reuse BO in this case, because the new expression shares the same
|
||||
// instruction type and BO is used at most once.
|
||||
assert(BO->getNumUses() <= 1 &&
|
||||
"distributeExtsAndCloneChain clones each BinaryOperator in "
|
||||
"UserChain, so no one should be used more than "
|
||||
"once");
|
||||
BO->setOperand(OpNo, NextInChain);
|
||||
BO->setHasNoSignedWrap(false);
|
||||
BO->setHasNoUnsignedWrap(false);
|
||||
// Make sure it appears after all instructions we've inserted so far.
|
||||
BO->moveBefore(IP);
|
||||
return BO;
|
||||
}
|
||||
|
||||
int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
|
||||
const DataLayout *DL,
|
||||
Instruction *IP) {
|
||||
ConstantOffsetExtractor Extractor(DL, IP);
|
||||
GetElementPtrInst *GEP) {
|
||||
ConstantOffsetExtractor Extractor(DL, GEP);
|
||||
// Find a non-zero constant offset first.
|
||||
int64_t ConstantOffset = Extractor.find(Idx);
|
||||
if (ConstantOffset == 0)
|
||||
return 0;
|
||||
// Then rebuild a new index with the constant removed.
|
||||
NewIdx = Extractor.rebuildWithoutConstantOffset();
|
||||
return ConstantOffset;
|
||||
APInt ConstantOffset =
|
||||
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
||||
GEP->isInBounds());
|
||||
if (ConstantOffset != 0) {
|
||||
// Separates the constant offset from the GEP index.
|
||||
NewIdx = Extractor.rebuildWithoutConstOffset();
|
||||
}
|
||||
return ConstantOffset.getSExtValue();
|
||||
}
|
||||
|
||||
int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL) {
|
||||
return ConstantOffsetExtractor(DL, nullptr).find(Idx);
|
||||
int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
|
||||
GetElementPtrInst *GEP) {
|
||||
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
|
||||
return ConstantOffsetExtractor(DL, GEP)
|
||||
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
||||
GEP->isInBounds())
|
||||
.getSExtValue();
|
||||
}
|
||||
|
||||
void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
|
||||
@ -430,7 +562,7 @@ int64_t SeparateConstOffsetFromGEP::accumulateByteOffset(
|
||||
if (isa<SequentialType>(*GTI)) {
|
||||
// Tries to extract a constant offset from this GEP index.
|
||||
int64_t ConstantOffset =
|
||||
ConstantOffsetExtractor::Find(GEP->getOperand(I), DL);
|
||||
ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
|
||||
if (ConstantOffset != 0) {
|
||||
NeedsExtraction = true;
|
||||
// A GEP may have multiple indices. We accumulate the extracted
|
||||
@ -455,28 +587,32 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
||||
return false;
|
||||
|
||||
bool Changed = false;
|
||||
|
||||
// Shortcuts integer casts. Eliminating these explicit casts can make
|
||||
// subsequent optimizations more obvious: ConstantOffsetExtractor needn't
|
||||
// trace into these casts.
|
||||
if (GEP->isInBounds()) {
|
||||
// Doing this to inbounds GEPs is safe because their indices are guaranteed
|
||||
// to be non-negative and in bounds.
|
||||
gep_type_iterator GTI = gep_type_begin(*GEP);
|
||||
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
||||
if (isa<SequentialType>(*GTI)) {
|
||||
if (Operator *O = dyn_cast<Operator>(GEP->getOperand(I))) {
|
||||
if (O->getOpcode() == Instruction::SExt ||
|
||||
O->getOpcode() == Instruction::ZExt) {
|
||||
GEP->setOperand(I, O->getOperand(0));
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
// Canonicalize array indices to pointer-size integers. This helps to simplify
|
||||
// the logic of splitting a GEP. For example, if a + b is a pointer-size
|
||||
// integer, we have
|
||||
// gep base, a + b = gep (gep base, a), b
|
||||
// However, this equality may not hold if the size of a + b is smaller than
|
||||
// the pointer size, because LLVM conceptually sign-extends GEP indices to
|
||||
// pointer size before computing the address
|
||||
// (http://llvm.org/docs/LangRef.html#id181).
