1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

Adding support and tests for multiple module handling in lli

llvm-svn: 191938
This commit is contained in:
Andrew Kaylor 2013-10-04 00:49:38 +00:00
parent 476b8f3036
commit 4c916e5212
18 changed files with 408 additions and 229 deletions

View File

@ -21,6 +21,9 @@
namespace llvm {
class ExecutionEngine;
class ObjectImage;
// RuntimeDyld clients often want to handle the memory management of
// what gets placed where. For JIT clients, this is the subset of
// JITMemoryManager required for dynamic loading of binaries.
@ -41,7 +44,7 @@ public:
virtual uint8_t *allocateCodeSection(
uintptr_t Size, unsigned Alignment, unsigned SectionID,
StringRef SectionName) = 0;
/// Allocate a memory block of (at least) the given size suitable for data.
/// The SectionID is a unique identifier assigned by the JIT engine, and
/// optionally recorded by the memory manager to access a loaded section.
@ -63,11 +66,24 @@ public:
/// found, this function returns a null pointer. Otherwise, it prints a
/// message to stderr and aborts.
///
/// This function is deprecated for memory managers used to be used with
/// This function is deprecated for memory managers to be used with
/// MCJIT or RuntimeDyld. Use getSymbolAddress instead.
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true);
/// This method is called after an object has been loaded into memory but
/// before relocations are applied to the loaded sections. The object load
/// may have been initiated by MCJIT to resolve an external symbol for another
/// object that is being finalized. In that case, the object about which
/// the memory manager is being notified will be finalized immediately after
/// the memory manager returns from this call.
///
/// Memory managers which are preparing code for execution in an external
/// address space can use this call to remap the section addresses for the
/// newly loaded object.
virtual void notifyObjectLoaded(ExecutionEngine *EE,
const ObjectImage *) {}
/// This method is called when object loading is complete and section page
/// permissions can be applied. It is up to the memory manager implementation
/// to decide whether or not to act on this method. The memory manager will

View File

@ -513,6 +513,7 @@ void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
}
void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
MutexGuard locked(lock);
MemMgr.notifyObjectLoaded(this, &Obj);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyObjectEmitted(Obj);
}

View File

@ -46,6 +46,11 @@ public:
SectionID, SectionName, IsReadOnly);
}
virtual void notifyObjectLoaded(ExecutionEngine *EE,
const ObjectImage *Obj) {
ClientMM->notifyObjectLoaded(EE, Obj);
}
virtual void registerEHFrames(StringRef SectionData) {
ClientMM->registerEHFrames(SectionData);
}

View File

@ -0,0 +1,13 @@
; RUN: %lli_mcjit -extra-modules=%p/cross-module-b.ir %s > /dev/null
declare i32 @FB()
define i32 @FA() {
ret i32 0
}
define i32 @main() {
%r = call i32 @FB( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,7 @@
declare i32 @FA()
define i32 @FB() {
%r = call i32 @FA( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,9 @@
; RUN: %lli_mcjit -extra-modules=%p/multi-module-b.ir,%p/multi-module-c.ir %s > /dev/null
declare i32 @FB()
define i32 @main() {
%r = call i32 @FB( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,7 @@
declare i32 @FC()
define i32 @FB() {
%r = call i32 @FC( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,4 @@
define i32 @FC() {
ret i32 0
}

View File

@ -0,0 +1,13 @@
; RUN: %lli_mcjit -extra-modules=%p/cross-module-b.ir -disable-lazy-compilation=true -remote-mcjit -mcjit-remote-process=lli-child-target %s > /dev/null
declare i32 @FB()
define i32 @FA() {
ret i32 0
}
define i32 @main() {
%r = call i32 @FB( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,7 @@
declare i32 @FA()
define i32 @FB() {
%r = call i32 @FA( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,9 @@
; RUN: %lli_mcjit -extra-modules=%p/multi-module-b.ir,%p/multi-module-c.ir -disable-lazy-compilation=true -remote-mcjit -mcjit-remote-process=lli-child-target %s > /dev/null
declare i32 @FB()
define i32 @main() {
%r = call i32 @FB( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,7 @@
declare i32 @FC()
define i32 @FB() {
%r = call i32 @FC( ) ; <i32> [#uses=1]
ret i32 %r
}

View File

@ -0,0 +1,4 @@
define i32 @FC() {
ret i32 0
}

View File

@ -21,7 +21,7 @@ endif( LLVM_USE_INTEL_JITEVENTS )
add_llvm_tool(lli
lli.cpp
RecordingMemoryManager.cpp
RemoteMemoryManager.cpp
RemoteTarget.cpp
RemoteTargetExternal.cpp
)

