1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00

Fix Bug: Linker/2003-04-26-NullPtrLinkProblem.ll

This was a problem with constants having their types resolved to some new type,
but there was already a constant of the new type created.  Before, these types
were never merged together, now they are.

llvm-svn: 6314
This commit is contained in:
Chris Lattner 2003-05-23 20:03:32 +00:00
parent 9cdb6fdeaa
commit 500984b918

View File

@ -451,52 +451,72 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV) {
destroyConstant();
}
//===----------------------------------------------------------------------===//
// Factory Function Implementation
template<class ValType, class ConstantClass>
struct ValueMap {
typedef std::pair<const Type*, ValType> ConstHashKey;
std::map<ConstHashKey, ConstantClass *> Map;
inline ConstantClass *get(const Type *Ty, ValType V) {
typename std::map<ConstHashKey,ConstantClass *>::iterator I =
Map.find(ConstHashKey(Ty, V));
return (I != Map.end()) ? I->second : 0;
}
inline void add(const Type *Ty, ValType V, ConstantClass *CP) {
Map.insert(std::make_pair(ConstHashKey(Ty, V), CP));
}
inline void remove(ConstantClass *CP) {
for (typename std::map<ConstHashKey, ConstantClass*>::iterator
I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second == CP) {
Map.erase(I);
return;
}
// ConstantCreator - A class that is used to create constants by
// ValueMap*. This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator {
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
return new ConstantClass(Ty, V);
}
};
namespace {
template<class ValType, class TypeClass, class ConstantClass>
class ValueMap {
protected:
typedef std::pair<const TypeClass*, ValType> ConstHashKey;
std::map<ConstHashKey, ConstantClass *> Map;
public:
// getOrCreate - Return the specified constant from the map, creating it if
// necessary.
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
ConstHashKey Lookup(Ty, V);
typename std::map<ConstHashKey,ConstantClass *>::iterator I =
Map.lower_bound(Lookup);
if (I != Map.end() && I->first == Lookup)
return I->second; // Is it in the map?
// If no preexisting value, create one now...
ConstantClass *Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
Map.insert(I, std::make_pair(ConstHashKey(Ty, V), Result));
return Result;
}
void remove(ConstantClass *CP) {
// FIXME: This could be sped up a LOT. If this gets to be a performance
// problem, someone should look at this.
for (typename std::map<ConstHashKey, ConstantClass*>::iterator
I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second == CP) {
Map.erase(I);
return;
}
assert(0 && "Constant not found in constant table!");
}
};
}
//---- ConstantUInt::get() and ConstantSInt::get() implementations...
//
static ValueMap<uint64_t, ConstantInt> IntConstants;
static ValueMap< int64_t, Type, ConstantSInt> SIntConstants;
static ValueMap<uint64_t, Type, ConstantUInt> UIntConstants;
ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
ConstantSInt *Result = (ConstantSInt*)IntConstants.get(Ty, (uint64_t)V);
if (!Result) // If no preexisting value, create one now...
IntConstants.add(Ty, V, Result = new ConstantSInt(Ty, V));
return Result;
return SIntConstants.getOrCreate(Ty, V);
}
ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
ConstantUInt *Result = (ConstantUInt*)IntConstants.get(Ty, V);
if (!Result) // If no preexisting value, create one now...
IntConstants.add(Ty, V, Result = new ConstantUInt(Ty, V));
return Result;
return UIntConstants.getOrCreate(Ty, V);
}
ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
@ -507,27 +527,46 @@ ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
//---- ConstantFP::get() implementation...
//
static ValueMap<double, ConstantFP> FPConstants;
static ValueMap<double, Type, ConstantFP> FPConstants;
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
ConstantFP *Result = FPConstants.get(Ty, V);
if (!Result) // If no preexisting value, create one now...
FPConstants.add(Ty, V, Result = new ConstantFP(Ty, V));
return Result;
return FPConstants.getOrCreate(Ty, V);
}
//---- ConstantArray::get() implementation...
//
static ValueMap<std::vector<Constant*>, ConstantArray> ArrayConstants;
static ValueMap<std::vector<Constant*>, ArrayType,
ConstantArray> ArrayConstants;
ConstantArray *ConstantArray::get(const ArrayType *Ty,
const std::vector<Constant*> &V) {
ConstantArray *Result = ArrayConstants.get(Ty, V);
if (!Result) // If no preexisting value, create one now...
ArrayConstants.add(Ty, V, Result = new ConstantArray(Ty, V));
return Result;
