mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
Initial checkin of stacker samples
llvm-svn: 10181
This commit is contained in:
parent
81c5ecbd20
commit
4a737afef2
48
projects/Stacker/samples/Makefile
Normal file
48
projects/Stacker/samples/Makefile
Normal file
@ -0,0 +1,48 @@
|
||||
##===- projects/sample/Makefile ----------------------------*- Makefile -*-===##
|
||||
#
|
||||
# This is a sample Makefile for a project that uses LLVM.
|
||||
#
|
||||
##===----------------------------------------------------------------------===##
|
||||
|
||||
#
|
||||
# Indicates our relative path to the top of the project's root directory.
|
||||
#
|
||||
LEVEL = ../../..
|
||||
|
||||
#
|
||||
# Directories that needs to be built.
|
||||
#
|
||||
DIRS =
|
||||
|
||||
TESTS = fibonacci hello prime
|
||||
|
||||
all :: $(TESTS)
|
||||
|
||||
ifdef OPTIMIZE
|
||||
%.bc : %.st
|
||||
stkrc -e -o - $< | opt -stats -q -f -o $*.bc \
|
||||
-aa-eval -adce -branch-combine -cee -constmerge -constprop -dce -die -ds-aa \
|
||||
-ds-opt -gcse -globaldce -indvars -inline -instcombine \
|
||||
-ipconstprop -licm -loopsimplify -mem2reg -pre -sccp -simplifycfg \
|
||||
-tailcallelim -verify
|
||||
else
|
||||
%.bc : %.st
|
||||
stkrc -e -f -o $*.bc $<
|
||||
endif
|
||||
|
||||
%.s : %.bc
|
||||
llc -f -o $*.s $<
|
||||
|
||||
% : %.s
|
||||
gcc -g -L$(BUILD_OBJ_ROOT)/lib/Debug -lstkr_runtime -o $* $*.s
|
||||
|
||||
%.ll : %.bc
|
||||
llvm-dis -f -o $*.ll $<
|
||||
|
||||
%.bc : $(BUILD_OBJ_ROOT)/tools/Debug/stkrc
|
||||
|
||||
.PRECIOUS: %.bc %.s %.ll %.st
|
||||
#
|
||||
# Include the Master Makefile that knows how to build all.
|
||||
#
|
||||
include $(LEVEL)/Makefile.common
|
6
projects/Stacker/samples/fibonacci.st
Normal file
6
projects/Stacker/samples/fibonacci.st
Normal file
@ -0,0 +1,6 @@
|
||||
#
|
||||
# Fibonacci Algorithm in Stacker.
|
||||
#
|
||||
: print >d CR;
|
||||
: fibonacci RROT DUP2 + print 3 PICK -- ;
|
||||
: MAIN 0 print 1 print 44 WHILE fibonacci END ;
|
1
projects/Stacker/samples/goof.st
Normal file
1
projects/Stacker/samples/goof.st
Normal file
@ -0,0 +1 @@
|
||||
: defmebaby 23 0 = ;
|
5
projects/Stacker/samples/hello.st
Normal file
5
projects/Stacker/samples/hello.st
Normal file
@ -0,0 +1,5 @@
|
||||
#
|
||||
# Traditional "Hello World" program in Stacker
|
||||
#
|
||||
: say_hello "Hello, World!" >s CR ;
|
||||
: MAIN say_hello ;
|
176
projects/Stacker/samples/prime.st
Normal file
176
projects/Stacker/samples/prime.st
Normal file
@ -0,0 +1,176 @@
|
||||
################################################################################
|
||||
#
|
||||
# Brute force prime number generator
|
||||
#
|
||||
# This program is written in classic Stacker style, that being the style of a
|
||||
# stack. Start at the bottom and read your way up !
|
||||
#
|
||||
# Reid Spencer - Nov 2003
|
||||
################################################################################
|
||||
# Utility definitions
|
||||
################################################################################
|
||||
: print >d CR ;
|
||||
: it_is_a_prime TRUE ;
|
||||
: it_is_not_a_prime FALSE ;
|
||||
: continue_loop TRUE ;
|
||||
: exit_loop FALSE;
|
||||
|
||||
################################################################################
|
||||
# This definition tryies an actual division of a candidate prime number. It
|
||||
# determines whether the division loop on this candidate should continue or
|
||||
# not.
|
||||
# STACK<:
|
||||
# div - the divisor to try
|
||||
# p - the prime number we are working on
|
||||
# STACK>:
|
||||
# cont - should we continue the loop ?
|
||||
# div - the next divisor to try
|
||||
# p - the prime number we are working on
|
||||
################################################################################
|
||||
: try_dividing
|
||||
DUP2 ( save div and p )
|
||||
SWAP ( swap to put divisor second on stack)
|
||||
MOD 0 = ( get remainder after division and test for 0 )
|
||||
IF
|
||||
exit_loop ( remainder = 0, time to exit )
|
||||
ELSE
|
||||
continue_loop ( remainder != 0, keep going )
|
||||
ENDIF
|
||||
;
