1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

WholeProgramDevirt: introduce.

This pass implements whole program optimization of virtual calls in cases
where we know (via bitset information) that the list of callees is fixed. This
includes the following:

- Single implementation devirtualization: if a virtual call has a single
  possible callee, replace all calls with a direct call to that callee.

- Virtual constant propagation: if the virtual function's return type is an
  integer <=64 bits and all possible callees are readnone, for each class and
  each list of constant arguments: evaluate the function, store the return
  value alongside the virtual table, and rewrite each virtual call as a load
  from the virtual table.

- Uniform return value optimization: if the conditions for virtual constant
  propagation hold and each function returns the same constant value, replace
  each virtual call with that constant.

- Unique return value optimization for i1 return values: if the conditions
  for virtual constant propagation hold and a single vtable's function
  returns 0, or a single vtable's function returns 1, replace each virtual
  call with a comparison of the vptr against that vtable's address.

Differential Revision: http://reviews.llvm.org/D16795

llvm-svn: 260312
This commit is contained in:
Peter Collingbourne 2016-02-09 22:50:34 +00:00
parent ef4c99d35b
commit 54e8749794
27 changed files with 2030 additions and 1 deletions

View File

@ -316,6 +316,7 @@ void initializeFuncletLayoutPass(PassRegistry &);
void initializeLoopLoadEliminationPass(PassRegistry&);
void initializeFunctionImportPassPass(PassRegistry &);
void initializeLoopVersioningPassPass(PassRegistry &);
void initializeWholeProgramDevirtPass(PassRegistry &);
}
#endif

View File

@ -226,6 +226,10 @@ ModulePass *createLowerBitSetsPass();
/// \brief This pass export CFI checks for use by external modules.
ModulePass *createCrossDSOCFIPass();
/// \brief This pass implements whole-program devirtualization using bitset
/// metadata.
ModulePass *createWholeProgramDevirtPass();
//===----------------------------------------------------------------------===//
// SampleProfilePass - Loads sample profile data from disk and generates
// IR metadata to reflect the profile.

View File

@ -157,6 +157,7 @@ private:
legacy::PassManagerBase &PM) const;
void addInitialAliasAnalysisPasses(legacy::PassManagerBase &PM) const;
void addLTOOptimizationPasses(legacy::PassManagerBase &PM);
void addEarlyLTOOptimizationPasses(legacy::PassManagerBase &PM);
void addLateLTOOptimizationPasses(legacy::PassManagerBase &PM);
void addPGOInstrPasses(legacy::PassManagerBase &MPM);

View File

@ -0,0 +1,215 @@
//===- WholeProgramDevirt.h - Whole-program devirt pass ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines parts of the whole-program devirtualization pass
// implementation that may be usefully unit tested.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H
#define LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include <utility>
#include <vector>
#include <assert.h>
#include <stdint.h>
namespace llvm {
class Function;
class GlobalVariable;
namespace wholeprogramdevirt {
// A bit vector that keeps track of which bits are used. We use this to
// pack constant values compactly before and after each virtual table.
struct AccumBitVector {
std::vector<uint8_t> Bytes;
// Bits in BytesUsed[I] are 1 if matching bit in Bytes[I] is used, 0 if not.
std::vector<uint8_t> BytesUsed;
std::pair<uint8_t *, uint8_t *> getPtrToData(uint64_t Pos, uint8_t Size) {
if (Bytes.size() < Pos + Size) {
Bytes.resize(Pos + Size);
BytesUsed.resize(Pos + Size);
}
return std::make_pair(Bytes.data() + Pos, BytesUsed.data() + Pos);
}
// Set little-endian value Val with size Size at bit position Pos,
// and mark bytes as used.
void setLE(uint64_t Pos, uint64_t Val, uint8_t Size) {
assert(Pos % 8 == 0);
auto DataUsed = getPtrToData(Pos / 8, Size);
for (unsigned I = 0; I != Size; ++I) {
DataUsed.first[I] = Val >> (I * 8);
assert(!DataUsed.second[I]);
DataUsed.second[I] = 0xff;
}
}
// Set big-endian value Val with size Size at bit position Pos,
// and mark bytes as used.
void setBE(uint64_t Pos, uint64_t Val, uint8_t Size) {
assert(Pos % 8 == 0);
auto DataUsed = getPtrToData(Pos / 8, Size);
for (unsigned I = 0; I != Size; ++I) {
DataUsed.first[Size - I - 1] = Val >> (I * 8);
assert(!DataUsed.second[Size - I - 1]);
DataUsed.second[Size - I - 1] = 0xff;
}
}
// Set bit at bit position Pos to b and mark bit as used.
void setBit(uint64_t Pos, bool b) {
auto DataUsed = getPtrToData(Pos / 8, 1);
if (b)
*DataUsed.first |= 1 << (Pos % 8);
assert(!(*DataUsed.second & (1 << Pos % 8)));
*DataUsed.second |= 1 << (Pos % 8);
}
};
// The bits that will be stored before and after a particular vtable.
struct VTableBits {
// The vtable global.
GlobalVariable *GV;
// Cache of the vtable's size in bytes.
uint64_t ObjectSize = 0;
// The bit vector that will be laid out before the vtable. Note that these
// bytes are stored in reverse order until the globals are rebuilt. This means
// that any values in the array must be stored using the opposite endianness
// from the target.
AccumBitVector Before;
// The bit vector that will be laid out after the vtable.
AccumBitVector After;
};
// Information about an entry in a particular bitset.
struct BitSetInfo {
// The VTableBits for the vtable.
VTableBits *Bits;
// The offset in bytes from the start of the vtable (i.e. the address point).
uint64_t Offset;
bool operator<(const BitSetInfo &other) const {
return Bits < other.Bits || (Bits == other.Bits && Offset < other.Offset);
}
};
// A virtual call target, i.e. an entry in a particular vtable.
struct VirtualCallTarget {
VirtualCallTarget(Function *Fn, const BitSetInfo *BS);
// For testing only.
VirtualCallTarget(const BitSetInfo *BS, bool IsBigEndian)
: Fn(nullptr), BS(BS), IsBigEndian(IsBigEndian) {}
// The function stored in the vtable.
Function *Fn;
// A pointer to the bitset through which the pointer to Fn is accessed.
const BitSetInfo *BS;
// When doing virtual constant propagation, this stores the return value for
// the function when passed the currently considered argument list.
uint64_t RetVal;
// Whether the target is big endian.
bool IsBigEndian;
// The minimum byte offset before the address point. This covers the bytes in
// the vtable object before the address point (e.g. RTTI, access-to-top,
// vtables for other base classes) and is equal to the offset from the start
// of the vtable object to the address point.
uint64_t minBeforeBytes() const { return BS->Offset; }
// The minimum byte offset after the address point. This covers the bytes in
// the vtable object after the address point (e.g. the vtable for the current
// class and any later base classes) and is equal to the size of the vtable
// object minus the offset from the start of the vtable object to the address
// point.
uint64_t minAfterBytes() const { return BS->Bits->ObjectSize - BS->Offset; }
// The number of bytes allocated (for the vtable plus the byte array) before
// the address point.
uint64_t allocatedBeforeBytes() const {
return minBeforeBytes() + BS->Bits->Before.Bytes.size();
}
// The number of bytes allocated (for the vtable plus the byte array) after
// the address point.
uint64_t allocatedAfterBytes() const {
return minAfterBytes() + BS->Bits->After.Bytes.size();
}
// Set the bit at position Pos before the address point to RetVal.
void setBeforeBit(uint64_t Pos) {
assert(Pos >= 8 * minBeforeBytes());
BS->Bits->Before.setBit(Pos - 8 * minBeforeBytes(), RetVal);
}
// Set the bit at position Pos after the address point to RetVal.
void setAfterBit(uint64_t Pos) {
assert(Pos >= 8 * minAfterBytes());
BS->Bits->After.setBit(Pos - 8 * minAfterBytes(), RetVal);
}
// Set the bytes at position Pos before the address point to RetVal.
// Because the bytes in Before are stored in reverse order, we use the
// opposite endianness to the target.
void setBeforeBytes(uint64_t Pos, uint8_t Size) {
assert(Pos >= 8 * minBeforeBytes());
if (IsBigEndian)
BS->Bits->Before.setLE(Pos - 8 * minBeforeBytes(), RetVal, Size);
else
BS->Bits->Before.setBE(Pos - 8 * minBeforeBytes(), RetVal, Size);
}
// Set the bytes at position Pos after the address point to RetVal.
void setAfterBytes(uint64_t Pos, uint8_t Size) {
assert(Pos >= 8 * minAfterBytes());
if (IsBigEndian)
BS->Bits->After.setBE(Pos - 8 * minAfterBytes(), RetVal, Size);
else
BS->Bits->After.setLE(Pos - 8 * minAfterBytes(), RetVal, Size);
}
};
// Find the minimum offset that we may store a value of size Size bits at. If
// IsAfter is set, look for an offset before the object, otherwise look for an
// offset after the object.
uint64_t findLowestOffset(ArrayRef<VirtualCallTarget> Targets, bool IsAfter,
uint64_t Size);
// Set the stored value in each of Targets to VirtualCallTarget::RetVal at the
// given allocation offset before the vtable address. Stores the computed
// byte/bit offset to OffsetByte/OffsetBit.
void setBeforeReturnValues(MutableArrayRef<VirtualCallTarget> Targets,
uint64_t AllocBefore, unsigned BitWidth,
int64_t &OffsetByte, uint64_t &OffsetBit);
// Set the stored value in each of Targets to VirtualCallTarget::RetVal at the
// given allocation offset after the vtable address. Stores the computed
// byte/bit offset to OffsetByte/OffsetBit.
void setAfterReturnValues(MutableArrayRef<VirtualCallTarget> Targets,
uint64_t AllocAfter, unsigned BitWidth,
int64_t &OffsetByte, uint64_t &OffsetBit);
}
}
#endif

