mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
WholeProgramDevirt: introduce.
This pass implements whole program optimization of virtual calls in cases where we know (via bitset information) that the list of callees is fixed. This includes the following: - Single implementation devirtualization: if a virtual call has a single possible callee, replace all calls with a direct call to that callee. - Virtual constant propagation: if the virtual function's return type is an integer <=64 bits and all possible callees are readnone, for each class and each list of constant arguments: evaluate the function, store the return value alongside the virtual table, and rewrite each virtual call as a load from the virtual table. - Uniform return value optimization: if the conditions for virtual constant propagation hold and each function returns the same constant value, replace each virtual call with that constant. - Unique return value optimization for i1 return values: if the conditions for virtual constant propagation hold and a single vtable's function returns 0, or a single vtable's function returns 1, replace each virtual call with a comparison of the vptr against that vtable's address. Differential Revision: http://reviews.llvm.org/D16795 llvm-svn: 260312
This commit is contained in:
parent
ef4c99d35b
commit
54e8749794
@ -316,6 +316,7 @@ void initializeFuncletLayoutPass(PassRegistry &);
|
||||
void initializeLoopLoadEliminationPass(PassRegistry&);
|
||||
void initializeFunctionImportPassPass(PassRegistry &);
|
||||
void initializeLoopVersioningPassPass(PassRegistry &);
|
||||
void initializeWholeProgramDevirtPass(PassRegistry &);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -226,6 +226,10 @@ ModulePass *createLowerBitSetsPass();
|
||||
/// \brief This pass export CFI checks for use by external modules.
|
||||
ModulePass *createCrossDSOCFIPass();
|
||||
|
||||
/// \brief This pass implements whole-program devirtualization using bitset
|
||||
/// metadata.
|
||||
ModulePass *createWholeProgramDevirtPass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// SampleProfilePass - Loads sample profile data from disk and generates
|
||||
// IR metadata to reflect the profile.
|
||||
|
@ -157,6 +157,7 @@ private:
|
||||
legacy::PassManagerBase &PM) const;
|
||||
void addInitialAliasAnalysisPasses(legacy::PassManagerBase &PM) const;
|
||||
void addLTOOptimizationPasses(legacy::PassManagerBase &PM);
|
||||
void addEarlyLTOOptimizationPasses(legacy::PassManagerBase &PM);
|
||||
void addLateLTOOptimizationPasses(legacy::PassManagerBase &PM);
|
||||
void addPGOInstrPasses(legacy::PassManagerBase &MPM);
|
||||
|
||||
|
215
include/llvm/Transforms/IPO/WholeProgramDevirt.h
Normal file
215
include/llvm/Transforms/IPO/WholeProgramDevirt.h
Normal file
@ -0,0 +1,215 @@
|
||||
//===- WholeProgramDevirt.h - Whole-program devirt pass ---------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines parts of the whole-program devirtualization pass
|
||||
// implementation that may be usefully unit tested.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H
|
||||
#define LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H
|
||||
|
||||
#include "llvm/ADT/ArrayRef.h"
|
||||
#include "llvm/ADT/DenseMapInfo.h"
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <assert.h>
|
||||
#include <stdint.h>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Function;
|
||||
class GlobalVariable;
|
||||
|
||||
namespace wholeprogramdevirt {
|
||||
|
||||
// A bit vector that keeps track of which bits are used. We use this to
|
||||
// pack constant values compactly before and after each virtual table.
|
||||
struct AccumBitVector {
|
||||
std::vector<uint8_t> Bytes;
|
||||
|
||||
// Bits in BytesUsed[I] are 1 if matching bit in Bytes[I] is used, 0 if not.
|
||||
std::vector<uint8_t> BytesUsed;
|
||||
|
||||
std::pair<uint8_t *, uint8_t *> getPtrToData(uint64_t Pos, uint8_t Size) {
|
||||
if (Bytes.size() < Pos + Size) {
|
||||
Bytes.resize(Pos + Size);
|
||||
BytesUsed.resize(Pos + Size);
|
||||
}
|
||||
return std::make_pair(Bytes.data() + Pos, BytesUsed.data() + Pos);
|
||||
}
|
||||
|
||||
// Set little-endian value Val with size Size at bit position Pos,
|
||||
// and mark bytes as used.
|
||||
void setLE(uint64_t Pos, uint64_t Val, uint8_t Size) {
|
||||
assert(Pos % 8 == 0);
|
||||
auto DataUsed = getPtrToData(Pos / 8, Size);
|
||||
for (unsigned I = 0; I != Size; ++I) {
|
||||
DataUsed.first[I] = Val >> (I * 8);
|
||||
assert(!DataUsed.second[I]);
|
||||
DataUsed.second[I] = 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
// Set big-endian value Val with size Size at bit position Pos,
|
||||
// and mark bytes as used.
|
||||
void setBE(uint64_t Pos, uint64_t Val, uint8_t Size) {
|
||||
assert(Pos % 8 == 0);
|
||||
auto DataUsed = getPtrToData(Pos / 8, Size);
|
||||
for (unsigned I = 0; I != Size; ++I) {
|
||||
DataUsed.first[Size - I - 1] = Val >> (I * 8);
|
||||
assert(!DataUsed.second[Size - I - 1]);
|
||||
DataUsed.second[Size - I - 1] = 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
// Set bit at bit position Pos to b and mark bit as used.
|
||||
void setBit(uint64_t Pos, bool b) {
|
||||
auto DataUsed = getPtrToData(Pos / 8, 1);
|
||||
if (b)
|
||||
*DataUsed.first |= 1 << (Pos % 8);
|
||||
assert(!(*DataUsed.second & (1 << Pos % 8)));
|
||||
*DataUsed.second |= 1 << (Pos % 8);
|
||||
}
|
||||
};
|
||||
|
||||
// The bits that will be stored before and after a particular vtable.
|
||||
struct VTableBits {
|
||||
// The vtable global.
|
||||
GlobalVariable *GV;
|
||||
|
||||
// Cache of the vtable's size in bytes.
|
||||
uint64_t ObjectSize = 0;
|
||||
|
||||
// The bit vector that will be laid out before the vtable. Note that these
|
||||
// bytes are stored in reverse order until the globals are rebuilt. This means
|
||||
// that any values in the array must be stored using the opposite endianness
|
||||
// from the target.
|
||||
AccumBitVector Before;
|
||||
|
||||
// The bit vector that will be laid out after the vtable.
|
||||
AccumBitVector After;
|
||||
};
|
||||
|
||||
// Information about an entry in a particular bitset.
|
||||
struct BitSetInfo {
|
||||
// The VTableBits for the vtable.
|
||||
VTableBits *Bits;
|
||||
|
||||
// The offset in bytes from the start of the vtable (i.e. the address point).
|
||||
uint64_t Offset;
|
||||
|
||||
bool operator<(const BitSetInfo &other) const {
|
||||
return Bits < other.Bits || (Bits == other.Bits && Offset < other.Offset);
|
||||
}
|
||||
};
|
||||
|
||||
// A virtual call target, i.e. an entry in a particular vtable.
|
||||
struct VirtualCallTarget {
|
||||
VirtualCallTarget(Function *Fn, const BitSetInfo *BS);
|
||||
|
||||
// For testing only.
|
||||
VirtualCallTarget(const BitSetInfo *BS, bool IsBigEndian)
|
||||
: Fn(nullptr), BS(BS), IsBigEndian(IsBigEndian) {}
|
||||
|
||||
// The function stored in the vtable.
|
||||
Function *Fn;
|
||||
|
||||
// A pointer to the bitset through which the pointer to Fn is accessed.
|
||||
const BitSetInfo *BS;
|
||||
|
||||
// When doing virtual constant propagation, this stores the return value for
|
||||
// the function when passed the currently considered argument list.
|
||||
uint64_t RetVal;
|
||||
|
||||
// Whether the target is big endian.
|
||||
bool IsBigEndian;
|
||||
|
||||
// The minimum byte offset before the address point. This covers the bytes in
|
||||
// the vtable object before the address point (e.g. RTTI, access-to-top,
|
||||
// vtables for other base classes) and is equal to the offset from the start
|
||||
// of the vtable object to the address point.
|
||||
uint64_t minBeforeBytes() const { return BS->Offset; }
|
||||
|
||||
// The minimum byte offset after the address point. This covers the bytes in
|
||||
// the vtable object after the address point (e.g. the vtable for the current
|
||||
// class and any later base classes) and is equal to the size of the vtable
|
||||
// object minus the offset from the start of the vtable object to the address
|
||||
// point.
|
||||
uint64_t minAfterBytes() const { return BS->Bits->ObjectSize - BS->Offset; }
|
||||
|
||||
// The number of bytes allocated (for the vtable plus the byte array) before
|
||||
// the address point.
|
||||
uint64_t allocatedBeforeBytes() const {
|
||||
return minBeforeBytes() + BS->Bits->Before.Bytes.size();
|
||||
}
|
||||
|
||||
// The number of bytes allocated (for the vtable plus the byte array) after
|
||||
// the address point.
|
||||
uint64_t allocatedAfterBytes() const {
|
||||
return minAfterBytes() + BS->Bits->After.Bytes.size();
|
||||
}
|
||||
|
||||
// Set the bit at position Pos before the address point to RetVal.
|
||||
void setBeforeBit(uint64_t Pos) {
|
||||
assert(Pos >= 8 * minBeforeBytes());
|
||||
BS->Bits->Before.setBit(Pos - 8 * minBeforeBytes(), RetVal);
|
||||
}
|
||||
|
||||
// Set the bit at position Pos after the address point to RetVal.
|
||||
void setAfterBit(uint64_t Pos) {
|
||||
assert(Pos >= 8 * minAfterBytes());
|
||||
BS->Bits->After.setBit(Pos - 8 * minAfterBytes(), RetVal);
|
||||
}
|
||||
|
||||
// Set the bytes at position Pos before the address point to RetVal.
|
||||
// Because the bytes in Before are stored in reverse order, we use the
|
||||
// opposite endianness to the target.
|
||||
void setBeforeBytes(uint64_t Pos, uint8_t Size) {
|
||||
assert(Pos >= 8 * minBeforeBytes());
|
||||
if (IsBigEndian)
|
||||
BS->Bits->Before.setLE(Pos - 8 * minBeforeBytes(), RetVal, Size);
|
||||
else
|
||||
BS->Bits->Before.setBE(Pos - 8 * minBeforeBytes(), RetVal, Size);
|
||||
}
|
||||
|
||||
// Set the bytes at position Pos after the address point to RetVal.