|
||||
//
|
||||
// This canonicalization is very likely already done in clang and instcombine.
|
||||
// Therefore, the program will probably remain the same.
|
||||
//
|
||||
// Verified in @i32_add in split-gep.ll
|
||||
const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout();
|
||||
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
||||
gep_type_iterator GTI = gep_type_begin(*GEP);
|
||||
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
|
||||
I != E; ++I, ++GTI) {
|
||||
if (isa<SequentialType>(*GTI)) {
|
||||
if ((*I)->getType() != IntPtrTy) {
|
||||
*I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout();
|
||||
bool NeedsExtraction;
|
||||
int64_t AccumulativeByteOffset =
|
||||
accumulateByteOffset(GEP, DL, NeedsExtraction);
|
||||
@ -495,7 +631,7 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
||||
|
||||
// Remove the constant offset in each GEP index. The resultant GEP computes
|
||||
// the variadic base.
|
||||
gep_type_iterator GTI = gep_type_begin(*GEP);
|
||||
GTI = gep_type_begin(*GEP);
|
||||
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
||||
if (isa<SequentialType>(*GTI)) {
|
||||
Value *NewIdx = nullptr;
|
||||
@ -506,30 +642,29 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
||||
assert(NewIdx != nullptr &&
|
||||
"ConstantOffset != 0 implies NewIdx is set");
|
||||
GEP->setOperand(I, NewIdx);
|
||||
// Clear the inbounds attribute because the new index may be off-bound.
|
||||
// e.g.,
|
||||
//
|
||||
// b = add i64 a, 5
|
||||
// addr = gep inbounds float* p, i64 b
|
||||
//
|
||||
// is transformed to:
|
||||
//
|
||||
// addr2 = gep float* p, i64 a
|
||||
// addr = gep float* addr2, i64 5
|
||||
//
|
||||
// If a is -4, although the old index b is in bounds, the new index a is
|
||||
// off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
|
||||
// inbounds keyword is not present, the offsets are added to the base
|
||||
// address with silently-wrapping two's complement arithmetic".
|
||||
// Therefore, the final code will be a semantically equivalent.
|
||||
//
|
||||
// TODO(jingyue): do some range analysis to keep as many inbounds as
|
||||
// possible. GEPs with inbounds are more friendly to alias analysis.
|
||||
GEP->setIsInBounds(false);
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Clear the inbounds attribute because the new index may be off-bound.
|
||||
// e.g.,
|
||||
//
|
||||
// b = add i64 a, 5
|
||||
// addr = gep inbounds float* p, i64 b
|
||||
//
|
||||
// is transformed to:
|
||||
//
|
||||
// addr2 = gep float* p, i64 a
|
||||
// addr = gep float* addr2, i64 5
|
||||
//
|
||||
// If a is -4, although the old index b is in bounds, the new index a is
|
||||
// off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
|
||||
// inbounds keyword is not present, the offsets are added to the base
|
||||
// address with silently-wrapping two's complement arithmetic".
|
||||
// Therefore, the final code will be a semantically equivalent.
|
||||
//
|
||||
// TODO(jingyue): do some range analysis to keep as many inbounds as
|
||||
// possible. GEPs with inbounds are more friendly to alias analysis.
|
||||
GEP->setIsInBounds(false);
|
||||
|
||||
// Offsets the base with the accumulative byte offset.