View File

@ -1,126 +0,0 @@
//===- RecordingMemoryManager.cpp - Recording memory manager --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This memory manager allocates local storage and keeps a record of each
// allocation. Iterators are provided for all data and code allocations.
//
//===----------------------------------------------------------------------===//
#include "RecordingMemoryManager.h"
using namespace llvm;
RecordingMemoryManager::~RecordingMemoryManager() {
for (SmallVectorImpl<Allocation>::iterator
I = AllocatedCodeMem.begin(), E = AllocatedCodeMem.end();
I != E; ++I)
sys::Memory::releaseMappedMemory(I->first);
for (SmallVectorImpl<Allocation>::iterator
I = AllocatedDataMem.begin(), E = AllocatedDataMem.end();
I != E; ++I)
sys::Memory::releaseMappedMemory(I->first);
}
uint8_t *RecordingMemoryManager::
allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID,
StringRef SectionName) {
// The recording memory manager is just a local copy of the remote target.
// The alignment requirement is just stored here for later use. Regular
// heap storage is sufficient here, but we're using mapped memory to work
// around a bug in MCJIT.
sys::MemoryBlock Block = allocateSection(Size);
AllocatedCodeMem.push_back(Allocation(Block, Alignment));
return (uint8_t*)Block.base();
}
uint8_t *RecordingMemoryManager::
allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) {
// The recording memory manager is just a local copy of the remote target.
// The alignment requirement is just stored here for later use. Regular
// heap storage is sufficient here, but we're using mapped memory to work
// around a bug in MCJIT.
sys::MemoryBlock Block = allocateSection(Size);
AllocatedDataMem.push_back(Allocation(Block, Alignment));
return (uint8_t*)Block.base();
}
sys::MemoryBlock RecordingMemoryManager::allocateSection(uintptr_t Size) {
error_code ec;
sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(Size,
&Near,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
ec);
assert(!ec && MB.base());
// FIXME: This is part of a work around to keep sections near one another
// when MCJIT performs relocations after code emission but before
// the generated code is moved to the remote target.
// Save this address as the basis for our next request
Near = MB;
return MB;
}
void RecordingMemoryManager::setMemoryWritable() { llvm_unreachable("Unexpected!"); }
void RecordingMemoryManager::setMemoryExecutable() { llvm_unreachable("Unexpected!"); }
void RecordingMemoryManager::setPoisonMemory(bool poison) { llvm_unreachable("Unexpected!"); }
void RecordingMemoryManager::AllocateGOT() { llvm_unreachable("Unexpected!"); }
uint8_t *RecordingMemoryManager::getGOTBase() const {
llvm_unreachable("Unexpected!");
return 0;
}
uint8_t *RecordingMemoryManager::startFunctionBody(const Function *F, uintptr_t &ActualSize){
llvm_unreachable("Unexpected!");
return 0;
}
uint8_t *RecordingMemoryManager::allocateStub(const GlobalValue* F, unsigned StubSize,
unsigned Alignment) {
llvm_unreachable("Unexpected!");
return 0;
}
void RecordingMemoryManager::endFunctionBody(const Function *F, uint8_t *FunctionStart,
uint8_t *FunctionEnd) {
llvm_unreachable("Unexpected!");
}
uint8_t *RecordingMemoryManager::allocateSpace(intptr_t Size, unsigned Alignment) {
llvm_unreachable("Unexpected!");
return 0;
}
uint8_t *RecordingMemoryManager::allocateGlobal(uintptr_t Size, unsigned Alignment) {
llvm_unreachable("Unexpected!");
return 0;
}
void RecordingMemoryManager::deallocateFunctionBody(void *Body) {
llvm_unreachable("Unexpected!");
}
static int jit_noop() {
return 0;
}
void *RecordingMemoryManager::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
// We should not invoke parent's ctors/dtors from generated main()!
// On Mingw and Cygwin, the symbol __main is resolved to
// callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
// (and register wrong callee's dtors with atexit(3)).
// We expect ExecutionEngine::runStaticConstructorsDestructors()
// is called before ExecutionEngine::runFunctionAsMain() is called.
if (Name == "__main") return (void*)(intptr_t)&jit_noop;
// FIXME: Would it be responsible to provide GOT?
if (AbortOnFailure) {
if (Name == "_GLOBAL_OFFSET_TABLE_")
report_fatal_error("Program used external function '" + Name +
"' which could not be resolved!");
}
return NULL;
}