View File

@ -27,6 +27,7 @@ add_llvm_library(LLVMipo
SampleProfile.cpp
StripDeadPrototypes.cpp
StripSymbols.cpp
WholeProgramDevirt.cpp
ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/Transforms

View File

@ -53,6 +53,7 @@ void llvm::initializeIPO(PassRegistry &Registry) {
initializeEliminateAvailableExternallyPass(Registry);
initializeSampleProfileLoaderPass(Registry);
initializeFunctionImportPassPass(Registry);
initializeWholeProgramDevirtPass(Registry);
}
void LLVMInitializeIPO(LLVMPassRegistryRef R) {

View File

@ -651,6 +651,16 @@ void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
PM.add(createJumpThreadingPass());
}
void PassManagerBuilder::addEarlyLTOOptimizationPasses(
legacy::PassManagerBase &PM) {
// Remove unused virtual tables to improve the quality of code generated by
// whole-program devirtualization and bitset lowering.
PM.add(createGlobalDCEPass());
// Apply whole-program devirtualization and virtual constant propagation.
PM.add(createWholeProgramDevirtPass());
}
void PassManagerBuilder::addLateLTOOptimizationPasses(
legacy::PassManagerBase &PM) {
// Delete basic blocks, which optimization passes may have killed.
@ -675,6 +685,9 @@ void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
if (VerifyInput)
PM.add(createVerifierPass());
if (OptLevel != 0)
addEarlyLTOOptimizationPasses(PM);
if (OptLevel > 1)
addLTOOptimizationPasses(PM);