|
||||
//
|
||||
@ -562,7 +697,6 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
||||
Instruction *NewGEP = GEP->clone();
|
||||
NewGEP->insertBefore(GEP);
|
||||
|
||||
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
||||
uint64_t ElementTypeSizeOfGEP =
|
||||
DL->getTypeAllocSize(GEP->getType()->getElementType());
|
||||
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
|
||||
|
@ -1,4 +1,3 @@
|
||||
; RUN: llc < %s -march=nvptx -mcpu=sm_20 | FileCheck %s --check-prefix=PTX
|
||||
; RUN: llc < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s --check-prefix=PTX
|
||||
; RUN: opt < %s -S -separate-const-offset-from-gep -gvn -dce | FileCheck %s --check-prefix=IR
|
||||
|
||||
@ -20,20 +19,20 @@ target triple = "nvptx64-unknown-unknown"
|
||||
|
||||
define void @sum_of_array(i32 %x, i32 %y, float* nocapture %output) {
|
||||
.preheader:
|
||||
%0 = zext i32 %y to i64
|
||||
%1 = zext i32 %x to i64
|
||||
%0 = sext i32 %y to i64
|
||||
%1 = sext i32 %x to i64
|
||||
%2 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
|
||||
%3 = addrspacecast float addrspace(3)* %2 to float*
|
||||
%4 = load float* %3, align 4
|
||||
%5 = fadd float %4, 0.000000e+00
|
||||
%6 = add i32 %y, 1
|
||||
%7 = zext i32 %6 to i64
|
||||
%7 = sext i32 %6 to i64
|
||||
%8 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %7
|
||||
%9 = addrspacecast float addrspace(3)* %8 to float*
|
||||
%10 = load float* %9, align 4
|
||||
%11 = fadd float %5, %10
|
||||
%12 = add i32 %x, 1
|
||||
%13 = zext i32 %12 to i64
|
||||
%13 = sext i32 %12 to i64
|
||||
%14 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %0
|
||||
%15 = addrspacecast float addrspace(3)* %14 to float*
|
||||
%16 = load float* %15, align 4
|
||||
@ -45,7 +44,6 @@ define void @sum_of_array(i32 %x, i32 %y, float* nocapture %output) {
|
||||
store float %21, float* %output, align 4
|
||||
ret void
|
||||
}
|
||||
|
||||
; PTX-LABEL: sum_of_array(
|
||||
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rl|r)[0-9]+]]{{\]}}
|
||||
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
|
||||
@ -53,7 +51,50 @@ define void @sum_of_array(i32 %x, i32 %y, float* nocapture %output) {
|
||||
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
|
||||
|
||||
; IR-LABEL: @sum_of_array(
|
||||
; IR: [[BASE_PTR:%[0-9]+]] = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i32 %x, i32 %y
|
||||
; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
||||
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1
|
||||
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
|
||||
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
|
||||
|
||||
; @sum_of_array2 is very similar to @sum_of_array. The only difference is in
|
||||
; the order of "sext" and "add" when computing the array indices. @sum_of_array
|
||||
; computes add before sext, e.g., array[sext(x + 1)][sext(y + 1)], while
|
||||
; @sum_of_array2 computes sext before add,
|
||||
; e.g., array[sext(x) + 1][sext(y) + 1]. SeparateConstOffsetFromGEP should be
|
||||
; able to extract constant offsets from both forms.
|
||||
define void @sum_of_array2(i32 %x, i32 %y, float* nocapture %output) {
|
||||
.preheader:
|
||||
%0 = sext i32 %y to i64
|
||||
%1 = sext i32 %x to i64
|
||||
%2 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
|
||||
%3 = addrspacecast float addrspace(3)* %2 to float*
|
||||
%4 = load float* %3, align 4
|
||||
%5 = fadd float %4, 0.000000e+00
|
||||
%6 = add i64 %0, 1
|
||||
%7 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %6
|
||||
%8 = addrspacecast float addrspace(3)* %7 to float*
|
||||
%9 = load float* %8, align 4
|
||||
%10 = fadd float %5, %9
|
||||
%11 = add i64 %1, 1
|
||||
%12 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %0
|
||||
%13 = addrspacecast float addrspace(3)* %12 to float*
|
||||
%14 = load float* %13, align 4
|
||||
%15 = fadd float %10, %14
|
||||
%16 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %6
|
||||
%17 = addrspacecast float addrspace(3)* %16 to float*
|
||||
%18 = load float* %17, align 4
|
||||
%19 = fadd float %15, %18
|
||||
store float %19, float* %output, align 4
|
||||
ret void
|
||||
}
|
||||
; PTX-LABEL: sum_of_array2(
|
||||
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rl|r)[0-9]+]]{{\]}}
|
||||
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
|
||||
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+128{{\]}}
|
||||
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
|
||||
|
||||
; IR-LABEL: @sum_of_array2(
|
||||
; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
||||
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1
|
||||
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
|
||||
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
|
||||
|
@ -23,71 +23,92 @@ entry:
|
||||
%p = getelementptr inbounds [1024 x %struct.S]* @struct_array, i64 0, i64 %idxprom, i32 1
|
||||
ret double* %p
|
||||
}
|
||||
; CHECK-LABEL: @struct
|
||||
; CHECK: getelementptr [1024 x %struct.S]* @struct_array, i64 0, i32 %i, i32 1
|
||||
; CHECK-LABEL: @struct(
|
||||
; CHECK: getelementptr [1024 x %struct.S]* @struct_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1
|
||||
|
||||
; We should be able to trace into sext/zext if it's directly used as a GEP
|
||||
; index.