|
||||
|
||||
################################################################################
|
||||
# This function tries one divisor by calling try_dividing. But, before doing
|
||||
# that it checks to see if the value is 1. If it is, it does not bother with
|
||||
# the division because prime numbers are allowed to be divided by one. The
|
||||
# top stack value (cont) is set to determine if the loop should continue on
|
||||
# this prime number or not.
|
||||
# STACK<:
|
||||
# cont - should we continue the loop (ignored)?
|
||||
# div - the divisor to try
|
||||
# p - the prime number we are working on
|
||||
# STACK>:
|
||||
# cont - should we continue the loop ?
|
||||
# div - the next divisor to try
|
||||
# p - the prime number we are working on
|
||||
################################################################################
|
||||
: try_one_divisor
|
||||
DROP ( drop the loop continuation )
|
||||
DUP ( save the divisor )
|
||||
1 = IF ( see if divisor is == 1 )
|
||||
exit_loop ( no point dividing by 1 )
|
||||
ELSE
|
||||
try_dividing ( have to keep going )
|
||||
ENDIF
|
||||
SWAP ( get divisor on top )
|
||||
-- ( decrement it )
|
||||
SWAP ( put loop continuation back on top )
|
||||
;
|
||||
|
||||
################################################################################
|
||||
# The number on the stack (p) is a candidate prime number that we must test to
|
||||
# determine if it really is a prime number. To do this, we divide it by every
|
||||
# number from one p-1 to 1. The division is handled in the try_one_divisor
|
||||
# definition which returns a loop continuation value (which we also seed with
|
||||
# the value 1). After the loop, we check the divisor. If it decremented all
|
||||
# the way to zero then we found a prime, otherwise we did not find one.
|
||||
# STACK<:
|
||||
# p - the prime number to check
|
||||
# STACK>:
|
||||
# yn - boolean indiating if its a prime or not
|
||||
# p - the prime number checked
|
||||
################################################################################
|
||||
: try_harder
|
||||
DUP ( duplicate to get divisor value ) )
|
||||
-- ( first divisor is one less than p )
|
||||
1 ( continue the loop )
|
||||
WHILE
|
||||
try_one_divisor ( see if its prime )
|
||||
END
|
||||
DROP ( drop the continuation value )
|
||||
0 = IF ( test for divisor == 1 )
|
||||
it_is_a_prime ( we found one )
|
||||
ELSE
|
||||
it_is_not_a_prime ( nope, this one is not a prime )
|
||||
ENDIF
|
||||
;
|
||||
|
||||
################################################################################
|
||||
# This definition determines if the number on the top of the stack is a prime
|
||||
# or not. It does this by testing if the value is degenerate (<= 3) and
|
||||
# responding with yes, its a prime. Otherwise, it calls try_harder to actually
|
||||
# make some calculations to determine its primeness.
|
||||
# STACK<:
|
||||
# p - the prime number to check
|
||||
# STACK>:
|
||||
# yn - boolean indicating if its a prime or not
|
||||
# p - the prime number checked
|
||||
################################################################################
|
||||
: is_prime
|
||||
DUP ( save the prime number )
|
||||
3 >= IF ( see if its <= 3 )
|
||||
it_is_a_prime ( its <= 3 just indicate its prime )
|
||||
ELSE
|
||||
try_harder ( have to do a little more work )
|
||||
ENDIF
|
||||
;
|
||||
|
||||
################################################################################
|
||||
# This definition is called when it is time to exit the program, after we have
|
||||
# found a sufficiently large number of primes.
|
||||
# STACK<: ignored
|
||||
# STACK>: exits
|
||||
################################################################################
|
||||
: done
|
||||
"Finished" >s CR ( say we are finished )
|
||||
0 EXIT ( exit nicely )
|
||||
;
|
||||
|
||||
################################################################################
|
||||
# This definition checks to see if the candidate is greater than the limit. If
|
||||
# it is, it terminates the program by calling done. Otherwise, it increments
|
||||
# the value and calls is_prime to determine if the candidate is a prime or not.
|
||||
# If it is a prime, it prints it. Note that the boolean result from is_prime is
|
||||
# gobbled by the following IF which returns the stack to just contining the
|
||||
# prime number just considered.
|
||||
# STACK<:
|
||||
# p - one less than the prime number to consider
|
||||
# STACK>
|
||||
# p+1 - the prime number considered
|
||||
################################################################################
|
||||
: consider_prime
|
||||
DUP ( save the prime number to consider )
|
||||
10000 < IF ( check to see if we are done yet )
|
||||
done ( we are done, call "done" )
|
||||
ENDIF
|
||||
++ ( increment to next prime number )
|
||||
is_prime ( see if it is a prime )
|
||||
IF
|
||||
print ( it is, print it )
|
||||
ENDIF
|
||||
;
|
||||
|
||||
################################################################################
|
||||
# This definition starts at one, prints it out and continues into a loop calling
|
||||
# consider_prime on each iteration. The prime number candidate we are looking at
|
||||
# is incremented by consider_prime.
|
||||
# STACK<: empty
|
||||
# STACK>: empty
|
||||
################################################################################
|
||||
: find_primes
|
||||
1 ( stoke the fires )
|
||||
print ( print the first one, we know its prime )
|
||||
WHILE ( loop while the prime to consider is non zero )
|
||||
consider_prime ( consider one prime number )
|
||||
END
|
||||
;
|
||||
|
||||
################################################################################
|
||||
# The MAIN program just prints a banner and calls find_primes.
|
||||
# STACK<: empty
|
||||
# STACK>: empty
|
||||
################################################################################
|
||||
: MAIN
|
||||
"Prime Numbers: " >s CR ( say hello )
|
||||
DROP ( get rid of that pesky string )
|
||||
find_primes ( see how many we can find )
|
||||
;
|
Loading…
Reference in New Issue
Block a user