View File

@ -0,0 +1,724 @@
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements whole program optimization of virtual calls in cases
// where we know (via bitset information) that the list of callee is fixed. This
// includes the following:
// - Single implementation devirtualization: if a virtual call has a single
// possible callee, replace all calls with a direct call to that callee.
// - Virtual constant propagation: if the virtual function's return type is an
// integer <=64 bits and all possible callees are readnone, for each class and
// each list of constant arguments: evaluate the function, store the return
// value alongside the virtual table, and rewrite each virtual call as a load
// from the virtual table.
// - Uniform return value optimization: if the conditions for virtual constant
// propagation hold and each function returns the same constant value, replace
// each virtual call with that constant.
// - Unique return value optimization for i1 return values: if the conditions
// for virtual constant propagation hold and a single vtable's function
// returns 0, or a single vtable's function returns 1, replace each virtual
// call with a comparison of the vptr against that vtable's address.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include "llvm/Transforms/Utils/Local.h"
#include <set>
using namespace llvm;
using namespace wholeprogramdevirt;
#define DEBUG_TYPE "wholeprogramdevirt"
// Find the minimum offset that we may store a value of size Size bits at. If
// IsAfter is set, look for an offset before the object, otherwise look for an
// offset after the object.
uint64_t
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
bool IsAfter, uint64_t Size) {
// Find a minimum offset taking into account only vtable sizes.
uint64_t MinByte = 0;
for (const VirtualCallTarget &Target : Targets) {
if (IsAfter)
MinByte = std::max(MinByte, Target.minAfterBytes());
else
MinByte = std::max(MinByte, Target.minBeforeBytes());
}
// Build a vector of arrays of bytes covering, for each target, a slice of the
// used region (see AccumBitVector::BytesUsed in
// llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
// this aligns the used regions to start at MinByte.
//
// In this example, A, B and C are vtables, # is a byte already allocated for
// a virtual function pointer, AAAA... (etc.) are the used regions for the
// vtables and Offset(X) is the value computed for the Offset variable below
// for X.
//
// Offset(A)
// | |
// |MinByte
// A: ################AAAAAAAA|AAAAAAAA
// B: ########BBBBBBBBBBBBBBBB|BBBB
// C: ########################|CCCCCCCCCCCCCCCC
// | Offset(B) |
//
// This code produces the slices of A, B and C that appear after the divider
// at MinByte.
std::vector<ArrayRef<uint8_t>> Used;
for (const VirtualCallTarget &Target : Targets) {
ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
: Target.BS->Bits->Before.BytesUsed;
uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
: MinByte - Target.minBeforeBytes();
// Disregard used regions that are smaller than Offset. These are
// effectively all-free regions that do not need to be checked.
if (VTUsed.size() > Offset)
Used.push_back(VTUsed.slice(Offset));
}
if (Size == 1) {
// Find a free bit in each member of Used.
for (unsigned I = 0;; ++I) {
uint8_t BitsUsed = 0;
for (auto &&B : Used)
if (I < B.size())
BitsUsed |= B[I];
if (BitsUsed != 0xff)
return (MinByte + I) * 8 +
countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
}
} else {
// Find a free (Size/8) byte region in each member of Used.
// FIXME: see if alignment helps.
for (unsigned I = 0;; ++I) {
for (auto &&B : Used) {
unsigned Byte = 0;
while ((I + Byte) < B.size() && Byte < (Size / 8)) {
if (B[I + Byte])
goto NextI;
++Byte;
}
}
return (MinByte + I) * 8;
NextI:;
}
}
}
void wholeprogramdevirt::setBeforeReturnValues(
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
if (BitWidth == 1)
OffsetByte = -(AllocBefore / 8 + 1);
else
OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
OffsetBit = AllocBefore % 8;
for (VirtualCallTarget &Target : Targets) {
if (BitWidth == 1)
Target.setBeforeBit(AllocBefore);
else
Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
}
}
void wholeprogramdevirt::setAfterReturnValues(
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
if (BitWidth == 1)
OffsetByte = AllocAfter / 8;
else
OffsetByte = (AllocAfter + 7) / 8;
OffsetBit = AllocAfter % 8;
for (VirtualCallTarget &Target : Targets) {
if (BitWidth == 1)
Target.setAfterBit(AllocAfter);
else
Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
}
}
VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
: Fn(Fn), BS(BS),
IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
namespace {
// A slot in a set of virtual tables. The BitSetID identifies the set of virtual
// tables, and the ByteOffset is the offset in bytes from the address point to
// the virtual function pointer.
struct VTableSlot {
Metadata *BitSetID;
uint64_t ByteOffset;
};
}
template <> struct DenseMapInfo<VTableSlot> {
static VTableSlot getEmptyKey() {
return {DenseMapInfo<Metadata *>::getEmptyKey(),
DenseMapInfo<uint64_t>::getEmptyKey()};
}
static VTableSlot getTombstoneKey() {
return {DenseMapInfo<Metadata *>::getTombstoneKey(),
DenseMapInfo<uint64_t>::getTombstoneKey()};
}
static unsigned getHashValue(const VTableSlot &I) {
return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
}
static bool isEqual(const VTableSlot &LHS,
const VTableSlot &RHS) {
return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
}
};
namespace {
// A virtual call site. VTable is the loaded virtual table pointer, and CS is
// the indirect virtual call.
struct VirtualCallSite {
Value *VTable;
CallSite CS;
void replaceAndErase(Value *New) {
CS->replaceAllUsesWith(New);
if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
BranchInst::Create(II->getNormalDest(), CS.getInstruction());
II->getUnwindDest()->removePredecessor(II->getParent());
}
CS->eraseFromParent();
}
};
struct DevirtModule {
Module &M;
IntegerType *Int8Ty;
PointerType *Int8PtrTy;
IntegerType *Int32Ty;
MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
DevirtModule(Module &M)
: M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
Int32Ty(Type::getInt32Ty(M.getContext())) {}
void findLoadCallsAtConstantOffset(Metadata *BitSet, Value *Ptr,
uint64_t Offset, Value *VTable);
void findCallsAtConstantOffset(Metadata *BitSet, Value *Ptr, uint64_t Offset,
Value *VTable);
void buildBitSets(std::vector<VTableBits> &Bits,
DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
const std::set<BitSetInfo> &BitSetInfos,
uint64_t ByteOffset);
bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites);
bool tryEvaluateFunctionsWithArgs(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<ConstantInt *> Args);
bool tryUniformRetValOpt(IntegerType *RetType,
ArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites);
bool tryUniqueRetValOpt(unsigned BitWidth,
ArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites);
bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<VirtualCallSite> CallSites);
void rebuildGlobal(VTableBits &B);
bool run();
};
struct WholeProgramDevirt : public ModulePass {
static char ID;
WholeProgramDevirt() : ModulePass(ID) {
initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) { return DevirtModule(M).run(); }
};
} // anonymous namespace
INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
"Whole program devirtualization", false, false)
char WholeProgramDevirt::ID = 0;
ModulePass *llvm::createWholeProgramDevirtPass() {
return new WholeProgramDevirt;
}
// Search for virtual calls that call FPtr and add them to CallSlots.
void DevirtModule::findCallsAtConstantOffset(Metadata *BitSet, Value *FPtr,
uint64_t Offset, Value *VTable) {
for (const Use &U : FPtr->uses()) {
Value *User = U.getUser();
if (isa<BitCastInst>(User)) {
findCallsAtConstantOffset(BitSet, User, Offset, VTable);
} else if (auto CI = dyn_cast<CallInst>(User)) {
CallSlots[{BitSet, Offset}].push_back({VTable, CI});
} else if (auto II = dyn_cast<InvokeInst>(User)) {
CallSlots[{BitSet, Offset}].push_back({VTable, II});
}
}
}
// Search for virtual calls that load from VPtr and add them to CallSlots.
void DevirtModule::findLoadCallsAtConstantOffset(Metadata *BitSet, Value *VPtr,
uint64_t Offset,
Value *VTable) {
for (const Use &U : VPtr->uses()) {
Value *User = U.getUser();
if (isa<BitCastInst>(User)) {
findLoadCallsAtConstantOffset(BitSet, User, Offset, VTable);
} else if (isa<LoadInst>(User)) {
findCallsAtConstantOffset(BitSet, User, Offset, VTable);
} else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
// Take into account the GEP offset.
if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
uint64_t GEPOffset = M.getDataLayout().getIndexedOffsetInType(
GEP->getSourceElementType(), Indices);
findLoadCallsAtConstantOffset(BitSet, User, Offset + GEPOffset, VTable);
}
}
}
}
void DevirtModule::buildBitSets(
std::vector<VTableBits> &Bits,
DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
if (!BitSetNM)
return;
DenseMap<GlobalVariable *, VTableBits *> GVToBits;
Bits.reserve(BitSetNM->getNumOperands());
for (auto Op : BitSetNM->operands()) {
auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
if (!OpConstMD)
continue;
auto BitSetID = Op->getOperand(0).get();
Constant *OpConst = OpConstMD->getValue();
if (auto GA = dyn_cast<GlobalAlias>(OpConst))
OpConst = GA->getAliasee();
auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
if (!OpGlobal)
continue;
uint64_t Offset =
cast<ConstantInt>(
cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
->getZExtValue();
VTableBits *&BitsPtr = GVToBits[OpGlobal];
if (!BitsPtr) {
Bits.emplace_back();
Bits.back().GV = OpGlobal;
Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
OpGlobal->getInitializer()->getType());
BitsPtr = &Bits.back();
}
BitSets[BitSetID].insert({BitsPtr, Offset});
}
}
bool DevirtModule::tryFindVirtualCallTargets(
std::vector<VirtualCallTarget> &TargetsForSlot,
const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
for (const BitSetInfo &BS : BitSetInfos) {
if (!BS.Bits->GV->isConstant())
return false;
auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
if (!Init)
return false;
ArrayType *VTableTy = Init->getType();
uint64_t ElemSize =
M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
if (GlobalSlotOffset % ElemSize != 0)
return false;
unsigned Op = GlobalSlotOffset / ElemSize;