|
||||
void setAfterBytes(uint64_t Pos, uint8_t Size) {
|
||||
assert(Pos >= 8 * minAfterBytes());
|
||||
if (IsBigEndian)
|
||||
BS->Bits->After.setBE(Pos - 8 * minAfterBytes(), RetVal, Size);
|
||||
else
|
||||
BS->Bits->After.setLE(Pos - 8 * minAfterBytes(), RetVal, Size);
|
||||
}
|
||||
};
|
||||
|
||||
// Find the minimum offset that we may store a value of size Size bits at. If
|
||||
// IsAfter is set, look for an offset before the object, otherwise look for an
|
||||
// offset after the object.
|
||||
uint64_t findLowestOffset(ArrayRef<VirtualCallTarget> Targets, bool IsAfter,
|
||||
uint64_t Size);
|
||||
|
||||
// Set the stored value in each of Targets to VirtualCallTarget::RetVal at the
|
||||
// given allocation offset before the vtable address. Stores the computed
|
||||
// byte/bit offset to OffsetByte/OffsetBit.
|
||||
void setBeforeReturnValues(MutableArrayRef<VirtualCallTarget> Targets,
|
||||
uint64_t AllocBefore, unsigned BitWidth,
|
||||
int64_t &OffsetByte, uint64_t &OffsetBit);
|
||||
|
||||
// Set the stored value in each of Targets to VirtualCallTarget::RetVal at the
|
||||
// given allocation offset after the vtable address. Stores the computed
|
||||
// byte/bit offset to OffsetByte/OffsetBit.
|
||||
void setAfterReturnValues(MutableArrayRef<VirtualCallTarget> Targets,
|
||||
uint64_t AllocAfter, unsigned BitWidth,
|
||||
int64_t &OffsetByte, uint64_t &OffsetBit);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -27,6 +27,7 @@ add_llvm_library(LLVMipo
|
||||
SampleProfile.cpp
|
||||
StripDeadPrototypes.cpp
|
||||
StripSymbols.cpp
|
||||
WholeProgramDevirt.cpp
|
||||
|
||||
ADDITIONAL_HEADER_DIRS
|
||||
${LLVM_MAIN_INCLUDE_DIR}/llvm/Transforms
|
||||
|
@ -53,6 +53,7 @@ void llvm::initializeIPO(PassRegistry &Registry) {
|
||||
initializeEliminateAvailableExternallyPass(Registry);
|
||||
initializeSampleProfileLoaderPass(Registry);
|
||||
initializeFunctionImportPassPass(Registry);
|
||||
initializeWholeProgramDevirtPass(Registry);
|
||||
}
|
||||
|
||||
void LLVMInitializeIPO(LLVMPassRegistryRef R) {
|
||||
|
@ -651,6 +651,16 @@ void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
|
||||
PM.add(createJumpThreadingPass());
|
||||
}
|
||||
|
||||
void PassManagerBuilder::addEarlyLTOOptimizationPasses(
|
||||
legacy::PassManagerBase &PM) {
|
||||
// Remove unused virtual tables to improve the quality of code generated by
|
||||
// whole-program devirtualization and bitset lowering.
|
||||
PM.add(createGlobalDCEPass());
|
||||
|
||||
// Apply whole-program devirtualization and virtual constant propagation.
|
||||
PM.add(createWholeProgramDevirtPass());
|
||||
}
|
||||
|
||||
void PassManagerBuilder::addLateLTOOptimizationPasses(
|
||||
legacy::PassManagerBase &PM) {
|
||||
// Delete basic blocks, which optimization passes may have killed.
|
||||
@ -675,6 +685,9 @@ void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
|
||||
if (VerifyInput)
|
||||
PM.add(createVerifierPass());
|
||||
|
||||
if (OptLevel != 0)
|
||||
addEarlyLTOOptimizationPasses(PM);
|
||||
|
||||
if (OptLevel > 1)
|
||||
addLTOOptimizationPasses(PM);
|
||||
|
||||
|
724
lib/Transforms/IPO/WholeProgramDevirt.cpp
Normal file
724
lib/Transforms/IPO/WholeProgramDevirt.cpp
Normal file
@ -0,0 +1,724 @@
|
||||
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass implements whole program optimization of virtual calls in cases
|
||||
// where we know (via bitset information) that the list of callee is fixed. This
|
||||
// includes the following:
|
||||
// - Single implementation devirtualization: if a virtual call has a single
|
||||
// possible callee, replace all calls with a direct call to that callee.
|
||||
// - Virtual constant propagation: if the virtual function's return type is an
|
||||
// integer <=64 bits and all possible callees are readnone, for each class and
|
||||
// each list of constant arguments: evaluate the function, store the return
|
||||
// value alongside the virtual table, and rewrite each virtual call as a load
|
||||
// from the virtual table.
|
||||
// - Uniform return value optimization: if the conditions for virtual constant
|
||||
// propagation hold and each function returns the same constant value, replace
|
||||
// each virtual call with that constant.
|
||||
// - Unique return value optimization for i1 return values: if the conditions
|
||||
// for virtual constant propagation hold and a single vtable's function
|
||||
// returns 0, or a single vtable's function returns 1, replace each virtual
|
||||
// call with a comparison of the vptr against that vtable's address.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
|
||||
#include "llvm/Transforms/IPO.h"
|
||||
#include "llvm/ADT/DenseSet.h"
|
||||
#include "llvm/ADT/MapVector.h"
|
||||
#include "llvm/IR/CallSite.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/DataLayout.h"
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Intrinsics.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Utils/Evaluator.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
|
||||
#include <set>
|
||||
|
||||
using namespace llvm;
|
||||
using namespace wholeprogramdevirt;
|
||||
|
||||
#define DEBUG_TYPE "wholeprogramdevirt"
|
||||
|
||||
// Find the minimum offset that we may store a value of size Size bits at. If
|
||||
// IsAfter is set, look for an offset before the object, otherwise look for an
|
||||
// offset after the object.
|
||||
uint64_t
|
||||
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
|
||||
bool IsAfter, uint64_t Size) {
|
||||
// Find a minimum offset taking into account only vtable sizes.
|
||||
uint64_t MinByte = 0;
|
||||
for (const VirtualCallTarget &Target : Targets) {
|
||||
if (IsAfter)
|
||||
MinByte = std::max(MinByte, Target.minAfterBytes());
|
||||
else
|
||||
MinByte = std::max(MinByte, Target.minBeforeBytes());
|
||||
}
|
||||
|
||||
// Build a vector of arrays of bytes covering, for each target, a slice of the
|
||||
// used region (see AccumBitVector::BytesUsed in
|
||||
// llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
|
||||
// this aligns the used regions to start at MinByte.
|
||||
//
|
||||
// In this example, A, B and C are vtables, # is a byte already allocated for
|
||||
// a virtual function pointer, AAAA... (etc.) are the used regions for the
|
||||
// vtables and Offset(X) is the value computed for the Offset variable below
|
||||
// for X.
|
||||
//
|
||||
// Offset(A)
|
||||
// | |
|
||||
// |MinByte
|
||||
// A: ################AAAAAAAA|AAAAAAAA
|
||||
// B: ########BBBBBBBBBBBBBBBB|BBBB
|
||||
// C: ########################|CCCCCCCCCCCCCCCC
|
||||
// | Offset(B) |
|
||||
//
|
||||
// This code produces the slices of A, B and C that appear after the divider
|
||||
// at MinByte.
|
||||
std::vector<ArrayRef<uint8_t>> Used;
|
||||
for (const VirtualCallTarget &Target : Targets) {
|
||||
ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
|
||||
: Target.BS->Bits->Before.BytesUsed;
|
||||
uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
|
||||
: MinByte - Target.minBeforeBytes();
|
||||
|
||||
// Disregard used regions that are smaller than Offset. These are
|
||||
// effectively all-free regions that do not need to be checked.
|
||||
if (VTUsed.size() > Offset)
|
||||
Used.push_back(VTUsed.slice(Offset));
|
||||
}
|
||||
|
||||
if (Size == 1) {
|
||||
// Find a free bit in each member of Used.
|
||||
for (unsigned I = 0;; ++I) {
|
||||
uint8_t BitsUsed = 0;
|
||||
for (auto &&B : Used)
|
||||
if (I < B.size())
|
||||
BitsUsed |= B[I];
|
||||
if (BitsUsed != 0xff)
|
||||
return (MinByte + I) * 8 +
|
||||
countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
|
||||
}
|
||||
} else {
|
||||
// Find a free (Size/8) byte region in each member of Used.
|
||||
// FIXME: see if alignment helps.
|
||||
for (unsigned I = 0;; ++I) {
|
||||
for (auto &&B : Used) {
|
||||
unsigned Byte = 0;
|
||||
while ((I + Byte) < B.size() && Byte < (Size / 8)) {
|
||||
if (B[I + Byte])
|
||||
goto NextI;
|
||||
++Byte;
|
||||
}
|
||||
}
|
||||
return (MinByte + I) * 8;
|
||||
NextI:;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void wholeprogramdevirt::setBeforeReturnValues(
|
||||
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
|
||||
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
|
||||
if (BitWidth == 1)
|
||||
OffsetByte = -(AllocBefore / 8 + 1);
|
||||
else
|
||||
OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
|
||||
OffsetBit = AllocBefore % 8;
|
||||
|
||||
for (VirtualCallTarget &Target : Targets) {
|
||||
if (BitWidth == 1)
|
||||
Target.setBeforeBit(AllocBefore);
|
||||
else
|
||||
Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
|
||||
}
|
||||
}
|
||||
|
||||
void wholeprogramdevirt::setAfterReturnValues(
|
||||
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
|
||||
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
|
||||
if (BitWidth == 1)
|
||||
OffsetByte = AllocAfter / 8;
|
||||
else
|
||||
OffsetByte = (AllocAfter + 7) / 8;
|
||||
OffsetBit = AllocAfter % 8;
|
||||
|
||||
for (VirtualCallTarget &Target : Targets) {
|
||||
if (BitWidth == 1)
|
||||
Target.setAfterBit(AllocAfter);
|
||||
else
|
||||
Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
|
||||
}
|
||||
}
|
||||
|
||||
VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
|
||||
: Fn(Fn), BS(BS),
|
||||
IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
|
||||
|
||||
namespace {
|
||||
|
||||
// A slot in a set of virtual tables. The BitSetID identifies the set of virtual
|
||||
// tables, and the ByteOffset is the offset in bytes from the address point to
|
||||
// the virtual function pointer.