|
||||
define float* @sext_zext(i32 %i, i32 %j) {
|
||||
; We should be able to trace into s/zext(a + b) if a + b is non-negative
|
||||
; (e.g., used as an index of an inbounds GEP) and one of a and b is
|
||||
; non-negative.
|
||||
define float* @sext_add(i32 %i, i32 %j) {
|
||||
entry:
|
||||
%i1 = add i32 %i, 1
|
||||
%j2 = add i32 %j, 2
|
||||
%i1.ext = sext i32 %i1 to i64
|
||||
%j2.ext = zext i32 %j2 to i64
|
||||
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i1.ext, i64 %j2.ext
|
||||
%0 = add i32 %i, 1
|
||||
%1 = sext i32 %0 to i64 ; inbound sext(i + 1) = sext(i) + 1
|
||||
%2 = sub i32 %j, 2
|
||||
; However, inbound sext(j - 2) != sext(j) - 2, e.g., j = INT_MIN
|
||||
%3 = sext i32 %2 to i64
|
||||
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @sext_zext
|
||||
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i32 %i, i32 %j
|
||||
; CHECK: getelementptr float* %{{[0-9]+}}, i64 34
|
||||
; CHECK-LABEL: @sext_add(
|
||||
; CHECK-NOT: = add
|
||||
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
||||
; CHECK: getelementptr float* %{{[a-zA-Z0-9]+}}, i64 32
|
||||
|
||||
; We should be able to trace into sext/zext if it can be distributed to both
|
||||
; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b)
|
||||
;
|
||||
; This test verifies we can transform
|
||||
; gep base, a + sext(b +nsw 1), c + zext(d +nuw 1)
|
||||
; to
|
||||
; gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1
|
||||
define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) {
|
||||
%b1 = add nsw i32 %b, 1
|
||||
%b2 = sext i32 %b1 to i64
|
||||
%i = add i64 %a, %b2
|
||||
%i = add i64 %a, %b2 ; i = a + sext(b +nsw 1)
|
||||
%d1 = add nuw i32 %d, 1
|
||||
%d2 = zext i32 %d1 to i64
|
||||
%j = add i64 %c, %d2
|
||||
%j = add i64 %c, %d2 ; j = c + zext(d +nuw 1)
|
||||
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @ext_add_no_overflow
|
||||
; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[0-9]+}}, i64 %{{[0-9]+}}
|
||||
; CHECK-LABEL: @ext_add_no_overflow(
|
||||
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
||||
; CHECK: getelementptr float* [[BASE_PTR]], i64 33
|
||||
|
||||
; Similar to @ext_add_no_overflow, we should be able to trace into sext/zext if
|
||||
; its operand is an "or" instruction.
|
||||
define float* @ext_or(i64 %a, i32 %b) {
|
||||
; Verifies we handle nested sext/zext correctly.