if (Op >= Init->getNumOperands())
return false;
auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
if (!Fn)
return false;
// We can disregard __cxa_pure_virtual as a possible call target, as
// calls to pure virtuals are UB.
if (Fn->getName() == "__cxa_pure_virtual")
continue;
TargetsForSlot.push_back({Fn, &BS});
}
// Give up if we couldn't find any targets.
return !TargetsForSlot.empty();
}
bool DevirtModule::trySingleImplDevirt(
ArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites) {
// See if the program contains a single implementation of this virtual
// function.
Function *TheFn = TargetsForSlot[0].Fn;
for (auto &&Target : TargetsForSlot)
if (TheFn != Target.Fn)
return false;
// If so, update each call site to call that implementation directly.
for (auto &&VCallSite : CallSites) {
VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
TheFn, VCallSite.CS.getCalledValue()->getType()));
}
return true;
}
bool DevirtModule::tryEvaluateFunctionsWithArgs(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<ConstantInt *> Args) {
// Evaluate each function and store the result in each target's RetVal
// field.
for (VirtualCallTarget &Target : TargetsForSlot) {
if (Target.Fn->arg_size() != Args.size() + 1)
return false;
for (unsigned I = 0; I != Args.size(); ++I)
if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
Args[I]->getType())
return false;
Evaluator Eval(M.getDataLayout(), nullptr);
SmallVector<Constant *, 2> EvalArgs;
EvalArgs.push_back(
Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
Constant *RetVal;
if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
!isa<ConstantInt>(RetVal))
return false;
Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
}
return true;
}
bool DevirtModule::tryUniformRetValOpt(
IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites) {
// Uniform return value optimization. If all functions return the same
// constant, replace all calls with that constant.
uint64_t TheRetVal = TargetsForSlot[0].RetVal;
for (const VirtualCallTarget &Target : TargetsForSlot)
if (Target.RetVal != TheRetVal)
return false;
auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
for (auto Call : CallSites)
Call.replaceAndErase(TheRetValConst);
return true;
}
bool DevirtModule::tryUniqueRetValOpt(
unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites) {
// IsOne controls whether we look for a 0 or a 1.
auto tryUniqueRetValOptFor = [&](bool IsOne) {
const BitSetInfo *UniqueBitSet = 0;
for (const VirtualCallTarget &Target : TargetsForSlot) {
if (Target.RetVal == IsOne ? 1 : 0) {
if (UniqueBitSet)
return false;
UniqueBitSet = Target.BS;
}
}
// We should have found a unique bit set or bailed out by now. We already
// checked for a uniform return value in tryUniformRetValOpt.
assert(UniqueBitSet);
// Replace each call with the comparison.
for (auto &&Call : CallSites) {
IRBuilder<> B(Call.CS.getInstruction());
Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
Call.VTable, OneAddr);
Call.replaceAndErase(Cmp);
}
return true;
};
if (BitWidth == 1) {
if (tryUniqueRetValOptFor(true))
return true;
if (tryUniqueRetValOptFor(false))
return true;
}
return false;
}
bool DevirtModule::tryVirtualConstProp(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<VirtualCallSite> CallSites) {
// This only works if the function returns an integer.
auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
if (!RetType)
return false;
unsigned BitWidth = RetType->getBitWidth();
if (BitWidth > 64)
return false;
// Make sure that each function does not access memory, takes at least one
// argument, does not use its first argument (which we assume is 'this'),
// and has the same return type.
for (VirtualCallTarget &Target : TargetsForSlot) {
if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
!Target.Fn->arg_begin()->use_empty() ||
Target.Fn->getReturnType() != RetType)
return false;
}
// Group call sites by the list of constant arguments they pass.
// The comparator ensures deterministic ordering.
struct ByAPIntValue {
bool operator()(const std::vector<ConstantInt *> &A,
const std::vector<ConstantInt *> &B) const {
return std::lexicographical_compare(
A.begin(), A.end(), B.begin(), B.end(),
[](ConstantInt *AI, ConstantInt *BI) {
return AI->getValue().ult(BI->getValue());
});
}
};
std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
ByAPIntValue>
VCallSitesByConstantArg;
for (auto &&VCallSite : CallSites) {
std::vector<ConstantInt *> Args;
if (VCallSite.CS.getType() != RetType)
continue;
for (auto &&Arg :
make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
if (!isa<ConstantInt>(Arg))
break;
Args.push_back(cast<ConstantInt>(&Arg));
}
if (Args.size() + 1 != VCallSite.CS.arg_size())
continue;
VCallSitesByConstantArg[Args].push_back(VCallSite);
}
for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
continue;
if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
continue;
if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
continue;
// Find an allocation offset in bits in all vtables in the bitset.
uint64_t AllocBefore =
findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
uint64_t AllocAfter =
findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
// Calculate the total amount of padding needed to store a value at both
// ends of the object.
uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
for (auto &&Target : TargetsForSlot) {
TotalPaddingBefore += std::max<int64_t>(
(AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
TotalPaddingAfter += std::max<int64_t>(
(AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
}
// If the amount of padding is too large, give up.
// FIXME: do something smarter here.
if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
continue;
// Calculate the offset to the value as a (possibly negative) byte offset
// and (if applicable) a bit offset, and store the values in the targets.
int64_t OffsetByte;
uint64_t OffsetBit;
if (TotalPaddingBefore <= TotalPaddingAfter)
setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
OffsetBit);
else
setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
OffsetBit);
// Rewrite each call to a load from OffsetByte/OffsetBit.
for (auto Call : CSByConstantArg.second) {
IRBuilder<> B(Call.CS.getInstruction());
Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
if (BitWidth == 1) {
Value *Bits = B.CreateLoad(Addr);
Value *Bit = ConstantInt::get(Int8Ty, 1 << OffsetBit);
Value *BitsAndBit = B.CreateAnd(Bits, Bit);
auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
Call.replaceAndErase(IsBitSet);
} else {
Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
Value *Val = B.CreateLoad(RetType, ValAddr);
Call.replaceAndErase(Val);
}
}
}
return true;
}
void DevirtModule::rebuildGlobal(VTableBits &B) {
if (B.Before.Bytes.empty() && B.After.Bytes.empty())
return;
// Align each byte array to pointer width.
unsigned PointerSize = M.getDataLayout().getPointerSize();
B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
// Before was stored in reverse order; flip it now.
for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
// Build an anonymous global containing the before bytes, followed by the
// original initializer, followed by the after bytes.
auto NewInit = ConstantStruct::getAnon(
{ConstantDataArray::get(M.getContext(), B.Before.Bytes),
B.GV->getInitializer(),
ConstantDataArray::get(M.getContext(), B.After.Bytes)});
auto NewGV =
new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
NewGV->setSection(B.GV->getSection());
NewGV->setComdat(B.GV->getComdat());
// Build an alias named after the original global, pointing at the second
// element (the original initializer).
auto Alias = GlobalAlias::create(
B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
ConstantExpr::getGetElementPtr(
NewInit->getType(), NewGV,
ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, 1)}),
&M);
Alias->setVisibility(B.GV->getVisibility());
Alias->takeName(B.GV);
B.GV->replaceAllUsesWith(Alias);
B.GV->eraseFromParent();
}
bool DevirtModule::run() {
Function *BitSetTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
if (!BitSetTestFunc || BitSetTestFunc->use_empty())
return false;
Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
if (!AssumeFunc || AssumeFunc->use_empty())
return false;
// Find all virtual calls via a virtual table pointer %p under an assumption
// of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
// points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
// (effectively the identity of the virtual function) and store to CallSlots.
DenseSet<Value *> SeenPtrs;
for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
I != E;) {
auto CI = dyn_cast<CallInst>(I->getUser());
++I;
if (!CI)
continue;
// Find llvm.assume intrinsics for this llvm.bitset.test call.
SmallVector<CallInst *, 1> Assumes;
for (const Use &CIU : CI->uses()) {
auto AssumeCI = dyn_cast<CallInst>(CIU.getUser());
if (AssumeCI && AssumeCI->getCalledValue() == AssumeFunc)
Assumes.push_back(AssumeCI);
}
// If we found any, search for virtual calls based on %p and add them to
// CallSlots.
if (!Assumes.empty()) {
Metadata *BitSet =
cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
if (SeenPtrs.insert(Ptr).second)
findLoadCallsAtConstantOffset(BitSet, Ptr, 0, CI->getArgOperand(0));
}
// We no longer need the assumes or the bitset test.
for (auto Assume : Assumes)
Assume->eraseFromParent();
// We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
// may use the vtable argument later.
if (CI->use_empty())
CI->eraseFromParent();
}
// Rebuild llvm.bitsets metadata into a map for easy lookup.
std::vector<VTableBits> Bits;
DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
buildBitSets(Bits, BitSets);
if (BitSets.empty())
return true;
// For each (bitset, offset) pair:
bool DidVirtualConstProp = false;
for (auto &S : CallSlots) {
// Search each of the vtables in the bitset for the virtual function
// implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
std::vector<VirtualCallTarget> TargetsForSlot;
if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
S.first.ByteOffset))
continue;
if (trySingleImplDevirt(TargetsForSlot, S.second))
continue;
DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
}
// Rebuild each global we touched as part of virtual constant propagation to
// include the before and after bytes.
if (DidVirtualConstProp)
for (VTableBits &B : Bits)
rebuildGlobal(B);
return true;
}