View File

@ -0,0 +1,230 @@
//===---- RemoteMemoryManager.cpp - Recording memory manager --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This memory manager allocates local storage and keeps a record of each
// allocation. Iterators are provided for all data and code allocations.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lli"
#include "RemoteMemoryManager.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
using namespace llvm;
RemoteMemoryManager::~RemoteMemoryManager() {
for (SmallVector<Allocation, 2>::iterator
I = AllocatedSections.begin(), E = AllocatedSections.end();
I != E; ++I)
sys::Memory::releaseMappedMemory(I->MB);
}
uint8_t *RemoteMemoryManager::
allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID,
StringRef SectionName) {
// The recording memory manager is just a local copy of the remote target.
// The alignment requirement is just stored here for later use. Regular
// heap storage is sufficient here, but we're using mapped memory to work
// around a bug in MCJIT.
sys::MemoryBlock Block = allocateSection(Size);
AllocatedSections.push_back( Allocation(Block, Alignment, true) );
UnmappedSections.push_back( &AllocatedSections.back() );
return (uint8_t*)Block.base();
}
uint8_t *RemoteMemoryManager::
allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) {
// The recording memory manager is just a local copy of the remote target.
// The alignment requirement is just stored here for later use. Regular
// heap storage is sufficient here, but we're using mapped memory to work
// around a bug in MCJIT.
sys::MemoryBlock Block = allocateSection(Size);
AllocatedSections.push_back( Allocation(Block, Alignment, false) );
UnmappedSections.push_back( &AllocatedSections.back() );
return (uint8_t*)Block.base();
}
sys::MemoryBlock RemoteMemoryManager::allocateSection(uintptr_t Size) {
error_code ec;
sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(Size,
&Near,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
ec);
assert(!ec && MB.base());
// FIXME: This is part of a work around to keep sections near one another
// when MCJIT performs relocations after code emission but before
// the generated code is moved to the remote target.
// Save this address as the basis for our next request
Near = MB;
return MB;
}
void RemoteMemoryManager::notifyObjectLoaded(ExecutionEngine *EE,
const ObjectImage *Obj) {
// The client should have called setRemoteTarget() before triggering any
// code generation.
assert(Target);
if (!Target)
return;
// FIXME: Make this function thread safe.
// Lay out our sections in order, with all the code sections first, then
// all the data sections.
uint64_t CurOffset = 0;
unsigned MaxAlign = Target->getPageAlignment();
SmallVector<std::pair<const Allocation*, uint64_t>, 16> Offsets;
unsigned NumSections = UnmappedSections.size();
// We're going to go through the list twice to separate code and data, but
// it's a very small list, so that's OK.
for (size_t i = 0, e = NumSections; i != e; ++i) {
const Allocation *Section = UnmappedSections[i];
assert(Section);
if (Section->IsCode) {
unsigned Size = Section->MB.size();
unsigned Align = Section->Alignment;
DEBUG(dbgs() << "code region: size " << Size
<< ", alignment " << Align << "\n");
// Align the current offset up to whatever is needed for the next
// section.
CurOffset = (CurOffset + Align - 1) / Align * Align;
// Save off the address of the new section and allocate its space.
Offsets.push_back(std::pair<const Allocation*,uint64_t>(Section,
CurOffset));
CurOffset += Size;
}
}
// Adjust to keep code and data aligned on seperate pages.
CurOffset = (CurOffset + MaxAlign - 1) / MaxAlign * MaxAlign;
for (size_t i = 0, e = NumSections; i != e; ++i) {
const Allocation *Section = UnmappedSections[i];
assert(Section);
if (!Section->IsCode) {