return ArrayConstants.getOrCreate(Ty, V);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantArray::destroyConstant() {
ArrayConstants.remove(this);
destroyConstantImpl();
}
/// refineAbstractType - If this callback is invoked, then this constant is of a
/// derived type, change all users to use a concrete constant of the new type.
///
void ConstantArray::refineAbstractType(const DerivedType *OldTy,
const Type *NewTy) {
Value::refineAbstractType(OldTy, NewTy);
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(getOperand(i)));
replaceAllUsesWith(ConstantArray::get(cast<ArrayType>(NewTy),
C));
destroyConstant(); // This constant is now dead, destroy it.
}
// ConstantArray::get(const string&) - Return an array that is initialized to
// contain the specified string. A null terminator is added to the specified
// string so that it may be used in a natural way...
@ -545,14 +584,6 @@ ConstantArray *ConstantArray::get(const std::string &Str) {
return ConstantArray::get(ATy, ElementVals);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantArray::destroyConstant() {
ArrayConstants.remove(this);
destroyConstantImpl();
}
// getAsString - If the sub-element type of this array is either sbyte or ubyte,
// then this method converts the array to an std::string and returns it.
// Otherwise, it asserts out.
@ -573,14 +604,12 @@ std::string ConstantArray::getAsString() const {
//---- ConstantStruct::get() implementation...
//
static ValueMap<std::vector<Constant*>, ConstantStruct> StructConstants;
static ValueMap<std::vector<Constant*>, StructType,
ConstantStruct> StructConstants;
ConstantStruct *ConstantStruct::get(const StructType *Ty,
const std::vector<Constant*> &V) {
ConstantStruct *Result = StructConstants.get(Ty, V);
if (!Result) // If no preexisting value, create one now...
StructConstants.add(Ty, V, Result = new ConstantStruct(Ty, V));
return Result;
return StructConstants.getOrCreate(Ty, V);
}
// destroyConstant - Remove the constant from the constant table...
@ -590,16 +619,38 @@ void ConstantStruct::destroyConstant() {
destroyConstantImpl();
}
/// refineAbstractType - If this callback is invoked, then this constant is of a
/// derived type, change all users to use a concrete constant of the new type.
///
void ConstantStruct::refineAbstractType(const DerivedType *OldTy,
const Type *NewTy) {
Value::refineAbstractType(OldTy, NewTy);
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(getOperand(i)));
replaceAllUsesWith(ConstantStruct::get(cast<StructType>(NewTy),
C));
destroyConstant(); // This constant is now dead, destroy it.
}
//---- ConstantPointerNull::get() implementation...
//
static ValueMap<char, ConstantPointerNull> NullPtrConstants;
// ConstantPointerNull does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
return new ConstantPointerNull(Ty);
}
};
static ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
ConstantPointerNull *Result = NullPtrConstants.get(Ty, 0);
if (!Result) // If no preexisting value, create one now...
NullPtrConstants.add(Ty, 0, Result = new ConstantPointerNull(Ty));
return Result;
return NullPtrConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
@ -609,6 +660,21 @@ void ConstantPointerNull::destroyConstant() {
destroyConstantImpl();
}
/// refineAbstractType - If this callback is invoked, then this constant is of a
/// derived type, change all users to use a concrete constant of the new type.
///
void ConstantPointerNull::refineAbstractType(const DerivedType *OldTy,
const Type *NewTy) {
Value::refineAbstractType(OldTy, NewTy);
// Make everyone now use a constant of the new type...
replaceAllUsesWith(ConstantPointerNull::get(cast<PointerType>(NewTy)));
// This constant is now dead, destroy it.
destroyConstant();
}
//---- ConstantPointerRef::get() implementation...
//
@ -630,7 +696,31 @@ void ConstantPointerRef::destroyConstant() {
//---- ConstantExpr::get() implementations...
//
typedef std::pair<unsigned, std::vector<Constant*> > ExprMapKeyType;
static ValueMap<const ExprMapKeyType, ConstantExpr> ExprConstants;
template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
if (V.first == Instruction::Cast)
return new ConstantExpr(Instruction::Cast, V.second[0], Ty);
if ((V.first >= Instruction::BinaryOpsBegin &&
V.first < Instruction::BinaryOpsEnd) ||
V.first == Instruction::Shl || V.first == Instruction::Shr)
return new ConstantExpr(V.first, V.second[0], V.second[1]);
assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!");
// Check that the indices list is valid...
std::vector<Value*> ValIdxList(V.second.begin()+1, V.second.end());
const Type *DestTy = GetElementPtrInst::getIndexedType(Ty, ValIdxList,
true);