View File

@ -0,0 +1,64 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt = global [2 x i8*] [i8* zeroinitializer, i8* bitcast (void (i8*)* @vf to i8*)]
define void @vf(i8* %this) {
ret void
}
; CHECK: define void @unaligned
define void @unaligned(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr i8, i8* %vtablei8, i32 1
%fptrptr_casted = bitcast i8* %fptrptr to i8**
%fptr = load i8*, i8** %fptrptr_casted
%fptr_casted = bitcast i8* %fptr to void (i8*)*
; CHECK: call void %
call void %fptr_casted(i8* %obj)
ret void
}
; CHECK: define void @outofbounds
define void @outofbounds(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr i8, i8* %vtablei8, i32 16
%fptrptr_casted = bitcast i8* %fptrptr to i8**
%fptr = load i8*, i8** %fptrptr_casted
%fptr_casted = bitcast i8* %fptr to void (i8*)*
; CHECK: call void %
call void %fptr_casted(i8* %obj)
ret void
}
; CHECK: define void @nonfunction
define void @nonfunction(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr i8, i8* %vtablei8, i32 0
%fptrptr_casted = bitcast i8* %fptrptr to i8**
%fptr = load i8*, i8** %fptrptr_casted
%fptr_casted = bitcast i8* %fptr to void (i8*)*
; CHECK: call void %
call void %fptr_casted(i8* %obj)
ret void
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [2 x i8*]* @vt, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,79 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
; CHECK: private constant { [8 x i8], [1 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\00\00\00\00\01", [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf1 to i8*)], [0 x i8] zeroinitializer }
; CHECK: private constant { [8 x i8], [1 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\00\00\00\00\02", [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf2 to i8*)], [0 x i8] zeroinitializer }
; CHECK: private constant { [8 x i8], [1 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\00\00\00\00\01", [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf4 to i8*)], [0 x i8] zeroinitializer }
; CHECK: private constant { [8 x i8], [1 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\00\00\00\00\02", [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf8 to i8*)], [0 x i8] zeroinitializer }
@vt1 = constant [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf1 to i8*)]
@vt2 = constant [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf2 to i8*)]
@vt4 = constant [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf4 to i8*)]
@vt8 = constant [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf8 to i8*)]
define i1 @vf1(i8* %this, i32 %arg) readnone {
%and = and i32 %arg, 1
%cmp = icmp ne i32 %and, 0
ret i1 %cmp
}
define i1 @vf2(i8* %this, i32 %arg) readnone {
%and = and i32 %arg, 2
%cmp = icmp ne i32 %and, 0
ret i1 %cmp
}
define i1 @vf4(i8* %this, i32 %arg) readnone {
%and = and i32 %arg, 4
%cmp = icmp ne i32 %and, 0
ret i1 %cmp
}
define i1 @vf8(i8* %this, i32 %arg) readnone {
%and = and i32 %arg, 8
%cmp = icmp ne i32 %and, 0
ret i1 %cmp
}
; CHECK: define i1 @call1
define i1 @call1(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i1 (i8*, i32)*
; CHECK: getelementptr {{.*}} -1
; CHECK: and {{.*}}, 1
%result = call i1 %fptr_casted(i8* %obj, i32 5)
ret i1 %result
}
; CHECK: define i1 @call2
define i1 @call2(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i1 (i8*, i32)*
; CHECK: getelementptr {{.*}} -1
; CHECK: and {{.*}}, 2
%result = call i1 %fptr_casted(i8* %obj, i32 10)
ret i1 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!2 = !{!"bitset", [1 x i8*]* @vt4, i32 0}
!3 = !{!"bitset", [1 x i8*]* @vt8, i32 0}
!llvm.bitsets = !{!0, !1, !2, !3}

View File

@ -0,0 +1,33 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = constant [1 x i8*] [i8* bitcast (void (i8*)* @vf to i8*)]
@vt2 = constant [1 x i8*] [i8* bitcast (void (i8*)* @vf to i8*)]
define void @vf(i8* %this) {
ret void
}
; CHECK: define void @call
define void @call(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to void (i8*)*
; CHECK: call void @vf(
call void %fptr_casted(i8* %obj)
ret void
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0, !1}

View File

@ -0,0 +1,31 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt = constant i8* bitcast (void (i8*)* @vf to i8*)
define void @vf(i8* %this) {
ret void
}
; CHECK: define void @call
define void @call(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to void (i8*)*
; CHECK: call void %
call void %fptr_casted(i8* %obj)
ret void
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", i8** @vt, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,31 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt = global [1 x i8*] [i8* bitcast (void (i8*)* @vf to i8*)]
define void @vf(i8* %this) {
ret void
}
; CHECK: define void @call
define void @call(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to void (i8*)*
; CHECK: call void %
call void %fptr_casted(i8* %obj)
ret void
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,45 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = constant [1 x i8*] [i8* bitcast (i32 (i8*)* @vf1 to i8*)]
@vt2 = constant [1 x i8*] [i8* bitcast (i32 (i8*)* @vf2 to i8*)]
define i32 @vf1(i8* %this) readnone {
ret i32 123
}
define i32 @vf2(i8* %this) readnone {
ret i32 123
}
; CHECK: define i32 @call
define i32 @call(i8* %obj) personality i8* undef {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
; CHECK: br label %[[RET:[0-9A-Za-z]*]]
%result = invoke i32 %fptr_casted(i8* %obj) to label %ret unwind label %unwind
unwind:
%x = landingpad i32 cleanup
unreachable
ret:
; CHECK: [[RET]]:
; CHECK-NEXT: ret i32 123
ret i32 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0, !1}

View File

@ -0,0 +1,38 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = constant [1 x i8*] [i8* bitcast (i32 (i8*)* @vf1 to i8*)]
@vt2 = constant [1 x i8*] [i8* bitcast (i32 (i8*)* @vf2 to i8*)]
define i32 @vf1(i8* %this) readnone {
ret i32 123
}
define i32 @vf2(i8* %this) readnone {
ret i32 123
}
; CHECK: define i32 @call
define i32 @call(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
%result = call i32 %fptr_casted(i8* %obj)
; CHECK-NOT: call
; CHECK: ret i32 123
ret i32 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0, !1}

View File

@ -0,0 +1,61 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = constant [1 x i8*] [i8* bitcast (i1 (i8*)* @vf0 to i8*)]
@vt2 = constant [1 x i8*] [i8* bitcast (i1 (i8*)* @vf0 to i8*)]
@vt3 = constant [1 x i8*] [i8* bitcast (i1 (i8*)* @vf1 to i8*)]
@vt4 = constant [1 x i8*] [i8* bitcast (i1 (i8*)* @vf1 to i8*)]
define i1 @vf0(i8* %this) readnone {
ret i1 0
}
define i1 @vf1(i8* %this) readnone {
ret i1 1
}
; CHECK: define i1 @call1
define i1 @call1(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
; CHECK: [[VT1:%[^ ]*]] = bitcast [1 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset1")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
; CHECK: [[RES1:%[^ ]*]] = icmp eq i8* [[VT1]], bitcast ([1 x i8*]* @vt3 to i8*)
%result = call i1 %fptr_casted(i8* %obj)
; CHECK: ret i1 [[RES1]]
ret i1 %result
}
; CHECK: define i1 @call2
define i1 @call2(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
; CHECK: [[VT2:%[^ ]*]] = bitcast [1 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset2")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
; CHECK: [[RES1:%[^ ]*]] = icmp ne i8* [[VT1]], bitcast ([1 x i8*]* @vt2 to i8*)
%result = call i1 %fptr_casted(i8* %obj)
ret i1 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset1", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset1", [1 x i8*]* @vt2, i32 0}
!2 = !{!"bitset1", [1 x i8*]* @vt3, i32 0}
!3 = !{!"bitset2", [1 x i8*]* @vt2, i32 0}
!4 = !{!"bitset2", [1 x i8*]* @vt3, i32 0}
!5 = !{!"bitset2", [1 x i8*]* @vt4, i32 0}
!llvm.bitsets = !{!0, !1, !2, !3, !4, !5}