unsigned Size = Section->MB.size();
unsigned Align = Section->Alignment;
DEBUG(dbgs() << "data region: size " << Size
<< ", alignment " << Align << "\n");
// Align the current offset up to whatever is needed for the next
// section.
CurOffset = (CurOffset + Align - 1) / Align * Align;
// Save off the address of the new section and allocate its space.
Offsets.push_back(std::pair<const Allocation*,uint64_t>(Section,
CurOffset));
CurOffset += Size;
}
}
// Allocate space in the remote target.
uint64_t RemoteAddr;
if (Target->allocateSpace(CurOffset, MaxAlign, RemoteAddr))
report_fatal_error(Target->getErrorMsg());
// Map the section addresses so relocations will get updated in the local
// copies of the sections.
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
uint64_t Addr = RemoteAddr + Offsets[i].second;
EE->mapSectionAddress(const_cast<void*>(Offsets[i].first->MB.base()), Addr);
DEBUG(dbgs() << " Mapping local: " << Offsets[i].first->MB.base()
<< " to remote: 0x" << format("%llx", Addr) << "\n");
MappedSections[Addr] = Offsets[i].first;
}
UnmappedSections.clear();
}
bool RemoteMemoryManager::finalizeMemory(std::string *ErrMsg) {
// FIXME: Make this function thread safe.
for (DenseMap<uint64_t, const Allocation*>::iterator
I = MappedSections.begin(), E = MappedSections.end();
I != E; ++I) {
uint64_t RemoteAddr = I->first;
const Allocation *Section = I->second;
if (Section->IsCode) {
Target->loadCode(RemoteAddr, Section->MB.base(), Section->MB.size());
DEBUG(dbgs() << " loading code: " << Section->MB.base()
<< " to remote: 0x" << format("%llx", RemoteAddr) << "\n");
} else {
Target->loadData(RemoteAddr, Section->MB.base(), Section->MB.size());
DEBUG(dbgs() << " loading data: " << Section->MB.base()
<< " to remote: 0x" << format("%llx", RemoteAddr) << "\n");
}
}
MappedSections.clear();
return false;
}
void RemoteMemoryManager::setMemoryWritable() { llvm_unreachable("Unexpected!"); }
void RemoteMemoryManager::setMemoryExecutable() { llvm_unreachable("Unexpected!"); }
void RemoteMemoryManager::setPoisonMemory(bool poison) { llvm_unreachable("Unexpected!"); }
void RemoteMemoryManager::AllocateGOT() { llvm_unreachable("Unexpected!"); }
uint8_t *RemoteMemoryManager::getGOTBase() const {
llvm_unreachable("Unexpected!");
return 0;
}
uint8_t *RemoteMemoryManager::startFunctionBody(const Function *F, uintptr_t &ActualSize){
llvm_unreachable("Unexpected!");
return 0;
}
uint8_t *RemoteMemoryManager::allocateStub(const GlobalValue* F, unsigned StubSize,
unsigned Alignment) {
llvm_unreachable("Unexpected!");
return 0;
}
void RemoteMemoryManager::endFunctionBody(const Function *F, uint8_t *FunctionStart,
uint8_t *FunctionEnd) {
llvm_unreachable("Unexpected!");
}
uint8_t *RemoteMemoryManager::allocateSpace(intptr_t Size, unsigned Alignment) {
llvm_unreachable("Unexpected!");
return 0;
}
uint8_t *RemoteMemoryManager::allocateGlobal(uintptr_t Size, unsigned Alignment) {
llvm_unreachable("Unexpected!");
return 0;
}
void RemoteMemoryManager::deallocateFunctionBody(void *Body) {
llvm_unreachable("Unexpected!");
}
static int jit_noop() {
return 0;
}
void *RemoteMemoryManager::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
// We should not invoke parent's ctors/dtors from generated main()!
// On Mingw and Cygwin, the symbol __main is resolved to
// callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
// (and register wrong callee's dtors with atexit(3)).
// We expect ExecutionEngine::runStaticConstructorsDestructors()
// is called before ExecutionEngine::runFunctionAsMain() is called.
if (Name == "__main") return (void*)(intptr_t)&jit_noop;
// FIXME: Would it be responsible to provide GOT?
if (AbortOnFailure) {
if (Name == "_GLOBAL_OFFSET_TABLE_")
report_fatal_error("Program used external function '" + Name +
"' which could not be resolved!");
}
return NULL;
}