|
||||
struct VTableSlot {
|
||||
Metadata *BitSetID;
|
||||
uint64_t ByteOffset;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
template <> struct DenseMapInfo<VTableSlot> {
|
||||
static VTableSlot getEmptyKey() {
|
||||
return {DenseMapInfo<Metadata *>::getEmptyKey(),
|
||||
DenseMapInfo<uint64_t>::getEmptyKey()};
|
||||
}
|
||||
static VTableSlot getTombstoneKey() {
|
||||
return {DenseMapInfo<Metadata *>::getTombstoneKey(),
|
||||
DenseMapInfo<uint64_t>::getTombstoneKey()};
|
||||
}
|
||||
static unsigned getHashValue(const VTableSlot &I) {
|
||||
return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
|
||||
DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
|
||||
}
|
||||
static bool isEqual(const VTableSlot &LHS,
|
||||
const VTableSlot &RHS) {
|
||||
return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
|
||||
}
|
||||
};
|
||||
|
||||
namespace {
|
||||
|
||||
// A virtual call site. VTable is the loaded virtual table pointer, and CS is
|
||||
// the indirect virtual call.
|
||||
struct VirtualCallSite {
|
||||
Value *VTable;
|
||||
CallSite CS;
|
||||
|
||||
void replaceAndErase(Value *New) {
|
||||
CS->replaceAllUsesWith(New);
|
||||
if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
|
||||
BranchInst::Create(II->getNormalDest(), CS.getInstruction());
|
||||
II->getUnwindDest()->removePredecessor(II->getParent());
|
||||
}
|
||||
CS->eraseFromParent();
|
||||
}
|
||||
};
|
||||
|
||||
struct DevirtModule {
|
||||
Module &M;
|
||||
IntegerType *Int8Ty;
|
||||
PointerType *Int8PtrTy;
|
||||
IntegerType *Int32Ty;
|
||||
|
||||
MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
|
||||
|
||||
DevirtModule(Module &M)
|
||||
: M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
|
||||
Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
|
||||
Int32Ty(Type::getInt32Ty(M.getContext())) {}
|
||||
void findLoadCallsAtConstantOffset(Metadata *BitSet, Value *Ptr,
|
||||
uint64_t Offset, Value *VTable);
|
||||
void findCallsAtConstantOffset(Metadata *BitSet, Value *Ptr, uint64_t Offset,
|
||||
Value *VTable);
|
||||
|
||||
void buildBitSets(std::vector<VTableBits> &Bits,
|
||||
DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
|
||||
bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
|
||||
const std::set<BitSetInfo> &BitSetInfos,
|
||||
uint64_t ByteOffset);
|
||||
bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
MutableArrayRef<VirtualCallSite> CallSites);
|
||||
bool tryEvaluateFunctionsWithArgs(
|
||||
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
ArrayRef<ConstantInt *> Args);
|
||||
bool tryUniformRetValOpt(IntegerType *RetType,
|
||||
ArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
MutableArrayRef<VirtualCallSite> CallSites);
|
||||
bool tryUniqueRetValOpt(unsigned BitWidth,
|
||||
ArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
MutableArrayRef<VirtualCallSite> CallSites);
|
||||
bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
ArrayRef<VirtualCallSite> CallSites);
|
||||
|
||||
void rebuildGlobal(VTableBits &B);
|
||||
|
||||
bool run();
|
||||
};
|
||||
|
||||
struct WholeProgramDevirt : public ModulePass {
|
||||
static char ID;
|
||||
WholeProgramDevirt() : ModulePass(ID) {
|
||||
initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
bool runOnModule(Module &M) { return DevirtModule(M).run(); }
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
|
||||
"Whole program devirtualization", false, false)
|
||||
char WholeProgramDevirt::ID = 0;
|
||||
|
||||
ModulePass *llvm::createWholeProgramDevirtPass() {
|
||||
return new WholeProgramDevirt;
|
||||
}
|
||||
|
||||
// Search for virtual calls that call FPtr and add them to CallSlots.
|
||||
void DevirtModule::findCallsAtConstantOffset(Metadata *BitSet, Value *FPtr,
|
||||
uint64_t Offset, Value *VTable) {
|
||||
for (const Use &U : FPtr->uses()) {
|
||||
Value *User = U.getUser();
|
||||
if (isa<BitCastInst>(User)) {
|
||||
findCallsAtConstantOffset(BitSet, User, Offset, VTable);
|
||||
} else if (auto CI = dyn_cast<CallInst>(User)) {
|
||||
CallSlots[{BitSet, Offset}].push_back({VTable, CI});
|
||||
} else if (auto II = dyn_cast<InvokeInst>(User)) {
|
||||
CallSlots[{BitSet, Offset}].push_back({VTable, II});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Search for virtual calls that load from VPtr and add them to CallSlots.
|
||||
void DevirtModule::findLoadCallsAtConstantOffset(Metadata *BitSet, Value *VPtr,
|
||||
uint64_t Offset,
|
||||
Value *VTable) {
|
||||
for (const Use &U : VPtr->uses()) {
|
||||
Value *User = U.getUser();
|
||||
if (isa<BitCastInst>(User)) {
|
||||
findLoadCallsAtConstantOffset(BitSet, User, Offset, VTable);
|
||||
} else if (isa<LoadInst>(User)) {
|
||||
findCallsAtConstantOffset(BitSet, User, Offset, VTable);
|
||||
} else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
|
||||
// Take into account the GEP offset.
|
||||
if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
|
||||
SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
|
||||
uint64_t GEPOffset = M.getDataLayout().getIndexedOffsetInType(
|
||||
GEP->getSourceElementType(), Indices);
|
||||
findLoadCallsAtConstantOffset(BitSet, User, Offset + GEPOffset, VTable);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void DevirtModule::buildBitSets(
|
||||
std::vector<VTableBits> &Bits,
|
||||
DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
|
||||
NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
|
||||
if (!BitSetNM)
|
||||
return;
|
||||
|
||||
DenseMap<GlobalVariable *, VTableBits *> GVToBits;
|
||||
Bits.reserve(BitSetNM->getNumOperands());
|
||||
for (auto Op : BitSetNM->operands()) {
|
||||
auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
|
||||
if (!OpConstMD)
|
||||
continue;
|
||||
auto BitSetID = Op->getOperand(0).get();
|
||||
|
||||
Constant *OpConst = OpConstMD->getValue();
|
||||
if (auto GA = dyn_cast<GlobalAlias>(OpConst))
|
||||
OpConst = GA->getAliasee();
|
||||
auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
|
||||
if (!OpGlobal)
|
||||
continue;
|
||||
|
||||
uint64_t Offset =
|
||||
cast<ConstantInt>(
|
||||
cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
|
||||
->getZExtValue();
|
||||
|
||||
VTableBits *&BitsPtr = GVToBits[OpGlobal];
|
||||
if (!BitsPtr) {
|
||||
Bits.emplace_back();
|
||||
Bits.back().GV = OpGlobal;
|
||||
Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
|
||||
OpGlobal->getInitializer()->getType());
|
||||
BitsPtr = &Bits.back();
|
||||
}
|
||||
BitSets[BitSetID].insert({BitsPtr, Offset});
|
||||
}
|
||||
}
|
||||
|
||||
bool DevirtModule::tryFindVirtualCallTargets(
|
||||
std::vector<VirtualCallTarget> &TargetsForSlot,
|
||||
const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
|
||||
for (const BitSetInfo &BS : BitSetInfos) {
|
||||
if (!BS.Bits->GV->isConstant())
|
||||
return false;
|
||||
|
||||
auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
|
||||
if (!Init)
|
||||
return false;
|
||||
ArrayType *VTableTy = Init->getType();
|
||||
|
||||
uint64_t ElemSize =
|
||||
M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
|
||||
uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
|
||||
if (GlobalSlotOffset % ElemSize != 0)
|
||||
return false;
|
||||
|
||||
unsigned Op = GlobalSlotOffset / ElemSize;
|
||||
if (Op >= Init->getNumOperands())
|
||||
return false;
|
||||
|
||||
auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
|
||||
if (!Fn)
|
||||
return false;
|
||||
|
||||
// We can disregard __cxa_pure_virtual as a possible call target, as
|
||||
// calls to pure virtuals are UB.
|
||||
if (Fn->getName() == "__cxa_pure_virtual")
|
||||
continue;
|
||||
|
||||
TargetsForSlot.push_back({Fn, &BS});
|
||||
}
|
||||
|
||||
// Give up if we couldn't find any targets.
|
||||
return !TargetsForSlot.empty();
|
||||
}
|
||||
|
||||
bool DevirtModule::trySingleImplDevirt(
|
||||
ArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
MutableArrayRef<VirtualCallSite> CallSites) {
|
||||
// See if the program contains a single implementation of this virtual
|
||||
// function.
|
||||
Function *TheFn = TargetsForSlot[0].Fn;
|
||||
for (auto &&Target : TargetsForSlot)
|
||||
if (TheFn != Target.Fn)
|
||||
return false;
|
||||
|
||||
// If so, update each call site to call that implementation directly.
|
||||
for (auto &&VCallSite : CallSites) {
|
||||
VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
|
||||
TheFn, VCallSite.CS.getCalledValue()->getType()));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DevirtModule::tryEvaluateFunctionsWithArgs(
|
||||
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
ArrayRef<ConstantInt *> Args) {
|
||||
// Evaluate each function and store the result in each target's RetVal
|
||||
// field.
|
||||
for (VirtualCallTarget &Target : TargetsForSlot) {
|
||||
if (Target.Fn->arg_size() != Args.size() + 1)
|
||||
return false;
|
||||
for (unsigned I = 0; I != Args.size(); ++I)
|
||||
if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
|
||||
Args[I]->getType())
|
||||
return false;
|
||||
|
||||
Evaluator Eval(M.getDataLayout(), nullptr);
|
||||
SmallVector<Constant *, 2> EvalArgs;
|
||||
EvalArgs.push_back(
|
||||
Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
|
||||
EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
|
||||
Constant *RetVal;
|
||||
if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
|
||||
!isa<ConstantInt>(RetVal))
|
||||
return false;
|
||||
Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DevirtModule::tryUniformRetValOpt(
|
||||
IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
MutableArrayRef<VirtualCallSite> CallSites) {
|
||||
// Uniform return value optimization. If all functions return the same
|
||||
// constant, replace all calls with that constant.
|
||||
uint64_t TheRetVal = TargetsForSlot[0].RetVal;
|
||||
for (const VirtualCallTarget &Target : TargetsForSlot)
|
||||
if (Target.RetVal != TheRetVal)
|
||||
return false;
|
||||
|
||||
auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
|
||||
for (auto Call : CallSites)
|
||||
Call.replaceAndErase(TheRetValConst);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DevirtModule::tryUniqueRetValOpt(
|
||||
unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
MutableArrayRef<VirtualCallSite> CallSites) {
|
||||
// IsOne controls whether we look for a 0 or a 1.