View File

@ -0,0 +1,37 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf1 to i8*)]
@vt2 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf2 to i8*)]
define i32 @vf1(i8* %this, i32 %arg) {
ret i32 %arg
}
define i32 @vf2(i8* %this, i32 %arg) {
ret i32 %arg
}
; CHECK: define i32 @call
define i32 @call(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*, i32)*
; CHECK: call i32 %
%result = call i32 %fptr_casted(i8* %obj, i32 1)
ret i32 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,37 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = global [1 x i8*] [i8* bitcast (i32 ()* @vf1 to i8*)]
@vt2 = global [1 x i8*] [i8* bitcast (i32 ()* @vf2 to i8*)]
define i32 @vf1() readnone {
ret i32 1
}
define i32 @vf2() readnone {
ret i32 2
}
; CHECK: define i32 @call
define i32 @call(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 ()*
; CHECK: call i32 %
%result = call i32 %fptr_casted()
ret i32 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,37 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf1 to i8*)]
@vt2 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf2 to i8*)]
define i32 @vf1(i8* %this, i32 %arg) readnone {
ret i32 %arg
}
define i32 @vf2(i8* %this, i32 %arg) readnone {
ret i32 %arg
}
; CHECK: define void @call
define void @call(i8* %obj, i32 %arg) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*, i32)*
; CHECK: call i32 %
%result = call i32 %fptr_casted(i8* %obj, i32 %arg)
ret void
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,37 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = global [1 x i8*] [i8* bitcast (i128 (i8*, i128)* @vf1 to i8*)]
@vt2 = global [1 x i8*] [i8* bitcast (i128 (i8*, i128)* @vf2 to i8*)]
define i128 @vf1(i8* %this, i128 %arg) readnone {
ret i128 %arg
}
define i128 @vf2(i8* %this, i128 %arg) readnone {
ret i128 %arg
}
; CHECK: define i128 @call
define i128 @call(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i128 (i8*, i128)*
; CHECK: call i128 %
%result = call i128 %fptr_casted(i8* %obj, i128 1)
ret i128 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,67 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf1 to i8*)]
@vt2 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf2 to i8*)]
define i32 @vf1(i8* %this, i32 %arg) readnone {
ret i32 %arg
}
define i32 @vf2(i8* %this, i32 %arg) readnone {
ret i32 %arg
}
; CHECK: define i32 @bad_arg_type
define i32 @bad_arg_type(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*, i64)*
; CHECK: call i32 %
%result = call i32 %fptr_casted(i8* %obj, i64 1)
ret i32 %result
}
; CHECK: define i32 @bad_arg_count
define i32 @bad_arg_count(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*, i64, i64)*
; CHECK: call i32 %
%result = call i32 %fptr_casted(i8* %obj, i64 1, i64 2)
ret i32 %result
}
; CHECK: define i64 @bad_return_type
define i64 @bad_return_type(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i64 (i8*, i32)*
; CHECK: call i64 %
%result = call i64 %fptr_casted(i8* %obj, i32 1)
ret i64 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,39 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
@vt1 = global [1 x i8*] [i8* bitcast (i32 (i8*)* @vf1 to i8*)]
@vt2 = global [1 x i8*] [i8* bitcast (i32 (i8*)* @vf2 to i8*)]
define i32 @vf1(i8* %this) readnone {
%this_int = ptrtoint i8* %this to i32
ret i32 %this_int
}
define i32 @vf2(i8* %this) readnone {
%this_int = ptrtoint i8* %this to i32
ret i32 %this_int
}
; CHECK: define i32 @call
define i32 @call(i8* %obj) {
%vtableptr = bitcast i8* %obj to [1 x i8*]**
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
; CHECK: call i32 %
%result = call i32 %fptr_casted(i8* %obj)
ret i32 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
!llvm.bitsets = !{!0}

View File

@ -0,0 +1,137 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
; CHECK: [[VT1DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\01\01\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf1i32 to i8*)], [0 x i8] zeroinitializer }, section "vt1sec"
@vt1 = constant [3 x i8*] [
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
i8* bitcast (i32 (i8*)* @vf1i32 to i8*)
], section "vt1sec"
; CHECK: [[VT2DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\02\02\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf2i32 to i8*)], [0 x i8] zeroinitializer }{{$}}
@vt2 = constant [3 x i8*] [
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
i8* bitcast (i32 (i8*)* @vf2i32 to i8*)
]
; CHECK: [[VT3DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\01\03\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf3i32 to i8*)], [0 x i8] zeroinitializer }{{$}}
@vt3 = constant [3 x i8*] [
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
i8* bitcast (i32 (i8*)* @vf3i32 to i8*)
]
; CHECK: [[VT4DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\02\04\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf4i32 to i8*)], [0 x i8] zeroinitializer }{{$}}
@vt4 = constant [3 x i8*] [
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
i8* bitcast (i32 (i8*)* @vf4i32 to i8*)
]
@vt5 = constant [3 x i8*] [
i8* bitcast (void ()* @__cxa_pure_virtual to i8*),
i8* bitcast (void ()* @__cxa_pure_virtual to i8*),
i8* bitcast (void ()* @__cxa_pure_virtual to i8*)
]
; CHECK: @vt1 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT1DATA]], i32 0, i32 1)
; CHECK: @vt2 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT2DATA]], i32 0, i32 1)
; CHECK: @vt3 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT3DATA]], i32 0, i32 1)
; CHECK: @vt4 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT4DATA]], i32 0, i32 1)
define i1 @vf0i1(i8* %this) readnone {
ret i1 0
}
define i1 @vf1i1(i8* %this) readnone {
ret i1 1
}
define i32 @vf1i32(i8* %this) readnone {
ret i32 1
}
define i32 @vf2i32(i8* %this) readnone {
ret i32 2
}
define i32 @vf3i32(i8* %this) readnone {
ret i32 3
}
define i32 @vf4i32(i8* %this) readnone {
ret i32 4
}
; CHECK: define i1 @call1(
define i1 @call1(i8* %obj) {
%vtableptr = bitcast i8* %obj to [3 x i8*]**
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
; CHECK: [[VT1:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
; CHECK: [[VTGEP1:%[^ ]*]] = getelementptr i8, i8* [[VT1]], i64 -5
; CHECK: [[VTLOAD1:%[^ ]*]] = load i8, i8* [[VTGEP1]]
; CHECK: [[VTAND1:%[^ ]*]] = and i8 [[VTLOAD1]], 2
; CHECK: [[VTCMP1:%[^ ]*]] = icmp ne i8 [[VTAND1]], 0
%result = call i1 %fptr_casted(i8* %obj)
; CHECK: ret i1 [[VTCMP1]]
ret i1 %result
}
; CHECK: define i1 @call2(
define i1 @call2(i8* %obj) {
%vtableptr = bitcast i8* %obj to [3 x i8*]**
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
; CHECK: [[VT2:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 1
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
; CHECK: [[VTGEP2:%[^ ]*]] = getelementptr i8, i8* [[VT2]], i64 -5
; CHECK: [[VTLOAD2:%[^ ]*]] = load i8, i8* [[VTGEP2]]
; CHECK: [[VTAND2:%[^ ]*]] = and i8 [[VTLOAD2]], 1
; CHECK: [[VTCMP2:%[^ ]*]] = icmp ne i8 [[VTAND2]], 0
%result = call i1 %fptr_casted(i8* %obj)
; CHECK: ret i1 [[VTCMP2]]
ret i1 %result
}
; CHECK: define i32 @call3(
define i32 @call3(i8* %obj) {
%vtableptr = bitcast i8* %obj to [3 x i8*]**
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
; CHECK: [[VT3:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 2
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
; CHECK: [[VTGEP3:%[^ ]*]] = getelementptr i8, i8* [[VT3]], i64 -4
; CHECK: [[VTBC3:%[^ ]*]] = bitcast i8* [[VTGEP3]] to i32*
; CHECK: [[VTLOAD3:%[^ ]*]] = load i32, i32* [[VTBC3]]
%result = call i32 %fptr_casted(i8* %obj)
; CHECK: ret i32 [[VTLOAD3]]
ret i32 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
declare void @__cxa_pure_virtual()
!0 = !{!"bitset", [3 x i8*]* @vt1, i32 0}
!1 = !{!"bitset", [3 x i8*]* @vt2, i32 0}
!2 = !{!"bitset", [3 x i8*]* @vt3, i32 0}
!3 = !{!"bitset", [3 x i8*]* @vt4, i32 0}
!4 = !{!"bitset", [3 x i8*]* @vt5, i32 0}
!llvm.bitsets = !{!0, !1, !2, !3, !4}