View File

@ -1,4 +1,4 @@
//===- RecordingMemoryManager.h - LLI MCJIT recording memory manager ------===//
//===- RemoteMemoryManager.h - LLI MCJIT recording memory manager ------===//
//
// The LLVM Compiler Infrastructure
//
@ -12,24 +12,47 @@
//
//===----------------------------------------------------------------------===//
#ifndef RECORDINGMEMORYMANAGER_H
#define RECORDINGMEMORYMANAGER_H
#ifndef REMOTEMEMORYMANAGER_H
#define REMOTEMEMORYMANAGER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Memory.h"
#include <utility>
#include "RemoteTarget.h"
namespace llvm {
class RecordingMemoryManager : public JITMemoryManager {
class RemoteMemoryManager : public JITMemoryManager {
public:
typedef std::pair<sys::MemoryBlock, unsigned> Allocation;
// Notice that this structure takes ownership of the memory allocated.
struct Allocation {
Allocation(sys::MemoryBlock mb, unsigned a, bool code)
: MB(mb), Alignment(a), IsCode(code) {}
sys::MemoryBlock MB;
unsigned Alignment;
bool IsCode;
};
private:
SmallVector<Allocation, 16> AllocatedDataMem;
SmallVector<Allocation, 16> AllocatedCodeMem;
// This vector contains Allocation objects for all sections which we have
// allocated. This vector effectively owns the memory associated with the
// allocations.
SmallVector<Allocation, 2> AllocatedSections;
// This vector contains pointers to Allocation objects for any sections we
// have allocated locally but have not yet remapped for the remote target.
// When we receive notification of a completed module load, we will map
// these sections into the remote target.
SmallVector<const Allocation *, 2> UnmappedSections;
// This map tracks the sections we have remapped for the remote target
// but have not yet copied to the target.
DenseMap<uint64_t, const Allocation *> MappedSections;
// FIXME: This is part of a work around to keep sections near one another
// when MCJIT performs relocations after code emission but before
@ -37,17 +60,11 @@ private:
sys::MemoryBlock Near;
sys::MemoryBlock allocateSection(uintptr_t Size);
RemoteTarget *Target;
public:
RecordingMemoryManager() {}
virtual ~RecordingMemoryManager();
typedef SmallVectorImpl<Allocation>::const_iterator const_data_iterator;
typedef SmallVectorImpl<Allocation>::const_iterator const_code_iterator;
const_data_iterator data_begin() const { return AllocatedDataMem.begin(); }
const_data_iterator data_end() const { return AllocatedDataMem.end(); }
const_code_iterator code_begin() const { return AllocatedCodeMem.begin(); }
const_code_iterator code_end() const { return AllocatedCodeMem.end(); }
RemoteMemoryManager() : Target(NULL) {}
virtual ~RemoteMemoryManager();
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName);
@ -59,7 +76,12 @@ public:
void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true);
bool finalizeMemory(std::string *ErrMsg) { return false; }
void notifyObjectLoaded(ExecutionEngine *EE, const ObjectImage *Obj);
bool finalizeMemory(std::string *ErrMsg);
// This is a non-interface function used by lli
void setRemoteTarget(RemoteTarget *T) { Target = T; }
// The following obsolete JITMemoryManager calls are stubbed out for
// this model.