|
||||
auto tryUniqueRetValOptFor = [&](bool IsOne) {
|
||||
const BitSetInfo *UniqueBitSet = 0;
|
||||
for (const VirtualCallTarget &Target : TargetsForSlot) {
|
||||
if (Target.RetVal == IsOne ? 1 : 0) {
|
||||
if (UniqueBitSet)
|
||||
return false;
|
||||
UniqueBitSet = Target.BS;
|
||||
}
|
||||
}
|
||||
|
||||
// We should have found a unique bit set or bailed out by now. We already
|
||||
// checked for a uniform return value in tryUniformRetValOpt.
|
||||
assert(UniqueBitSet);
|
||||
|
||||
// Replace each call with the comparison.
|
||||
for (auto &&Call : CallSites) {
|
||||
IRBuilder<> B(Call.CS.getInstruction());
|
||||
Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
|
||||
OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
|
||||
Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
|
||||
Call.VTable, OneAddr);
|
||||
Call.replaceAndErase(Cmp);
|
||||
}
|
||||
return true;
|
||||
};
|
||||
|
||||
if (BitWidth == 1) {
|
||||
if (tryUniqueRetValOptFor(true))
|
||||
return true;
|
||||
if (tryUniqueRetValOptFor(false))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool DevirtModule::tryVirtualConstProp(
|
||||
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
|
||||
ArrayRef<VirtualCallSite> CallSites) {
|
||||
// This only works if the function returns an integer.
|
||||
auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
|
||||
if (!RetType)
|
||||
return false;
|
||||
unsigned BitWidth = RetType->getBitWidth();
|
||||
if (BitWidth > 64)
|
||||
return false;
|
||||
|
||||
// Make sure that each function does not access memory, takes at least one
|
||||
// argument, does not use its first argument (which we assume is 'this'),
|
||||
// and has the same return type.
|
||||
for (VirtualCallTarget &Target : TargetsForSlot) {
|
||||
if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
|
||||
!Target.Fn->arg_begin()->use_empty() ||
|
||||
Target.Fn->getReturnType() != RetType)
|
||||
return false;
|
||||
}
|
||||
|
||||
// Group call sites by the list of constant arguments they pass.
|
||||
// The comparator ensures deterministic ordering.
|
||||
struct ByAPIntValue {
|
||||
bool operator()(const std::vector<ConstantInt *> &A,
|
||||
const std::vector<ConstantInt *> &B) const {
|
||||
return std::lexicographical_compare(
|
||||
A.begin(), A.end(), B.begin(), B.end(),
|
||||
[](ConstantInt *AI, ConstantInt *BI) {
|
||||
return AI->getValue().ult(BI->getValue());
|
||||
});
|
||||
}
|
||||
};
|
||||
std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
|
||||
ByAPIntValue>
|
||||
VCallSitesByConstantArg;
|
||||
for (auto &&VCallSite : CallSites) {
|
||||
std::vector<ConstantInt *> Args;
|
||||
if (VCallSite.CS.getType() != RetType)
|
||||
continue;
|
||||
for (auto &&Arg :
|
||||
make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
|
||||
if (!isa<ConstantInt>(Arg))
|
||||
break;
|
||||
Args.push_back(cast<ConstantInt>(&Arg));
|
||||
}
|
||||
if (Args.size() + 1 != VCallSite.CS.arg_size())
|
||||
continue;
|
||||
|
||||
VCallSitesByConstantArg[Args].push_back(VCallSite);
|
||||
}
|
||||
|
||||
for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
|
||||
if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
|
||||
continue;
|
||||
|
||||
if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
|
||||
continue;
|
||||
|
||||
if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
|
||||
continue;
|
||||
|
||||
// Find an allocation offset in bits in all vtables in the bitset.
|
||||
uint64_t AllocBefore =
|
||||
findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
|
||||
uint64_t AllocAfter =
|
||||
findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
|
||||
|
||||
// Calculate the total amount of padding needed to store a value at both
|
||||
// ends of the object.
|
||||
uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
|
||||
for (auto &&Target : TargetsForSlot) {
|
||||
TotalPaddingBefore += std::max<int64_t>(
|
||||
(AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
|
||||
TotalPaddingAfter += std::max<int64_t>(
|
||||
(AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
|
||||
}
|
||||
|
||||
// If the amount of padding is too large, give up.
|
||||
// FIXME: do something smarter here.
|
||||
if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
|
||||
continue;
|
||||
|
||||
// Calculate the offset to the value as a (possibly negative) byte offset
|
||||
// and (if applicable) a bit offset, and store the values in the targets.
|
||||
int64_t OffsetByte;
|
||||
uint64_t OffsetBit;
|
||||
if (TotalPaddingBefore <= TotalPaddingAfter)
|
||||
setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
|
||||
OffsetBit);
|
||||
else
|
||||
setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
|
||||
OffsetBit);
|
||||
|
||||
// Rewrite each call to a load from OffsetByte/OffsetBit.
|
||||
for (auto Call : CSByConstantArg.second) {
|
||||
IRBuilder<> B(Call.CS.getInstruction());
|
||||
Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
|
||||
if (BitWidth == 1) {
|
||||
Value *Bits = B.CreateLoad(Addr);
|
||||
Value *Bit = ConstantInt::get(Int8Ty, 1 << OffsetBit);
|
||||
Value *BitsAndBit = B.CreateAnd(Bits, Bit);
|
||||
auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
|
||||
Call.replaceAndErase(IsBitSet);
|
||||
} else {
|
||||
Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
|
||||
Value *Val = B.CreateLoad(RetType, ValAddr);
|
||||
Call.replaceAndErase(Val);
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void DevirtModule::rebuildGlobal(VTableBits &B) {
|
||||
if (B.Before.Bytes.empty() && B.After.Bytes.empty())
|
||||
return;
|
||||
|
||||
// Align each byte array to pointer width.
|
||||
unsigned PointerSize = M.getDataLayout().getPointerSize();
|
||||
B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
|
||||
B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
|
||||
|
||||
// Before was stored in reverse order; flip it now.
|
||||
for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
|
||||
std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
|
||||
|
||||
// Build an anonymous global containing the before bytes, followed by the
|
||||
// original initializer, followed by the after bytes.
|
||||
auto NewInit = ConstantStruct::getAnon(
|
||||
{ConstantDataArray::get(M.getContext(), B.Before.Bytes),
|
||||
B.GV->getInitializer(),
|
||||
ConstantDataArray::get(M.getContext(), B.After.Bytes)});
|
||||
auto NewGV =
|
||||
new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
|
||||
GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
|
||||
NewGV->setSection(B.GV->getSection());
|
||||
NewGV->setComdat(B.GV->getComdat());
|
||||
|
||||
// Build an alias named after the original global, pointing at the second
|
||||
// element (the original initializer).
|
||||
auto Alias = GlobalAlias::create(
|
||||
B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
|
||||
ConstantExpr::getGetElementPtr(
|
||||
NewInit->getType(), NewGV,
|
||||
ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
|
||||
ConstantInt::get(Int32Ty, 1)}),
|
||||
&M);
|
||||
Alias->setVisibility(B.GV->getVisibility());
|
||||
Alias->takeName(B.GV);
|
||||
|
||||
B.GV->replaceAllUsesWith(Alias);
|
||||
B.GV->eraseFromParent();
|
||||
}
|
||||
|
||||
bool DevirtModule::run() {
|
||||
Function *BitSetTestFunc =
|
||||
M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
|
||||
if (!BitSetTestFunc || BitSetTestFunc->use_empty())
|
||||
return false;
|
||||
|
||||
Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
|
||||
if (!AssumeFunc || AssumeFunc->use_empty())
|
||||
return false;
|
||||
|
||||
// Find all virtual calls via a virtual table pointer %p under an assumption
|
||||
// of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
|
||||
// points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
|
||||
// (effectively the identity of the virtual function) and store to CallSlots.
|
||||
DenseSet<Value *> SeenPtrs;
|
||||
for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
|
||||
I != E;) {
|
||||
auto CI = dyn_cast<CallInst>(I->getUser());
|
||||
++I;
|
||||
if (!CI)
|
||||
continue;
|
||||
|
||||
// Find llvm.assume intrinsics for this llvm.bitset.test call.
|
||||
SmallVector<CallInst *, 1> Assumes;
|
||||
for (const Use &CIU : CI->uses()) {
|
||||
auto AssumeCI = dyn_cast<CallInst>(CIU.getUser());
|
||||
if (AssumeCI && AssumeCI->getCalledValue() == AssumeFunc)
|
||||
Assumes.push_back(AssumeCI);
|
||||
}
|
||||
|
||||
// If we found any, search for virtual calls based on %p and add them to
|
||||
// CallSlots.
|
||||
if (!Assumes.empty()) {
|
||||
Metadata *BitSet =
|
||||
cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
|
||||
Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
|
||||
if (SeenPtrs.insert(Ptr).second)
|
||||
findLoadCallsAtConstantOffset(BitSet, Ptr, 0, CI->getArgOperand(0));
|
||||
}
|
||||
|
||||
// We no longer need the assumes or the bitset test.
|
||||
for (auto Assume : Assumes)
|
||||
Assume->eraseFromParent();
|
||||
// We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
|
||||
// may use the vtable argument later.
|
||||
if (CI->use_empty())
|
||||
CI->eraseFromParent();
|
||||
}
|
||||
|
||||
// Rebuild llvm.bitsets metadata into a map for easy lookup.
|
||||
std::vector<VTableBits> Bits;
|
||||
DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
|
||||
buildBitSets(Bits, BitSets);
|
||||
if (BitSets.empty())
|
||||
return true;
|
||||
|
||||
// For each (bitset, offset) pair:
|
||||
bool DidVirtualConstProp = false;
|
||||
for (auto &S : CallSlots) {
|
||||
// Search each of the vtables in the bitset for the virtual function
|
||||
// implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
|
||||
std::vector<VirtualCallTarget> TargetsForSlot;
|
||||
if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
|
||||
S.first.ByteOffset))
|
||||
continue;
|
||||
|
||||
if (trySingleImplDevirt(TargetsForSlot, S.second))
|
||||
continue;
|
||||
|
||||
DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
|
||||
}
|
||||
|
||||
// Rebuild each global we touched as part of virtual constant propagation to
|
||||
// include the before and after bytes.