View File

@ -0,0 +1,131 @@
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
; CHECK: [[VT1DATA:@[^ ]*]] = private constant { [0 x i8], [4 x i8*], [8 x i8] } { [0 x i8] zeroinitializer, [4 x i8*] [i8* null, i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf1i32 to i8*)], [8 x i8] c"\01\00\00\00\01\00\00\00" }
@vt1 = constant [4 x i8*] [
i8* null,
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
i8* bitcast (i32 (i8*)* @vf1i32 to i8*)
]
; CHECK: [[VT2DATA:@[^ ]*]] = private constant { [0 x i8], [3 x i8*], [8 x i8] } { [0 x i8] zeroinitializer, [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf2i32 to i8*)], [8 x i8] c"\02\00\00\00\02\00\00\00" }
@vt2 = constant [3 x i8*] [
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
i8* bitcast (i32 (i8*)* @vf2i32 to i8*)
]
; CHECK: [[VT3DATA:@[^ ]*]] = private constant { [0 x i8], [4 x i8*], [8 x i8] } { [0 x i8] zeroinitializer, [4 x i8*] [i8* null, i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf3i32 to i8*)], [8 x i8] c"\03\00\00\00\01\00\00\00" }
@vt3 = constant [4 x i8*] [
i8* null,
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
i8* bitcast (i32 (i8*)* @vf3i32 to i8*)
]
; CHECK: [[VT4DATA:@[^ ]*]] = private constant { [0 x i8], [3 x i8*], [8 x i8] } { [0 x i8] zeroinitializer, [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf4i32 to i8*)], [8 x i8] c"\04\00\00\00\02\00\00\00" }
@vt4 = constant [3 x i8*] [
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
i8* bitcast (i32 (i8*)* @vf4i32 to i8*)
]
; CHECK: @vt1 = alias [4 x i8*], getelementptr inbounds ({ [0 x i8], [4 x i8*], [8 x i8] }, { [0 x i8], [4 x i8*], [8 x i8] }* [[VT1DATA]], i32 0, i32 1)
; CHECK: @vt2 = alias [3 x i8*], getelementptr inbounds ({ [0 x i8], [3 x i8*], [8 x i8] }, { [0 x i8], [3 x i8*], [8 x i8] }* [[VT2DATA]], i32 0, i32 1)
; CHECK: @vt3 = alias [4 x i8*], getelementptr inbounds ({ [0 x i8], [4 x i8*], [8 x i8] }, { [0 x i8], [4 x i8*], [8 x i8] }* [[VT3DATA]], i32 0, i32 1)
; CHECK: @vt4 = alias [3 x i8*], getelementptr inbounds ({ [0 x i8], [3 x i8*], [8 x i8] }, { [0 x i8], [3 x i8*], [8 x i8] }* [[VT4DATA]], i32 0, i32 1)
define i1 @vf0i1(i8* %this) readnone {
ret i1 0
}
define i1 @vf1i1(i8* %this) readnone {
ret i1 1
}
define i32 @vf1i32(i8* %this) readnone {
ret i32 1
}
define i32 @vf2i32(i8* %this) readnone {
ret i32 2
}
define i32 @vf3i32(i8* %this) readnone {
ret i32 3
}
define i32 @vf4i32(i8* %this) readnone {
ret i32 4
}
; CHECK: define i1 @call1(
define i1 @call1(i8* %obj) {
%vtableptr = bitcast i8* %obj to [3 x i8*]**
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
; CHECK: [[VT1:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 0
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
; CHECK: [[VTGEP1:%[^ ]*]] = getelementptr i8, i8* [[VT1]], i64 28
; CHECK: [[VTLOAD1:%[^ ]*]] = load i8, i8* [[VTGEP1]]
; CHECK: [[VTAND1:%[^ ]*]] = and i8 [[VTLOAD1]], 2
; CHECK: [[VTCMP1:%[^ ]*]] = icmp ne i8 [[VTAND1]], 0
%result = call i1 %fptr_casted(i8* %obj)
; CHECK: ret i1 [[VTCMP1]]
ret i1 %result
}
; CHECK: define i1 @call2(
define i1 @call2(i8* %obj) {
%vtableptr = bitcast i8* %obj to [3 x i8*]**
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
; CHECK: [[VT2:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 1
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
; CHECK: [[VTGEP2:%[^ ]*]] = getelementptr i8, i8* [[VT2]], i64 28
; CHECK: [[VTLOAD2:%[^ ]*]] = load i8, i8* [[VTGEP2]]
; CHECK: [[VTAND2:%[^ ]*]] = and i8 [[VTLOAD2]], 1
; CHECK: [[VTCMP2:%[^ ]*]] = icmp ne i8 [[VTAND2]], 0
%result = call i1 %fptr_casted(i8* %obj)
; CHECK: ret i1 [[VTCMP2]]
ret i1 %result
}
; CHECK: define i32 @call3(
define i32 @call3(i8* %obj) {
%vtableptr = bitcast i8* %obj to [3 x i8*]**
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
; CHECK: [[VT3:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
call void @llvm.assume(i1 %p)
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 2
%fptr = load i8*, i8** %fptrptr
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
; CHECK: [[VTGEP3:%[^ ]*]] = getelementptr i8, i8* [[VT3]], i64 24
; CHECK: [[VTBC3:%[^ ]*]] = bitcast i8* [[VTGEP3]] to i32*
; CHECK: [[VTLOAD3:%[^ ]*]] = load i32, i32* [[VTBC3]]
%result = call i32 %fptr_casted(i8* %obj)
; CHECK: ret i32 [[VTLOAD3]]
ret i32 %result
}
declare i1 @llvm.bitset.test(i8*, metadata)
declare void @llvm.assume(i1)
!0 = !{!"bitset", [4 x i8*]* @vt1, i32 8}
!1 = !{!"bitset", [3 x i8*]* @vt2, i32 0}
!2 = !{!"bitset", [4 x i8*]* @vt3, i32 8}
!3 = !{!"bitset", [3 x i8*]* @vt4, i32 0}
!llvm.bitsets = !{!0, !1, !2, !3}

View File

@ -14,7 +14,7 @@ target triple = "x86_64-unknown-linux-gnu"
; -disable-verify should disable output verification from the optimization
; pipeline.
; CHECK: Pass Arguments: {{.*}} -verify -forceattrs
; CHECK: Pass Arguments: {{.*}} -verify -
; CHECK-NOT: -verify
; VERIFY: Pass Arguments: {{.*}} -verify {{.*}} -verify

View File

@ -6,4 +6,5 @@ set(LLVM_LINK_COMPONENTS
add_llvm_unittest(IPOTests
LowerBitSets.cpp
WholeProgramDevirt.cpp
)