|
||||
define void @sext_zext(i32 %a, i32 %b, float** %out1, float** %out2) {
|
||||
entry:
|
||||
%0 = add nsw nuw i32 %a, 1
|
||||
%1 = sext i32 %0 to i48
|
||||
%2 = zext i48 %1 to i64 ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1
|
||||
%3 = add nsw i32 %b, 2
|
||||
%4 = sext i32 %3 to i48
|
||||
%5 = zext i48 %4 to i64 ; zext(sext(a +nsw 2)) != zext(sext(a)) + 2
|
||||
%p1 = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %2, i64 %5
|
||||
store float* %p1, float** %out1
|
||||
%6 = add nuw i32 %a, 3
|
||||
%7 = zext i32 %6 to i48
|
||||
%8 = sext i48 %7 to i64 ; sext(zext(b +nuw 3)) = zext(b +nuw 3) = zext(b) + 3
|
||||
%9 = add nsw i32 %b, 4
|
||||
%10 = zext i32 %9 to i48
|
||||
%11 = sext i48 %10 to i64 ; sext(zext(b +nsw 4)) != zext(b) + 4
|
||||
%p2 = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %8, i64 %11
|
||||
store float* %p2, float** %out2
|
||||
ret void
|
||||
}
|
||||
; CHECK-LABEL: @sext_zext(
|
||||
; CHECK: [[BASE_PTR_1:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
||||
; CHECK: getelementptr float* [[BASE_PTR_1]], i64 32
|
||||
; CHECK: [[BASE_PTR_2:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
||||
; CHECK: getelementptr float* [[BASE_PTR_2]], i64 96
|
||||
|
||||
; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if
|
||||
; its operand is an OR and the two operands of the OR have no common bits.
|
||||
define float* @sext_or(i64 %a, i32 %b) {
|
||||
entry:
|
||||
%b1 = shl i32 %b, 2
|
||||
%b2 = or i32 %b1, 1
|
||||
%b3 = or i32 %b1, 2
|
||||
%b2.ext = sext i32 %b2 to i64
|
||||
%b2 = or i32 %b1, 1 ; (b << 2) and 1 have no common bits
|
||||
%b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits
|
||||
%b2.ext = zext i32 %b2 to i64
|
||||
%b3.ext = sext i32 %b3 to i64
|
||||
%i = add i64 %a, %b2.ext
|
||||
%j = add i64 %a, %b3.ext
|
||||
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @ext_or
|
||||
; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[0-9]+}}, i64 %{{[0-9]+}}
|
||||
; CHECK: getelementptr float* [[BASE_PTR]], i64 34
|
||||
|
||||
; We should treat "or" with no common bits (%k) as "add", and leave "or" with
|
||||
; potentially common bits (%l) as is.
|
||||
define float* @or(i64 %i) {
|
||||
entry:
|
||||
%j = shl i64 %i, 2
|
||||
%k = or i64 %j, 3 ; no common bits
|
||||
%l = or i64 %j, 4 ; potentially common bits
|
||||
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %k, i64 %l
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @or
|
||||
; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %j, i64 %l
|
||||
; CHECK: getelementptr float* [[BASE_PTR]], i64 96
|
||||
; CHECK-LABEL: @sext_or(
|
||||
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
||||
; CHECK: getelementptr float* [[BASE_PTR]], i64 32
|
||||
|
||||
; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b +
|
||||
; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't
|
||||
@ -100,11 +121,28 @@ entry:
|
||||
store i64 %b5, i64* %out
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @expr
|
||||
; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %0, i64 0
|
||||
; CHECK-LABEL: @expr(
|
||||
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 0
|
||||
; CHECK: getelementptr float* [[BASE_PTR]], i64 160
|
||||
; CHECK: store i64 %b5, i64* %out
|
||||
|
||||
; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8
|
||||
define float* @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) {
|
||||
entry:
|
||||
%0 = add nsw i32 %c, 8
|
||||
%1 = add nsw i32 %b, %0
|
||||
%2 = add nsw i32 %a, %1
|
||||
%3 = sext i32 %2 to i64
|
||||
%i = add i64 %d, %3
|
||||
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @sext_expr(
|
||||
; CHECK: sext i32
|
||||
; CHECK: sext i32
|
||||
; CHECK: sext i32
|
||||
; CHECK: getelementptr float* %{{[a-zA-Z0-9]+}}, i64 8
|
||||
|
||||
; Verifies we handle "sub" correctly.