assert(DestTy && "Invalid index list for GetElementPtr expression");
std::vector<Constant*> IdxList(V.second.begin()+1, V.second.end());
return new ConstantExpr(V.second[0], IdxList, PointerType::get(DestTy));
}
};
static ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
@ -638,14 +728,8 @@ Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
const ExprMapKeyType &Key = std::make_pair(Instruction::Cast, argVec);
ConstantExpr *Result = ExprConstants.get(Ty, Key);
if (Result) return Result;
// Its not in the table so create a new one and put it in the table.
Result = new ConstantExpr(Instruction::Cast, C, Ty);
ExprConstants.add(Ty, Key, Result);
return Result;
ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
return ExprConstants.getOrCreate(Ty, Key);
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
@ -659,16 +743,9 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
const ExprMapKeyType &Key = std::make_pair(Opcode, argVec);
ConstantExpr *Result = ExprConstants.get(C1->getType(), Key);
if (Result) return Result;
// It's not in the table so create a new one and put it in the table.
Result = new ConstantExpr(Opcode, C1, C2);
ExprConstants.add(C1->getType(), Key, Result);
return Result;
ExprMapKeyType Key = std::make_pair(Opcode, argVec);
return ExprConstants.getOrCreate(C1->getType(), Key);
}
/// getShift - Return a shift left or shift right constant expr
@ -685,14 +762,8 @@ Constant *ConstantExpr::getShift(unsigned Opcode, Constant *C1, Constant *C2) {
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
const ExprMapKeyType &Key = std::make_pair(Opcode, argVec);
ConstantExpr *Result = ExprConstants.get(C1->getType(), Key);
if (Result) return Result;
// It's not in the table so create a new one and put it in the table.
Result = new ConstantExpr(Opcode, C1, C2);
ExprConstants.add(C1->getType(), Key, Result);
return Result;
ExprMapKeyType Key = std::make_pair(Opcode, argVec);
return ExprConstants.getOrCreate(C1->getType(), Key);
}
@ -701,29 +772,15 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C,
if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
return FC; // Fold a few common cases...
const Type *Ty = C->getType();
assert(isa<PointerType>(Ty) &&
"Non-pointer type for constant GetElementPtr expression");
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
argVec.insert(argVec.end(), IdxList.begin(), IdxList.end());
const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,argVec);
ConstantExpr *Result = ExprConstants.get(Ty, Key);
if (Result) return Result;
// Its not in the table so create a new one and put it in the table.
// Check the operands for consistency first
//
assert(isa<PointerType>(Ty) &&
"Non-pointer type for constant GelElementPtr expression");
// Check that the indices list is valid...
std::vector<Value*> ValIdxList(IdxList.begin(), IdxList.end());
const Type *DestTy = GetElementPtrInst::getIndexedType(Ty, ValIdxList, true);
assert(DestTy && "Invalid index list for constant GelElementPtr expression");
Result = new ConstantExpr(C, IdxList, PointerType::get(DestTy));
ExprConstants.add(Ty, Key, Result);
return Result;
return ExprConstants.getOrCreate(Ty, Key);
}
// destroyConstant - Remove the constant from the constant table...
@ -733,6 +790,40 @@ void ConstantExpr::destroyConstant() {
destroyConstantImpl();
}
/// refineAbstractType - If this callback is invoked, then this constant is of a
/// derived type, change all users to use a concrete constant of the new type.
///
void ConstantExpr::refineAbstractType(const DerivedType *OldTy,
const Type *NewTy) {
Value::refineAbstractType(OldTy, NewTy);
// FIXME: These need to use a lower-level implementation method, because the
// ::get methods intuit the type of the result based on the types of the
// operands. The operand types may not have had their types resolved yet.
//
if (getOpcode() == Instruction::Cast) {
replaceAllUsesWith(getCast(getOperand(0), NewTy));
} else if (getOpcode() >= Instruction::BinaryOpsBegin &&
getOpcode() < Instruction::BinaryOpsEnd) {
replaceAllUsesWith(get(getOpcode(), getOperand(0), getOperand(0)));
} else if (getOpcode() == Instruction::Shl || getOpcode() ==Instruction::Shr){
replaceAllUsesWith(getShift(getOpcode(), getOperand(0), getOperand(0)));
} else {
assert(getOpcode() == Instruction::GetElementPtr);
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(getOperand(i)));
replaceAllUsesWith(ConstantExpr::getGetElementPtr(getOperand(0),
C));
}
destroyConstant(); // This constant is now dead, destroy it.
}
const char *ConstantExpr::getOpcodeName() const {
return Instruction::getOpcodeName(getOpcode());
}