View File

@ -0,0 +1,164 @@
//===- WholeProgramDevirt.cpp - Unit tests for whole-program devirt -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace wholeprogramdevirt;
TEST(WholeProgramDevirt, findLowestOffset) {
VTableBits VT1;
VT1.ObjectSize = 8;
VT1.Before.BytesUsed = {1 << 0};
VT1.After.BytesUsed = {1 << 1};
VTableBits VT2;
VT2.ObjectSize = 8;
VT2.Before.BytesUsed = {1 << 1};
VT2.After.BytesUsed = {1 << 0};
BitSetInfo BS1{&VT1, 0};
BitSetInfo BS2{&VT2, 0};
VirtualCallTarget Targets[] = {
{&BS1, /*IsBigEndian=*/false},
{&BS2, /*IsBigEndian=*/false},
};
EXPECT_EQ(2ull, findLowestOffset(Targets, /*IsAfter=*/false, 1));
EXPECT_EQ(66ull, findLowestOffset(Targets, /*IsAfter=*/true, 1));
EXPECT_EQ(8ull, findLowestOffset(Targets, /*IsAfter=*/false, 8));
EXPECT_EQ(72ull, findLowestOffset(Targets, /*IsAfter=*/true, 8));
BS1.Offset = 4;
EXPECT_EQ(33ull, findLowestOffset(Targets, /*IsAfter=*/false, 1));
EXPECT_EQ(65ull, findLowestOffset(Targets, /*IsAfter=*/true, 1));
EXPECT_EQ(40ull, findLowestOffset(Targets, /*IsAfter=*/false, 8));
EXPECT_EQ(72ull, findLowestOffset(Targets, /*IsAfter=*/true, 8));
BS1.Offset = 8;
BS2.Offset = 8;
EXPECT_EQ(66ull, findLowestOffset(Targets, /*IsAfter=*/false, 1));
EXPECT_EQ(2ull, findLowestOffset(Targets, /*IsAfter=*/true, 1));
EXPECT_EQ(72ull, findLowestOffset(Targets, /*IsAfter=*/false, 8));
EXPECT_EQ(8ull, findLowestOffset(Targets, /*IsAfter=*/true, 8));
VT1.After.BytesUsed = {0xff, 0, 0, 0, 0xff};
VT2.After.BytesUsed = {0xff, 1, 0, 0, 0};
EXPECT_EQ(16ull, findLowestOffset(Targets, /*IsAfter=*/true, 16));
EXPECT_EQ(40ull, findLowestOffset(Targets, /*IsAfter=*/true, 32));
}
TEST(WholeProgramDevirt, setReturnValues) {
VTableBits VT1;
VT1.ObjectSize = 8;
VTableBits VT2;
VT2.ObjectSize = 8;
BitSetInfo BS1{&VT1, 0};
BitSetInfo BS2{&VT2, 0};
VirtualCallTarget Targets[] = {
{&BS1, /*IsBigEndian=*/false},
{&BS2, /*IsBigEndian=*/false},
};
BS1.Offset = 4;
BS2.Offset = 4;
int64_t OffsetByte;
uint64_t OffsetBit;
Targets[0].RetVal = 1;
Targets[1].RetVal = 0;
setBeforeReturnValues(Targets, 32, 1, OffsetByte, OffsetBit);
EXPECT_EQ(-5ll, OffsetByte);
EXPECT_EQ(0ull, OffsetBit);
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.Before.Bytes);
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.Before.BytesUsed);
EXPECT_EQ(std::vector<uint8_t>{0}, VT2.Before.Bytes);
EXPECT_EQ(std::vector<uint8_t>{1}, VT2.Before.BytesUsed);
Targets[0].RetVal = 0;
Targets[1].RetVal = 1;
setBeforeReturnValues(Targets, 39, 1, OffsetByte, OffsetBit);
EXPECT_EQ(-5ll, OffsetByte);
EXPECT_EQ(7ull, OffsetBit);
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.Before.Bytes);
EXPECT_EQ(std::vector<uint8_t>{0x81}, VT1.Before.BytesUsed);
EXPECT_EQ(std::vector<uint8_t>{0x80}, VT2.Before.Bytes);
EXPECT_EQ(std::vector<uint8_t>{0x81}, VT2.Before.BytesUsed);
Targets[0].RetVal = 12;
Targets[1].RetVal = 34;
setBeforeReturnValues(Targets, 40, 8, OffsetByte, OffsetBit);
EXPECT_EQ(-6ll, OffsetByte);
EXPECT_EQ(0ull, OffsetBit);
EXPECT_EQ((std::vector<uint8_t>{1, 12}), VT1.Before.Bytes);
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff}), VT1.Before.BytesUsed);
EXPECT_EQ((std::vector<uint8_t>{0x80, 34}), VT2.Before.Bytes);
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff}), VT2.Before.BytesUsed);
Targets[0].RetVal = 56;
Targets[1].RetVal = 78;
setBeforeReturnValues(Targets, 48, 16, OffsetByte, OffsetBit);
EXPECT_EQ(-8ll, OffsetByte);
EXPECT_EQ(0ull, OffsetBit);
EXPECT_EQ((std::vector<uint8_t>{1, 12, 0, 56}), VT1.Before.Bytes);
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff, 0xff, 0xff}),
VT1.Before.BytesUsed);
EXPECT_EQ((std::vector<uint8_t>{0x80, 34, 0, 78}), VT2.Before.Bytes);
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff, 0xff, 0xff}),
VT2.Before.BytesUsed);
Targets[0].RetVal = 1;
Targets[1].RetVal = 0;
setAfterReturnValues(Targets, 32, 1, OffsetByte, OffsetBit);
EXPECT_EQ(4ll, OffsetByte);
EXPECT_EQ(0ull, OffsetBit);
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.After.Bytes);
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.After.BytesUsed);
EXPECT_EQ(std::vector<uint8_t>{0}, VT2.After.Bytes);
EXPECT_EQ(std::vector<uint8_t>{1}, VT2.After.BytesUsed);
Targets[0].RetVal = 0;
Targets[1].RetVal = 1;
setAfterReturnValues(Targets, 39, 1, OffsetByte, OffsetBit);
EXPECT_EQ(4ll, OffsetByte);
EXPECT_EQ(7ull, OffsetBit);
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.After.Bytes);
EXPECT_EQ(std::vector<uint8_t>{0x81}, VT1.After.BytesUsed);
EXPECT_EQ(std::vector<uint8_t>{0x80}, VT2.After.Bytes);
EXPECT_EQ(std::vector<uint8_t>{0x81}, VT2.After.BytesUsed);
Targets[0].RetVal = 12;
Targets[1].RetVal = 34;
setAfterReturnValues(Targets, 40, 8, OffsetByte, OffsetBit);
EXPECT_EQ(5ll, OffsetByte);
EXPECT_EQ(0ull, OffsetBit);
EXPECT_EQ((std::vector<uint8_t>{1, 12}), VT1.After.Bytes);
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff}), VT1.After.BytesUsed);
EXPECT_EQ((std::vector<uint8_t>{0x80, 34}), VT2.After.Bytes);
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff}), VT2.After.BytesUsed);
Targets[0].RetVal = 56;
Targets[1].RetVal = 78;
setAfterReturnValues(Targets, 48, 16, OffsetByte, OffsetBit);
EXPECT_EQ(6ll, OffsetByte);
EXPECT_EQ(0ull, OffsetBit);
EXPECT_EQ((std::vector<uint8_t>{1, 12, 56, 0}), VT1.After.Bytes);
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff, 0xff, 0xff}),
VT1.After.BytesUsed);
EXPECT_EQ((std::vector<uint8_t>{0x80, 34, 78, 0}), VT2.After.Bytes);
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff, 0xff, 0xff}),
VT2.After.BytesUsed);
}