|
||||
define float* @sub(i64 %i, i64 %j) {
|
||||
%i2 = sub i64 %i, 5 ; i - 5
|
||||
@ -112,9 +150,9 @@ define float* @sub(i64 %i, i64 %j) {
|
||||
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i2, i64 %j2
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @sub
|
||||
; CHECK: %[[j2:[0-9]+]] = sub i64 0, %j
|
||||
; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]]
|
||||
; CHECK-LABEL: @sub(
|
||||
; CHECK: %[[j2:[a-zA-Z0-9]+]] = sub i64 0, %j
|
||||
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]]
|
||||
; CHECK: getelementptr float* [[BASE_PTR]], i64 -155
|
||||
|
||||
%struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed
|
||||
@ -130,8 +168,67 @@ entry:
|
||||
%arrayidx3 = getelementptr inbounds [1024 x %struct.Packed]* %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom
|
||||
ret i64* %arrayidx3
|
||||
}
|
||||
; CHECK-LABEL: @packed_struct
|
||||
; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [1024 x %struct.Packed]* %s, i64 0, i32 %i, i32 1, i32 %j
|
||||
; CHECK: [[CASTED_PTR:%[0-9]+]] = bitcast i64* [[BASE_PTR]] to i8*
|
||||
; CHECK-LABEL: @packed_struct(
|
||||
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [1024 x %struct.Packed]* %s, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1, i64 %{{[a-zA-Z0-9]+}}
|
||||
; CHECK: [[CASTED_PTR:%[a-zA-Z0-9]+]] = bitcast i64* [[BASE_PTR]] to i8*
|
||||
; CHECK: %uglygep = getelementptr i8* [[CASTED_PTR]], i64 100
|
||||
; CHECK: bitcast i8* %uglygep to i64*
|
||||
|
||||
; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))",
|
||||
; because "zext(b + 8) != zext(b) + 8"
|
||||
define float* @zext_expr(i32 %a, i32 %b) {
|
||||
entry:
|
||||
%0 = add i32 %b, 8
|
||||
%1 = add nuw i32 %a, %0
|
||||
%i = zext i32 %1 to i64
|
||||
%p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: zext_expr(
|
||||
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
|
||||
|
||||
; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep
|
||||
; should be considered sign-extended to the pointer size. Therefore,
|
||||
; gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b
|
||||
; because
|
||||
; sext(a + b) != sext(a) + sext(b)
|
||||
;
|
||||
; This test verifies we do not illegitimately extract the 8 from
|
||||
; gep base, (i32 a + 8)
|
||||
define float* @i32_add(i32 %a) {
|
||||
entry:
|
||||
%i = add i32 %a, 8
|
||||
%p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i32 %i
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @i32_add(
|
||||
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
|
||||
; CHECK-NOT: getelementptr
|
||||
|
||||
; Verifies that we compute the correct constant offset when the index is
|
||||
; sign-extended and then zero-extended. The old version of our code failed to
|
||||
; handle this case because it simply computed the constant offset as the
|
||||
; sign-extended value of the constant part of the GEP index.
|
||||
define float* @apint(i1 %a) {
|
||||
entry:
|
||||
%0 = add nsw nuw i1 %a, 1
|
||||
%1 = sext i1 %0 to i4
|
||||
%2 = zext i4 %1 to i64 ; zext (sext i1 1 to i4) to i64 = 15
|
||||
%p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %2
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @apint(
|
||||
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
|
||||
; CHECK: getelementptr float* [[BASE_PTR]], i64 15
|
||||
|
||||
; Do not trace into binary operators other than ADD, SUB, and OR.
|
||||
define float* @and(i64 %a) {
|
||||
entry:
|
||||
%0 = shl i64 %a, 2
|
||||
%1 = and i64 %0, 1
|
||||
%p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %1
|
||||
ret float* %p
|
||||
}
|
||||
; CHECK-LABEL: @and(
|
||||
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array
|
||||
; CHECK-NOT: getelementptr
|
||||
|
Loading…
x
Reference in New Issue
Block a user