|
||||
if (DidVirtualConstProp)
|
||||
for (VTableBits &B : Bits)
|
||||
rebuildGlobal(B);
|
||||
|
||||
return true;
|
||||
}
|
64
test/Transforms/WholeProgramDevirt/bad-read-from-vtable.ll
Normal file
64
test/Transforms/WholeProgramDevirt/bad-read-from-vtable.ll
Normal file
@ -0,0 +1,64 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt = global [2 x i8*] [i8* zeroinitializer, i8* bitcast (void (i8*)* @vf to i8*)]
|
||||
|
||||
define void @vf(i8* %this) {
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK: define void @unaligned
|
||||
define void @unaligned(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr i8, i8* %vtablei8, i32 1
|
||||
%fptrptr_casted = bitcast i8* %fptrptr to i8**
|
||||
%fptr = load i8*, i8** %fptrptr_casted
|
||||
%fptr_casted = bitcast i8* %fptr to void (i8*)*
|
||||
; CHECK: call void %
|
||||
call void %fptr_casted(i8* %obj)
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK: define void @outofbounds
|
||||
define void @outofbounds(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr i8, i8* %vtablei8, i32 16
|
||||
%fptrptr_casted = bitcast i8* %fptrptr to i8**
|
||||
%fptr = load i8*, i8** %fptrptr_casted
|
||||
%fptr_casted = bitcast i8* %fptr to void (i8*)*
|
||||
; CHECK: call void %
|
||||
call void %fptr_casted(i8* %obj)
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK: define void @nonfunction
|
||||
define void @nonfunction(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr i8, i8* %vtablei8, i32 0
|
||||
%fptrptr_casted = bitcast i8* %fptrptr to i8**
|
||||
%fptr = load i8*, i8** %fptrptr_casted
|
||||
%fptr_casted = bitcast i8* %fptr to void (i8*)*
|
||||
; CHECK: call void %
|
||||
call void %fptr_casted(i8* %obj)
|
||||
ret void
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [2 x i8*]* @vt, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
79
test/Transforms/WholeProgramDevirt/constant-arg.ll
Normal file
79
test/Transforms/WholeProgramDevirt/constant-arg.ll
Normal file
@ -0,0 +1,79 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
; CHECK: private constant { [8 x i8], [1 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\00\00\00\00\01", [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf1 to i8*)], [0 x i8] zeroinitializer }
|
||||
; CHECK: private constant { [8 x i8], [1 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\00\00\00\00\02", [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf2 to i8*)], [0 x i8] zeroinitializer }
|
||||
; CHECK: private constant { [8 x i8], [1 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\00\00\00\00\01", [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf4 to i8*)], [0 x i8] zeroinitializer }
|
||||
; CHECK: private constant { [8 x i8], [1 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\00\00\00\00\02", [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf8 to i8*)], [0 x i8] zeroinitializer }
|
||||
|
||||
@vt1 = constant [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf1 to i8*)]
|
||||
@vt2 = constant [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf2 to i8*)]
|
||||
@vt4 = constant [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf4 to i8*)]
|
||||
@vt8 = constant [1 x i8*] [i8* bitcast (i1 (i8*, i32)* @vf8 to i8*)]
|
||||
|
||||
define i1 @vf1(i8* %this, i32 %arg) readnone {
|
||||
%and = and i32 %arg, 1
|
||||
%cmp = icmp ne i32 %and, 0
|
||||
ret i1 %cmp
|
||||
}
|
||||
|
||||
define i1 @vf2(i8* %this, i32 %arg) readnone {
|
||||
%and = and i32 %arg, 2
|
||||
%cmp = icmp ne i32 %and, 0
|
||||
ret i1 %cmp
|
||||
}
|
||||
|
||||
define i1 @vf4(i8* %this, i32 %arg) readnone {
|
||||
%and = and i32 %arg, 4
|
||||
%cmp = icmp ne i32 %and, 0
|
||||
ret i1 %cmp
|
||||
}
|
||||
|
||||
define i1 @vf8(i8* %this, i32 %arg) readnone {
|
||||
%and = and i32 %arg, 8
|
||||
%cmp = icmp ne i32 %and, 0
|
||||
ret i1 %cmp
|
||||
}
|
||||
|
||||
; CHECK: define i1 @call1
|
||||
define i1 @call1(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i1 (i8*, i32)*
|
||||
; CHECK: getelementptr {{.*}} -1
|
||||
; CHECK: and {{.*}}, 1
|
||||
%result = call i1 %fptr_casted(i8* %obj, i32 5)
|
||||
ret i1 %result
|
||||
}
|
||||
|
||||
; CHECK: define i1 @call2
|
||||
define i1 @call2(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i1 (i8*, i32)*
|
||||
; CHECK: getelementptr {{.*}} -1
|
||||
; CHECK: and {{.*}}, 2
|
||||
%result = call i1 %fptr_casted(i8* %obj, i32 10)
|
||||
ret i1 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!2 = !{!"bitset", [1 x i8*]* @vt4, i32 0}
|
||||
!3 = !{!"bitset", [1 x i8*]* @vt8, i32 0}
|
||||
!llvm.bitsets = !{!0, !1, !2, !3}
|
33
test/Transforms/WholeProgramDevirt/devirt-single-impl.ll
Normal file
33
test/Transforms/WholeProgramDevirt/devirt-single-impl.ll
Normal file
@ -0,0 +1,33 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = constant [1 x i8*] [i8* bitcast (void (i8*)* @vf to i8*)]
|
||||
@vt2 = constant [1 x i8*] [i8* bitcast (void (i8*)* @vf to i8*)]
|
||||
|
||||
define void @vf(i8* %this) {
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK: define void @call
|
||||
define void @call(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to void (i8*)*
|
||||
; CHECK: call void @vf(
|
||||
call void %fptr_casted(i8* %obj)
|
||||
ret void
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0, !1}
|
31
test/Transforms/WholeProgramDevirt/non-array-vtable.ll
Normal file
31
test/Transforms/WholeProgramDevirt/non-array-vtable.ll
Normal file
@ -0,0 +1,31 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt = constant i8* bitcast (void (i8*)* @vf to i8*)
|
||||
|
||||
define void @vf(i8* %this) {
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK: define void @call
|
||||
define void @call(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to void (i8*)*
|
||||
; CHECK: call void %
|
||||
call void %fptr_casted(i8* %obj)
|
||||
ret void
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", i8** @vt, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
31
test/Transforms/WholeProgramDevirt/non-constant-vtable.ll
Normal file
31
test/Transforms/WholeProgramDevirt/non-constant-vtable.ll
Normal file
@ -0,0 +1,31 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt = global [1 x i8*] [i8* bitcast (void (i8*)* @vf to i8*)]
|
||||
|
||||
define void @vf(i8* %this) {
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK: define void @call
|
||||
define void @call(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to void (i8*)*
|
||||
; CHECK: call void %
|
||||
call void %fptr_casted(i8* %obj)
|
||||
ret void
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
45
test/Transforms/WholeProgramDevirt/uniform-retval-invoke.ll
Normal file
45
test/Transforms/WholeProgramDevirt/uniform-retval-invoke.ll
Normal file
@ -0,0 +1,45 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = constant [1 x i8*] [i8* bitcast (i32 (i8*)* @vf1 to i8*)]
|
||||
@vt2 = constant [1 x i8*] [i8* bitcast (i32 (i8*)* @vf2 to i8*)]
|
||||
|
||||
define i32 @vf1(i8* %this) readnone {
|
||||
ret i32 123
|
||||
}
|
||||
|
||||
define i32 @vf2(i8* %this) readnone {
|
||||
ret i32 123
|
||||
}
|
||||
|
||||
; CHECK: define i32 @call
|
||||
define i32 @call(i8* %obj) personality i8* undef {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
|
||||
; CHECK: br label %[[RET:[0-9A-Za-z]*]]
|
||||
%result = invoke i32 %fptr_casted(i8* %obj) to label %ret unwind label %unwind
|
||||
|
||||
unwind:
|
||||
%x = landingpad i32 cleanup
|
||||
unreachable
|
||||
|
||||
ret:
|
||||
; CHECK: [[RET]]:
|
||||
; CHECK-NEXT: ret i32 123
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0, !1}
|
38
test/Transforms/WholeProgramDevirt/uniform-retval.ll
Normal file
38
test/Transforms/WholeProgramDevirt/uniform-retval.ll
Normal file
@ -0,0 +1,38 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = constant [1 x i8*] [i8* bitcast (i32 (i8*)* @vf1 to i8*)]
|
||||
@vt2 = constant [1 x i8*] [i8* bitcast (i32 (i8*)* @vf2 to i8*)]
|
||||
|
||||
define i32 @vf1(i8* %this) readnone {
|
||||
ret i32 123
|
||||
}
|
||||
|
||||
define i32 @vf2(i8* %this) readnone {
|
||||
ret i32 123
|
||||
}
|
||||
|
||||
; CHECK: define i32 @call
|
||||
define i32 @call(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
|
||||
%result = call i32 %fptr_casted(i8* %obj)
|
||||
; CHECK-NOT: call
|
||||
; CHECK: ret i32 123
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0, !1}
|
61
test/Transforms/WholeProgramDevirt/unique-retval.ll
Normal file
61
test/Transforms/WholeProgramDevirt/unique-retval.ll
Normal file
@ -0,0 +1,61 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = constant [1 x i8*] [i8* bitcast (i1 (i8*)* @vf0 to i8*)]
|
||||
@vt2 = constant [1 x i8*] [i8* bitcast (i1 (i8*)* @vf0 to i8*)]
|
||||
@vt3 = constant [1 x i8*] [i8* bitcast (i1 (i8*)* @vf1 to i8*)]
|
||||
@vt4 = constant [1 x i8*] [i8* bitcast (i1 (i8*)* @vf1 to i8*)]
|
||||
|
||||
define i1 @vf0(i8* %this) readnone {
|
||||
ret i1 0
|
||||
}
|
||||
|
||||
define i1 @vf1(i8* %this) readnone {
|
||||
ret i1 1
|
||||
}
|
||||
|
||||
; CHECK: define i1 @call1
|
||||
define i1 @call1(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
; CHECK: [[VT1:%[^ ]*]] = bitcast [1 x i8*]* {{.*}} to i8*
