1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00

[x86] avoid 256-bit andnp that requires insert/extract with AVX1 (PR37449)

This is the final (I hope!) problem pattern mentioned in PR37749:
https://bugs.llvm.org/show_bug.cgi?id=37749

We are trying to avoid an AVX1 sinkhole caused by having 256-bit bitwise logic ops but no other 256-bit integer ops. 
We've already solved the simple logic ops, but 'andn' is an x86 special. I looked at alternative solutions like 
extending the generic DAG combine or trying to wait until the ANDNP node is created, but those are bigger patches 
that can over-reach. Ie, splitting to 128-bit does not look like a win in most cases with >1 256-bit op.

The pattern matching is cluttered with bitcasts because of our i64 element canonicalization. For the affected test, 
we have this vector-type-legalized sequence:

        t29: v8i32 = concat_vectors t27, t28
      t30: v4i64 = bitcast t29
        t18: v8i32 = BUILD_VECTOR Constant:i32<-1>, Constant:i32<-1>, ...
      t31: v4i64 = bitcast t18
    t32: v4i64 = xor t30, t31
      t9: v8i32 = BUILD_VECTOR Constant:i32<255>, Constant:i32<255>, ...
    t34: v4i64 = bitcast t9
  t35: v4i64 = and t32, t34
t36: v8i32 = bitcast t35
      t37: v4i32 = extract_subvector t36, Constant:i64<0>
      t38: v4i32 = extract_subvector t36, Constant:i64<4>

Differential Revision: https://reviews.llvm.org/D52318

llvm-svn: 343008
This commit is contained in:
Sanjay Patel 2018-09-25 19:09:34 +00:00
parent da8773b8d1
commit 50d6ec057c
3 changed files with 44 additions and 7 deletions

View File

@ -8205,7 +8205,7 @@ SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
bool llvm::isBitwiseNot(SDValue V) {
if (V.getOpcode() != ISD::XOR)
return false;
ConstantSDNode *C = isConstOrConstSplat(V.getOperand(1));
ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
return C && C->isAllOnesValue();
}

View File

@ -40168,6 +40168,37 @@ static SDValue combineInsertSubvector(SDNode *N, SelectionDAG &DAG,
static SDValue combineExtractSubvector(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// For AVX1 only, if we are extracting from a 256-bit and+not (which will
// eventually get combined/lowered into ANDNP) with a concatenated operand,
// split the 'and' into 128-bit ops to avoid the concatenate and extract.
// We let generic combining take over from there to simplify the
// insert/extract and 'not'.
// This pattern emerges during AVX1 legalization. We handle it before lowering
// to avoid complications like splitting constant vector loads.
// Capture the original wide type in the likely case that we need to bitcast
// back to this type.
EVT VT = N->getValueType(0);
EVT WideVecVT = N->getOperand(0).getValueType();
SDValue WideVec = peekThroughBitcasts(N->getOperand(0));
if (Subtarget.hasAVX() && !Subtarget.hasAVX2() && WideVecVT.isSimple() &&
WideVecVT.getSizeInBits() == 256 && WideVec.getOpcode() == ISD::AND) {
auto isConcatenatedNot = [] (SDValue V) {
V = peekThroughBitcasts(V);
if (!isBitwiseNot(V))
return false;
SDValue NotOp = V->getOperand(0);
return peekThroughBitcasts(NotOp).getOpcode() == ISD::CONCAT_VECTORS;
};
if (isConcatenatedNot(WideVec.getOperand(0)) ||
isConcatenatedNot(WideVec.getOperand(1))) {
// extract (and v4i64 X, (not (concat Y1, Y2))), n -> andnp v2i64 X(n), Y1
SDValue Concat = split256IntArith(WideVec, DAG);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT,
DAG.getBitcast(WideVecVT, Concat), N->getOperand(1));
}
}
if (DCI.isBeforeLegalizeOps())
return SDValue();

View File

@ -342,9 +342,9 @@ define <8 x i32> @andn_disguised_i8_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm4
; AVX1-NEXT: vpaddd %xmm3, %xmm4, %xmm3
; AVX1-NEXT: vpaddd %xmm0, %xmm1, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm3, %ymm0, %ymm0
; AVX1-NEXT: vandnps {{.*}}(%rip), %ymm0, %ymm0
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm1
; AVX1-NEXT: vmovdqa {{.*#+}} xmm1 = [1095216660735,1095216660735]
; AVX1-NEXT: vpandn %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vpandn %xmm1, %xmm3, %xmm1
; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm3
; AVX1-NEXT: vpaddd %xmm3, %xmm1, %xmm1
; AVX1-NEXT: vpaddd %xmm2, %xmm0, %xmm0
@ -364,6 +364,8 @@ define <8 x i32> @andn_disguised_i8_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %
ret <8 x i32> %add1
}
; Negative test - if we don't have a leading concat_vectors, the transform won't be profitable.
define <8 x i32> @andn_variable_mask_operand_no_concat(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
; AVX1-LABEL: andn_variable_mask_operand_no_concat:
; AVX1: # %bb.0:
@ -386,6 +388,8 @@ define <8 x i32> @andn_variable_mask_operand_no_concat(<8 x i32> %x, <8 x i32> %
ret <8 x i32> %add
}
; Negative test - if we don't have a leading concat_vectors, the transform won't be profitable (even if the mask is a constant).
define <8 x i32> @andn_constant_mask_operand_no_concat(<8 x i32> %x, <8 x i32> %y) {
; AVX1-LABEL: andn_constant_mask_operand_no_concat:
; AVX1: # %bb.0:
@ -408,6 +412,8 @@ define <8 x i32> @andn_constant_mask_operand_no_concat(<8 x i32> %x, <8 x i32> %
ret <8 x i32> %r
}
; This is a close call, but we split the 'andn' to reduce the insert/extract.
define <8 x i32> @andn_variable_mask_operand_concat(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z, <8 x i32> %w) {
; AVX1-LABEL: andn_variable_mask_operand_concat:
; AVX1: # %bb.0:
@ -415,9 +421,9 @@ define <8 x i32> @andn_variable_mask_operand_concat(<8 x i32> %x, <8 x i32> %y,
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm5
; AVX1-NEXT: vpaddd %xmm4, %xmm5, %xmm4
; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm4, %ymm0, %ymm0
; AVX1-NEXT: vandnps %ymm2, %ymm0, %ymm0
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm1
; AVX1-NEXT: vpandn %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm1
; AVX1-NEXT: vpandn %xmm1, %xmm4, %xmm1
; AVX1-NEXT: vextractf128 $1, %ymm3, %xmm2
; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
; AVX1-NEXT: vpaddd %xmm3, %xmm0, %xmm0