View File

@ -15,7 +15,7 @@
#define DEBUG_TYPE "lli"
#include "llvm/IR/LLVMContext.h"
#include "RecordingMemoryManager.h"
#include "RemoteMemoryManager.h"
#include "RemoteTarget.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/ReaderWriter.h"
@ -131,6 +131,12 @@ namespace {
cl::value_desc("function"),
cl::init("main"));
cl::list<std::string>
ExtraModules("extra-modules",
cl::CommaSeparated,
cl::desc("Extra modules to be loaded"),
cl::value_desc("<input bitcode 2>,<input bitcode 3>,..."));
cl::opt<std::string>
FakeArgv0("fake-argv0",
cl::desc("Override the 'argv[0]' value passed into the executing"
@ -222,82 +228,6 @@ static void do_shutdown() {
#endif
}
void layoutRemoteTargetMemory(RemoteTarget *T, RecordingMemoryManager *JMM) {
// Lay out our sections in order, with all the code sections first, then
// all the data sections.
uint64_t CurOffset = 0;
unsigned MaxAlign = T->getPageAlignment();
SmallVector<std::pair<const void*, uint64_t>, 16> Offsets;
SmallVector<unsigned, 16> Sizes;
for (RecordingMemoryManager::const_code_iterator I = JMM->code_begin(),
E = JMM->code_end();
I != E; ++I) {
DEBUG(dbgs() << "code region: size " << I->first.size()
<< ", alignment " << I->second << "\n");
// Align the current offset up to whatever is needed for the next
// section.
unsigned Align = I->second;
CurOffset = (CurOffset + Align - 1) / Align * Align;
// Save off the address of the new section and allocate its space.
Offsets.push_back(std::pair<const void*,uint64_t>(I->first.base(), CurOffset));
Sizes.push_back(I->first.size());
CurOffset += I->first.size();
}
// Adjust to keep code and data aligned on seperate pages.
CurOffset = (CurOffset + MaxAlign - 1) / MaxAlign * MaxAlign;
unsigned FirstDataIndex = Offsets.size();
for (RecordingMemoryManager::const_data_iterator I = JMM->data_begin(),
E = JMM->data_end();
I != E; ++I) {
DEBUG(dbgs() << "data region: size " << I->first.size()
<< ", alignment " << I->second << "\n");
// Align the current offset up to whatever is needed for the next
// section.
unsigned Align = I->second;
CurOffset = (CurOffset + Align - 1) / Align * Align;
// Save off the address of the new section and allocate its space.
Offsets.push_back(std::pair<const void*,uint64_t>(I->first.base(), CurOffset));
Sizes.push_back(I->first.size());
CurOffset += I->first.size();
}
// Allocate space in the remote target.
uint64_t RemoteAddr;
if (T->allocateSpace(CurOffset, MaxAlign, RemoteAddr))
report_fatal_error(T->getErrorMsg());
// Map the section addresses so relocations will get updated in the local
// copies of the sections.
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
uint64_t Addr = RemoteAddr + Offsets[i].second;
EE->mapSectionAddress(const_cast<void*>(Offsets[i].first), Addr);
DEBUG(dbgs() << " Mapping local: " << Offsets[i].first
<< " to remote: 0x" << format("%llx", Addr) << "\n");
}
// Trigger application of relocations
EE->finalizeObject();
// Now load it all to the target.
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
uint64_t Addr = RemoteAddr + Offsets[i].second;
if (i < FirstDataIndex) {
T->loadCode(Addr, Offsets[i].first, Sizes[i]);
DEBUG(dbgs() << " loading code: " << Offsets[i].first
<< " to remote: 0x" << format("%llx", Addr) << "\n");
} else {
T->loadData(Addr, Offsets[i].first, Sizes[i]);
DEBUG(dbgs() << " loading data: " << Offsets[i].first
<< " to remote: 0x" << format("%llx", Addr) << "\n");
}
}
}
//===----------------------------------------------------------------------===//
// main Driver function
//
@ -370,7 +300,7 @@ int main(int argc, char **argv, char * const *envp) {
if (UseMCJIT && !ForceInterpreter) {
builder.setUseMCJIT(true);
if (RemoteMCJIT)
RTDyldMM = new RecordingMemoryManager();
RTDyldMM = new RemoteMemoryManager();
else
RTDyldMM = new SectionMemoryManager();
builder.setMCJITMemoryManager(RTDyldMM);
@ -420,6 +350,16 @@ int main(int argc, char **argv, char * const *envp) {
exit(1);
}
// Load any additional modules specified on the command line.
for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) {
Module *XMod = ParseIRFile(ExtraModules[i], Err, Context);
if (!XMod) {
Err.print(argv[0], errs());
return 1;
}
EE->addModule(XMod);
}
// The following functions have no effect if their respective profiling
// support wasn't enabled in the build configuration.
EE->RegisterJITEventListener(
@ -519,7 +459,7 @@ int main(int argc, char **argv, char * const *envp) {
// it couldn't. This is a limitation of the LLI implemantation, not the
// MCJIT itself. FIXME.
//
RecordingMemoryManager *MM = static_cast<RecordingMemoryManager*>(RTDyldMM);
RemoteMemoryManager *MM = static_cast<RemoteMemoryManager*>(RTDyldMM);
// Everything is prepared now, so lay out our program for the target
// address space, assign the section addresses to resolve any relocations,
// and send it to the target.
@ -543,19 +483,30 @@ int main(int argc, char **argv, char * const *envp) {
Target.reset(RemoteTarget::createRemoteTarget());
}
// Create the remote target
// Give the memory manager a pointer to our remote target interface object.
MM->setRemoteTarget(Target.get());
// Create the remote target.
Target->create();
// FIXME: Don't commit like this. I don't think these calls are necessary.
#if 0
// Trigger compilation.
EE->generateCodeForModule(Mod);
// Layout the target memory.
layoutRemoteTargetMemory(Target.get(), MM);
// Get everything ready to execute.
EE->finalizeModule(Mod);
#endif
// Since we're executing in a (at least simulated) remote address space,
// we can't use the ExecutionEngine::runFunctionAsMain(). We have to
// grab the function address directly here and tell the remote target
// to execute the function.
//
// Our memory manager will map generated code into the remote address
// space as it is loaded and copy the bits over during the finalizeMemory
// operation.
//
// FIXME: argv and envp handling.
uint64_t Entry = EE->getFunctionAddress(EntryFn->getName().str());