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset1")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
|
||||
; CHECK: [[RES1:%[^ ]*]] = icmp eq i8* [[VT1]], bitcast ([1 x i8*]* @vt3 to i8*)
|
||||
%result = call i1 %fptr_casted(i8* %obj)
|
||||
; CHECK: ret i1 [[RES1]]
|
||||
ret i1 %result
|
||||
}
|
||||
|
||||
; CHECK: define i1 @call2
|
||||
define i1 @call2(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
; CHECK: [[VT2:%[^ ]*]] = bitcast [1 x i8*]* {{.*}} to i8*
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset2")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
|
||||
; CHECK: [[RES1:%[^ ]*]] = icmp ne i8* [[VT1]], bitcast ([1 x i8*]* @vt2 to i8*)
|
||||
%result = call i1 %fptr_casted(i8* %obj)
|
||||
ret i1 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset1", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset1", [1 x i8*]* @vt2, i32 0}
|
||||
!2 = !{!"bitset1", [1 x i8*]* @vt3, i32 0}
|
||||
!3 = !{!"bitset2", [1 x i8*]* @vt2, i32 0}
|
||||
!4 = !{!"bitset2", [1 x i8*]* @vt3, i32 0}
|
||||
!5 = !{!"bitset2", [1 x i8*]* @vt4, i32 0}
|
||||
!llvm.bitsets = !{!0, !1, !2, !3, !4, !5}
|
37
test/Transforms/WholeProgramDevirt/vcp-accesses-memory.ll
Normal file
37
test/Transforms/WholeProgramDevirt/vcp-accesses-memory.ll
Normal file
@ -0,0 +1,37 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf1 to i8*)]
|
||||
@vt2 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf2 to i8*)]
|
||||
|
||||
define i32 @vf1(i8* %this, i32 %arg) {
|
||||
ret i32 %arg
|
||||
}
|
||||
|
||||
define i32 @vf2(i8* %this, i32 %arg) {
|
||||
ret i32 %arg
|
||||
}
|
||||
|
||||
; CHECK: define i32 @call
|
||||
define i32 @call(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*, i32)*
|
||||
; CHECK: call i32 %
|
||||
%result = call i32 %fptr_casted(i8* %obj, i32 1)
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
37
test/Transforms/WholeProgramDevirt/vcp-no-this.ll
Normal file
37
test/Transforms/WholeProgramDevirt/vcp-no-this.ll
Normal file
@ -0,0 +1,37 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = global [1 x i8*] [i8* bitcast (i32 ()* @vf1 to i8*)]
|
||||
@vt2 = global [1 x i8*] [i8* bitcast (i32 ()* @vf2 to i8*)]
|
||||
|
||||
define i32 @vf1() readnone {
|
||||
ret i32 1
|
||||
}
|
||||
|
||||
define i32 @vf2() readnone {
|
||||
ret i32 2
|
||||
}
|
||||
|
||||
; CHECK: define i32 @call
|
||||
define i32 @call(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 ()*
|
||||
; CHECK: call i32 %
|
||||
%result = call i32 %fptr_casted()
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
37
test/Transforms/WholeProgramDevirt/vcp-non-constant-arg.ll
Normal file
37
test/Transforms/WholeProgramDevirt/vcp-non-constant-arg.ll
Normal file
@ -0,0 +1,37 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf1 to i8*)]
|
||||
@vt2 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf2 to i8*)]
|
||||
|
||||
define i32 @vf1(i8* %this, i32 %arg) readnone {
|
||||
ret i32 %arg
|
||||
}
|
||||
|
||||
define i32 @vf2(i8* %this, i32 %arg) readnone {
|
||||
ret i32 %arg
|
||||
}
|
||||
|
||||
; CHECK: define void @call
|
||||
define void @call(i8* %obj, i32 %arg) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*, i32)*
|
||||
; CHECK: call i32 %
|
||||
%result = call i32 %fptr_casted(i8* %obj, i32 %arg)
|
||||
ret void
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
37
test/Transforms/WholeProgramDevirt/vcp-too-wide-ints.ll
Normal file
37
test/Transforms/WholeProgramDevirt/vcp-too-wide-ints.ll
Normal file
@ -0,0 +1,37 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = global [1 x i8*] [i8* bitcast (i128 (i8*, i128)* @vf1 to i8*)]
|
||||
@vt2 = global [1 x i8*] [i8* bitcast (i128 (i8*, i128)* @vf2 to i8*)]
|
||||
|
||||
define i128 @vf1(i8* %this, i128 %arg) readnone {
|
||||
ret i128 %arg
|
||||
}
|
||||
|
||||
define i128 @vf2(i8* %this, i128 %arg) readnone {
|
||||
ret i128 %arg
|
||||
}
|
||||
|
||||
; CHECK: define i128 @call
|
||||
define i128 @call(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i128 (i8*, i128)*
|
||||
; CHECK: call i128 %
|
||||
%result = call i128 %fptr_casted(i8* %obj, i128 1)
|
||||
ret i128 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
67
test/Transforms/WholeProgramDevirt/vcp-type-mismatch.ll
Normal file
67
test/Transforms/WholeProgramDevirt/vcp-type-mismatch.ll
Normal file
@ -0,0 +1,67 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf1 to i8*)]
|
||||
@vt2 = global [1 x i8*] [i8* bitcast (i32 (i8*, i32)* @vf2 to i8*)]
|
||||
|
||||
define i32 @vf1(i8* %this, i32 %arg) readnone {
|
||||
ret i32 %arg
|
||||
}
|
||||
|
||||
define i32 @vf2(i8* %this, i32 %arg) readnone {
|
||||
ret i32 %arg
|
||||
}
|
||||
|
||||
; CHECK: define i32 @bad_arg_type
|
||||
define i32 @bad_arg_type(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*, i64)*
|
||||
; CHECK: call i32 %
|
||||
%result = call i32 %fptr_casted(i8* %obj, i64 1)
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
; CHECK: define i32 @bad_arg_count
|
||||
define i32 @bad_arg_count(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*, i64, i64)*
|
||||
; CHECK: call i32 %
|
||||
%result = call i32 %fptr_casted(i8* %obj, i64 1, i64 2)
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
; CHECK: define i64 @bad_return_type
|
||||
define i64 @bad_return_type(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i64 (i8*, i32)*
|
||||
; CHECK: call i64 %
|
||||
%result = call i64 %fptr_casted(i8* %obj, i32 1)
|
||||
ret i64 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
39
test/Transforms/WholeProgramDevirt/vcp-uses-this.ll
Normal file
39
test/Transforms/WholeProgramDevirt/vcp-uses-this.ll
Normal file
@ -0,0 +1,39 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
@vt1 = global [1 x i8*] [i8* bitcast (i32 (i8*)* @vf1 to i8*)]
|
||||
@vt2 = global [1 x i8*] [i8* bitcast (i32 (i8*)* @vf2 to i8*)]
|
||||
|
||||
define i32 @vf1(i8* %this) readnone {
|
||||
%this_int = ptrtoint i8* %this to i32
|
||||
ret i32 %this_int
|
||||
}
|
||||
|
||||
define i32 @vf2(i8* %this) readnone {
|
||||
%this_int = ptrtoint i8* %this to i32
|
||||
ret i32 %this_int
|
||||
}
|
||||
|
||||
; CHECK: define i32 @call
|
||||
define i32 @call(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [1 x i8*]**
|
||||
%vtable = load [1 x i8*]*, [1 x i8*]** %vtableptr
|
||||
%vtablei8 = bitcast [1 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [1 x i8*], [1 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
|
||||
; CHECK: call i32 %
|
||||
%result = call i32 %fptr_casted(i8* %obj)
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [1 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [1 x i8*]* @vt2, i32 0}
|
||||
!llvm.bitsets = !{!0}
|
137
test/Transforms/WholeProgramDevirt/virtual-const-prop-begin.ll
Normal file
137
test/Transforms/WholeProgramDevirt/virtual-const-prop-begin.ll
Normal file
@ -0,0 +1,137 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
; CHECK: [[VT1DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\01\01\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf1i32 to i8*)], [0 x i8] zeroinitializer }, section "vt1sec"
|
||||
@vt1 = constant [3 x i8*] [
|
||||
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
|
||||
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
|
||||
i8* bitcast (i32 (i8*)* @vf1i32 to i8*)
|
||||
], section "vt1sec"
|
||||
|
||||
; CHECK: [[VT2DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\02\02\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf2i32 to i8*)], [0 x i8] zeroinitializer }{{$}}
|
||||
@vt2 = constant [3 x i8*] [
|
||||
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
|
||||
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
|
||||
i8* bitcast (i32 (i8*)* @vf2i32 to i8*)
|
||||
]
|
||||
|
||||
; CHECK: [[VT3DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\01\03\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf3i32 to i8*)], [0 x i8] zeroinitializer }{{$}}
|
||||
@vt3 = constant [3 x i8*] [
|
||||
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
|
||||
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
|
||||
i8* bitcast (i32 (i8*)* @vf3i32 to i8*)
|
||||
]
|
||||
|
||||
; CHECK: [[VT4DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\02\04\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf4i32 to i8*)], [0 x i8] zeroinitializer }{{$}}
|
||||
@vt4 = constant [3 x i8*] [
|
||||
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
|
||||
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
|
||||
i8* bitcast (i32 (i8*)* @vf4i32 to i8*)
|
||||
]
|
||||
|
||||
@vt5 = constant [3 x i8*] [
|
||||
i8* bitcast (void ()* @__cxa_pure_virtual to i8*),
|
||||
i8* bitcast (void ()* @__cxa_pure_virtual to i8*),
|
||||
i8* bitcast (void ()* @__cxa_pure_virtual to i8*)
|
||||
]
|
||||
|
||||
; CHECK: @vt1 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT1DATA]], i32 0, i32 1)
|
||||
; CHECK: @vt2 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT2DATA]], i32 0, i32 1)
|
||||
; CHECK: @vt3 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT3DATA]], i32 0, i32 1)
|
||||
; CHECK: @vt4 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT4DATA]], i32 0, i32 1)
|
||||
|
||||
define i1 @vf0i1(i8* %this) readnone {
|
||||
ret i1 0
|
||||
}
|
||||
|
||||
define i1 @vf1i1(i8* %this) readnone {
|
||||
ret i1 1
|
||||
}
|
||||
|
||||
define i32 @vf1i32(i8* %this) readnone {
|
||||
ret i32 1
|
||||
}
|
||||
|
||||
define i32 @vf2i32(i8* %this) readnone {
|
||||
ret i32 2
|
||||
}
|
||||
|
||||
define i32 @vf3i32(i8* %this) readnone {
|
||||
ret i32 3
|
||||
}
|
||||
|
||||
define i32 @vf4i32(i8* %this) readnone {
|
||||
ret i32 4
|
||||
}
|
||||
|
||||
; CHECK: define i1 @call1(
|
||||
define i1 @call1(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [3 x i8*]**
|
||||
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
|
||||
; CHECK: [[VT1:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
|
||||
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
|
||||
; CHECK: [[VTGEP1:%[^ ]*]] = getelementptr i8, i8* [[VT1]], i64 -5
|
||||
; CHECK: [[VTLOAD1:%[^ ]*]] = load i8, i8* [[VTGEP1]]
|
||||
; CHECK: [[VTAND1:%[^ ]*]] = and i8 [[VTLOAD1]], 2
|
||||
; CHECK: [[VTCMP1:%[^ ]*]] = icmp ne i8 [[VTAND1]], 0
|
||||
%result = call i1 %fptr_casted(i8* %obj)
|
||||
; CHECK: ret i1 [[VTCMP1]]
|
||||
ret i1 %result
|
||||
}
|
||||
|
||||
; CHECK: define i1 @call2(
|
||||
define i1 @call2(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [3 x i8*]**
|
||||
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
|
||||
; CHECK: [[VT2:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
|
||||
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 1
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
|
||||
; CHECK: [[VTGEP2:%[^ ]*]] = getelementptr i8, i8* [[VT2]], i64 -5
|
||||
; CHECK: [[VTLOAD2:%[^ ]*]] = load i8, i8* [[VTGEP2]]
|
||||
; CHECK: [[VTAND2:%[^ ]*]] = and i8 [[VTLOAD2]], 1
|
||||
; CHECK: [[VTCMP2:%[^ ]*]] = icmp ne i8 [[VTAND2]], 0
|
||||
%result = call i1 %fptr_casted(i8* %obj)
|
||||
; CHECK: ret i1 [[VTCMP2]]
|
||||
ret i1 %result
|
||||
}
|
||||
|
||||
; CHECK: define i32 @call3(
|
||||
define i32 @call3(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [3 x i8*]**
|
||||
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
|
||||
; CHECK: [[VT3:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
|
||||
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 2
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
|
||||
; CHECK: [[VTGEP3:%[^ ]*]] = getelementptr i8, i8* [[VT3]], i64 -4
|
||||
; CHECK: [[VTBC3:%[^ ]*]] = bitcast i8* [[VTGEP3]] to i32*
|
||||
; CHECK: [[VTLOAD3:%[^ ]*]] = load i32, i32* [[VTBC3]]
|
||||
%result = call i32 %fptr_casted(i8* %obj)
|
||||
; CHECK: ret i32 [[VTLOAD3]]
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
declare void @__cxa_pure_virtual()
|
||||
|
||||
!0 = !{!"bitset", [3 x i8*]* @vt1, i32 0}
|
||||
!1 = !{!"bitset", [3 x i8*]* @vt2, i32 0}
|
||||
!2 = !{!"bitset", [3 x i8*]* @vt3, i32 0}
|
||||
!3 = !{!"bitset", [3 x i8*]* @vt4, i32 0}
|
||||
!4 = !{!"bitset", [3 x i8*]* @vt5, i32 0}
|
||||
!llvm.bitsets = !{!0, !1, !2, !3, !4}
|
131
test/Transforms/WholeProgramDevirt/virtual-const-prop-end.ll
Normal file
131
test/Transforms/WholeProgramDevirt/virtual-const-prop-end.ll
Normal file
@ -0,0 +1,131 @@
|
||||
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
; CHECK: [[VT1DATA:@[^ ]*]] = private constant { [0 x i8], [4 x i8*], [8 x i8] } { [0 x i8] zeroinitializer, [4 x i8*] [i8* null, i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf1i32 to i8*)], [8 x i8] c"\01\00\00\00\01\00\00\00" }
|
||||
@vt1 = constant [4 x i8*] [
|
||||
i8* null,
|
||||
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
|
||||
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
|
||||
i8* bitcast (i32 (i8*)* @vf1i32 to i8*)
|
||||
]
|
||||
|
||||
; CHECK: [[VT2DATA:@[^ ]*]] = private constant { [0 x i8], [3 x i8*], [8 x i8] } { [0 x i8] zeroinitializer, [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf2i32 to i8*)], [8 x i8] c"\02\00\00\00\02\00\00\00" }
|
||||
@vt2 = constant [3 x i8*] [
|
||||
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
|
||||
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
|
||||
i8* bitcast (i32 (i8*)* @vf2i32 to i8*)
|
||||
]
|
||||
|
||||
; CHECK: [[VT3DATA:@[^ ]*]] = private constant { [0 x i8], [4 x i8*], [8 x i8] } { [0 x i8] zeroinitializer, [4 x i8*] [i8* null, i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf3i32 to i8*)], [8 x i8] c"\03\00\00\00\01\00\00\00" }
|
||||
@vt3 = constant [4 x i8*] [
|
||||
i8* null,
|
||||
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
|
||||
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
|
||||
i8* bitcast (i32 (i8*)* @vf3i32 to i8*)
|
||||
]
|
||||
|
||||
; CHECK: [[VT4DATA:@[^ ]*]] = private constant { [0 x i8], [3 x i8*], [8 x i8] } { [0 x i8] zeroinitializer, [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf4i32 to i8*)], [8 x i8] c"\04\00\00\00\02\00\00\00" }
|
||||
@vt4 = constant [3 x i8*] [
|
||||
i8* bitcast (i1 (i8*)* @vf1i1 to i8*),
|
||||
i8* bitcast (i1 (i8*)* @vf0i1 to i8*),
|
||||
i8* bitcast (i32 (i8*)* @vf4i32 to i8*)
|
||||
]
|
||||
|
||||
; CHECK: @vt1 = alias [4 x i8*], getelementptr inbounds ({ [0 x i8], [4 x i8*], [8 x i8] }, { [0 x i8], [4 x i8*], [8 x i8] }* [[VT1DATA]], i32 0, i32 1)
|
||||
; CHECK: @vt2 = alias [3 x i8*], getelementptr inbounds ({ [0 x i8], [3 x i8*], [8 x i8] }, { [0 x i8], [3 x i8*], [8 x i8] }* [[VT2DATA]], i32 0, i32 1)
|
||||
; CHECK: @vt3 = alias [4 x i8*], getelementptr inbounds ({ [0 x i8], [4 x i8*], [8 x i8] }, { [0 x i8], [4 x i8*], [8 x i8] }* [[VT3DATA]], i32 0, i32 1)
|
||||
; CHECK: @vt4 = alias [3 x i8*], getelementptr inbounds ({ [0 x i8], [3 x i8*], [8 x i8] }, { [0 x i8], [3 x i8*], [8 x i8] }* [[VT4DATA]], i32 0, i32 1)
|
||||
|
||||
define i1 @vf0i1(i8* %this) readnone {
|
||||
ret i1 0
|
||||
}
|
||||
|
||||
define i1 @vf1i1(i8* %this) readnone {
|
||||
ret i1 1
|
||||
}
|
||||
|
||||
define i32 @vf1i32(i8* %this) readnone {
|
||||
ret i32 1
|
||||
}
|
||||
|
||||
define i32 @vf2i32(i8* %this) readnone {
|
||||
ret i32 2
|
||||
}
|
||||
|
||||
define i32 @vf3i32(i8* %this) readnone {
|
||||
ret i32 3
|
||||
}
|
||||
|
||||
define i32 @vf4i32(i8* %this) readnone {
|
||||
ret i32 4
|
||||
}
|
||||
|
||||
; CHECK: define i1 @call1(
|
||||
define i1 @call1(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [3 x i8*]**
|
||||
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
|
||||
; CHECK: [[VT1:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
|
||||
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 0
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
|
||||
; CHECK: [[VTGEP1:%[^ ]*]] = getelementptr i8, i8* [[VT1]], i64 28
|
||||
; CHECK: [[VTLOAD1:%[^ ]*]] = load i8, i8* [[VTGEP1]]
|
||||
; CHECK: [[VTAND1:%[^ ]*]] = and i8 [[VTLOAD1]], 2
|
||||
; CHECK: [[VTCMP1:%[^ ]*]] = icmp ne i8 [[VTAND1]], 0
|
||||
%result = call i1 %fptr_casted(i8* %obj)
|
||||
; CHECK: ret i1 [[VTCMP1]]
|
||||
ret i1 %result
|
||||
}
|
||||
|
||||
; CHECK: define i1 @call2(
|
||||
define i1 @call2(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [3 x i8*]**
|
||||
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
|
||||
; CHECK: [[VT2:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
|
||||
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 1
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i1 (i8*)*
|
||||
; CHECK: [[VTGEP2:%[^ ]*]] = getelementptr i8, i8* [[VT2]], i64 28
|
||||
; CHECK: [[VTLOAD2:%[^ ]*]] = load i8, i8* [[VTGEP2]]
|
||||
; CHECK: [[VTAND2:%[^ ]*]] = and i8 [[VTLOAD2]], 1
|
||||
; CHECK: [[VTCMP2:%[^ ]*]] = icmp ne i8 [[VTAND2]], 0
|
||||
%result = call i1 %fptr_casted(i8* %obj)
|
||||
; CHECK: ret i1 [[VTCMP2]]
|
||||
ret i1 %result
|
||||
}
|
||||
|
||||
; CHECK: define i32 @call3(
|
||||
define i32 @call3(i8* %obj) {
|
||||
%vtableptr = bitcast i8* %obj to [3 x i8*]**
|
||||
%vtable = load [3 x i8*]*, [3 x i8*]** %vtableptr
|
||||
; CHECK: [[VT3:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
|
||||
%vtablei8 = bitcast [3 x i8*]* %vtable to i8*
|
||||
%p = call i1 @llvm.bitset.test(i8* %vtablei8, metadata !"bitset")
|
||||
call void @llvm.assume(i1 %p)
|
||||
%fptrptr = getelementptr [3 x i8*], [3 x i8*]* %vtable, i32 0, i32 2
|
||||
%fptr = load i8*, i8** %fptrptr
|
||||
%fptr_casted = bitcast i8* %fptr to i32 (i8*)*
|
||||
; CHECK: [[VTGEP3:%[^ ]*]] = getelementptr i8, i8* [[VT3]], i64 24
|
||||
; CHECK: [[VTBC3:%[^ ]*]] = bitcast i8* [[VTGEP3]] to i32*
|
||||
; CHECK: [[VTLOAD3:%[^ ]*]] = load i32, i32* [[VTBC3]]
|
||||
%result = call i32 %fptr_casted(i8* %obj)
|
||||
; CHECK: ret i32 [[VTLOAD3]]
|
||||
ret i32 %result
|
||||
}
|
||||
|
||||
declare i1 @llvm.bitset.test(i8*, metadata)
|
||||
declare void @llvm.assume(i1)
|
||||
|
||||
!0 = !{!"bitset", [4 x i8*]* @vt1, i32 8}
|
||||
!1 = !{!"bitset", [3 x i8*]* @vt2, i32 0}
|
||||
!2 = !{!"bitset", [4 x i8*]* @vt3, i32 8}
|
||||
!3 = !{!"bitset", [3 x i8*]* @vt4, i32 0}
|
||||
!llvm.bitsets = !{!0, !1, !2, !3}
|
@ -14,7 +14,7 @@ target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
; -disable-verify should disable output verification from the optimization
|
||||
; pipeline.
|
||||
; CHECK: Pass Arguments: {{.*}} -verify -forceattrs
|
||||
; CHECK: Pass Arguments: {{.*}} -verify -
|
||||
; CHECK-NOT: -verify
|
||||
|
||||
; VERIFY: Pass Arguments: {{.*}} -verify {{.*}} -verify
|
||||
|
@ -6,4 +6,5 @@ set(LLVM_LINK_COMPONENTS
|
||||
|
||||
add_llvm_unittest(IPOTests
|
||||
LowerBitSets.cpp
|
||||
WholeProgramDevirt.cpp
|
||||
)
|
||||
|
164
unittests/Transforms/IPO/WholeProgramDevirt.cpp
Normal file
164
unittests/Transforms/IPO/WholeProgramDevirt.cpp
Normal file
@ -0,0 +1,164 @@
|
||||
//===- WholeProgramDevirt.cpp - Unit tests for whole-program devirt -------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using namespace llvm;
|
||||
using namespace wholeprogramdevirt;
|
||||
|
||||
TEST(WholeProgramDevirt, findLowestOffset) {
|
||||
VTableBits VT1;
|
||||
VT1.ObjectSize = 8;
|
||||
VT1.Before.BytesUsed = {1 << 0};
|
||||
VT1.After.BytesUsed = {1 << 1};
|
||||
|
||||
VTableBits VT2;
|
||||
VT2.ObjectSize = 8;
|
||||
VT2.Before.BytesUsed = {1 << 1};
|
||||
VT2.After.BytesUsed = {1 << 0};
|
||||
|
||||
BitSetInfo BS1{&VT1, 0};
|
||||
BitSetInfo BS2{&VT2, 0};
|
||||
VirtualCallTarget Targets[] = {
|
||||
{&BS1, /*IsBigEndian=*/false},
|
||||
{&BS2, /*IsBigEndian=*/false},
|
||||
};
|
||||
|
||||
EXPECT_EQ(2ull, findLowestOffset(Targets, /*IsAfter=*/false, 1));
|
||||
EXPECT_EQ(66ull, findLowestOffset(Targets, /*IsAfter=*/true, 1));
|
||||
|
||||
EXPECT_EQ(8ull, findLowestOffset(Targets, /*IsAfter=*/false, 8));
|
||||
EXPECT_EQ(72ull, findLowestOffset(Targets, /*IsAfter=*/true, 8));
|
||||
|
||||
BS1.Offset = 4;
|
||||
EXPECT_EQ(33ull, findLowestOffset(Targets, /*IsAfter=*/false, 1));
|
||||
EXPECT_EQ(65ull, findLowestOffset(Targets, /*IsAfter=*/true, 1));
|
||||
|
||||
EXPECT_EQ(40ull, findLowestOffset(Targets, /*IsAfter=*/false, 8));
|
||||
EXPECT_EQ(72ull, findLowestOffset(Targets, /*IsAfter=*/true, 8));
|
||||
|
||||
BS1.Offset = 8;
|
||||
BS2.Offset = 8;
|
||||
EXPECT_EQ(66ull, findLowestOffset(Targets, /*IsAfter=*/false, 1));
|
||||
EXPECT_EQ(2ull, findLowestOffset(Targets, /*IsAfter=*/true, 1));
|
||||
|
||||
EXPECT_EQ(72ull, findLowestOffset(Targets, /*IsAfter=*/false, 8));
|
||||
EXPECT_EQ(8ull, findLowestOffset(Targets, /*IsAfter=*/true, 8));
|
||||
|
||||
VT1.After.BytesUsed = {0xff, 0, 0, 0, 0xff};
|
||||
VT2.After.BytesUsed = {0xff, 1, 0, 0, 0};
|
||||
EXPECT_EQ(16ull, findLowestOffset(Targets, /*IsAfter=*/true, 16));
|
||||
EXPECT_EQ(40ull, findLowestOffset(Targets, /*IsAfter=*/true, 32));
|
||||
}
|
||||
|
||||
TEST(WholeProgramDevirt, setReturnValues) {
|
||||
VTableBits VT1;
|
||||
VT1.ObjectSize = 8;
|
||||
|
||||
VTableBits VT2;
|
||||
VT2.ObjectSize = 8;
|
||||
|
||||
BitSetInfo BS1{&VT1, 0};
|
||||
BitSetInfo BS2{&VT2, 0};
|
||||
VirtualCallTarget Targets[] = {
|
||||
{&BS1, /*IsBigEndian=*/false},
|
||||
{&BS2, /*IsBigEndian=*/false},
|
||||
};
|
||||
|
||||
BS1.Offset = 4;
|
||||
BS2.Offset = 4;
|
||||
|
||||
int64_t OffsetByte;
|
||||
uint64_t OffsetBit;
|
||||
|
||||
Targets[0].RetVal = 1;
|
||||
Targets[1].RetVal = 0;
|
||||
setBeforeReturnValues(Targets, 32, 1, OffsetByte, OffsetBit);
|
||||
EXPECT_EQ(-5ll, OffsetByte);
|
||||
EXPECT_EQ(0ull, OffsetBit);
|
||||
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.Before.Bytes);
|
||||
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.Before.BytesUsed);
|
||||
EXPECT_EQ(std::vector<uint8_t>{0}, VT2.Before.Bytes);
|
||||
EXPECT_EQ(std::vector<uint8_t>{1}, VT2.Before.BytesUsed);
|
||||
|
||||
Targets[0].RetVal = 0;
|
||||
Targets[1].RetVal = 1;
|
||||
setBeforeReturnValues(Targets, 39, 1, OffsetByte, OffsetBit);
|
||||
EXPECT_EQ(-5ll, OffsetByte);
|
||||
EXPECT_EQ(7ull, OffsetBit);
|
||||
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.Before.Bytes);
|
||||
EXPECT_EQ(std::vector<uint8_t>{0x81}, VT1.Before.BytesUsed);
|
||||
EXPECT_EQ(std::vector<uint8_t>{0x80}, VT2.Before.Bytes);
|
||||
EXPECT_EQ(std::vector<uint8_t>{0x81}, VT2.Before.BytesUsed);
|
||||
|
||||
Targets[0].RetVal = 12;
|
||||
Targets[1].RetVal = 34;
|
||||
setBeforeReturnValues(Targets, 40, 8, OffsetByte, OffsetBit);
|
||||
EXPECT_EQ(-6ll, OffsetByte);
|
||||
EXPECT_EQ(0ull, OffsetBit);
|
||||
EXPECT_EQ((std::vector<uint8_t>{1, 12}), VT1.Before.Bytes);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff}), VT1.Before.BytesUsed);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x80, 34}), VT2.Before.Bytes);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff}), VT2.Before.BytesUsed);
|
||||
|
||||
Targets[0].RetVal = 56;
|
||||
Targets[1].RetVal = 78;
|
||||
setBeforeReturnValues(Targets, 48, 16, OffsetByte, OffsetBit);
|
||||
EXPECT_EQ(-8ll, OffsetByte);
|
||||
EXPECT_EQ(0ull, OffsetBit);
|
||||
EXPECT_EQ((std::vector<uint8_t>{1, 12, 0, 56}), VT1.Before.Bytes);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff, 0xff, 0xff}),
|
||||
VT1.Before.BytesUsed);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x80, 34, 0, 78}), VT2.Before.Bytes);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff, 0xff, 0xff}),
|
||||
VT2.Before.BytesUsed);
|
||||
|
||||
Targets[0].RetVal = 1;
|
||||
Targets[1].RetVal = 0;
|
||||
setAfterReturnValues(Targets, 32, 1, OffsetByte, OffsetBit);
|
||||
EXPECT_EQ(4ll, OffsetByte);
|
||||
EXPECT_EQ(0ull, OffsetBit);
|
||||
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.After.Bytes);
|
||||
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.After.BytesUsed);
|
||||
EXPECT_EQ(std::vector<uint8_t>{0}, VT2.After.Bytes);
|
||||
EXPECT_EQ(std::vector<uint8_t>{1}, VT2.After.BytesUsed);
|
||||
|
||||
Targets[0].RetVal = 0;
|
||||
Targets[1].RetVal = 1;
|
||||
setAfterReturnValues(Targets, 39, 1, OffsetByte, OffsetBit);
|
||||
EXPECT_EQ(4ll, OffsetByte);
|
||||
EXPECT_EQ(7ull, OffsetBit);
|
||||
EXPECT_EQ(std::vector<uint8_t>{1}, VT1.After.Bytes);
|
||||
EXPECT_EQ(std::vector<uint8_t>{0x81}, VT1.After.BytesUsed);
|
||||
EXPECT_EQ(std::vector<uint8_t>{0x80}, VT2.After.Bytes);
|
||||
EXPECT_EQ(std::vector<uint8_t>{0x81}, VT2.After.BytesUsed);
|
||||
|
||||
Targets[0].RetVal = 12;
|
||||
Targets[1].RetVal = 34;
|
||||
setAfterReturnValues(Targets, 40, 8, OffsetByte, OffsetBit);
|
||||
EXPECT_EQ(5ll, OffsetByte);
|
||||
EXPECT_EQ(0ull, OffsetBit);
|
||||
EXPECT_EQ((std::vector<uint8_t>{1, 12}), VT1.After.Bytes);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff}), VT1.After.BytesUsed);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x80, 34}), VT2.After.Bytes);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff}), VT2.After.BytesUsed);
|
||||
|
||||
Targets[0].RetVal = 56;
|
||||
Targets[1].RetVal = 78;
|
||||
setAfterReturnValues(Targets, 48, 16, OffsetByte, OffsetBit);
|
||||
EXPECT_EQ(6ll, OffsetByte);
|
||||
EXPECT_EQ(0ull, OffsetBit);
|
||||
EXPECT_EQ((std::vector<uint8_t>{1, 12, 56, 0}), VT1.After.Bytes);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff, 0xff, 0xff}),
|
||||
VT1.After.BytesUsed);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x80, 34, 78, 0}), VT2.After.Bytes);
|
||||
EXPECT_EQ((std::vector<uint8_t>{0x81, 0xff, 0xff, 0xff}),
|
||||
VT2.After.BytesUsed);
|
||||
}
|
Loading…
Reference in New Issue
Block a user