1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00

Exploit distributive laws (eg: And distributes over Or, Mul over Add, etc) in a

fairly systematic way in instcombine.  Some of these cases were already dealt
with, in which case I removed the existing code.  The case of Add has a bunch of
funky logic which covers some of this plus a few variants (considers shifts to be
a form of multiplication), which I didn't touch.  The simplification performed is:
A*B+A*C -> A*(B+C).  The improvement is to do this in cases that were not already
handled [such as A*B-A*C -> A*(B-C), which was reported on the mailing list], and
also to do it more often by not checking for "only one use" if "B+C" simplifies.

llvm-svn: 120024
This commit is contained in:
Duncan Sands 2010-11-23 14:23:47 +00:00
parent f71cc94c91
commit 555525adf4
5 changed files with 144 additions and 42 deletions

View File

@ -290,6 +290,12 @@ private:
/// operators which are associative or commutative.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
/// SimplifyDistributed - This tries to simplify binary operations which some
/// other binary operation distributes over (eg "A*B+A*C" -> "A*(B+C)" since
/// addition is distributed over by multiplication). Returns the result of
/// the simplification, or null if no simplification was performed.
Instruction *SimplifyDistributed(BinaryOperator &I);
/// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
/// based on the demanded bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,

View File

@ -91,6 +91,8 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
I.hasNoUnsignedWrap(), TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyDistributed(I)) // (A*B)+(A*C) -> A*(B+C)
return NV;
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
@ -548,6 +550,9 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (Op0 == Op1) // sub X, X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (Instruction *NV = SimplifyDistributed(I)) // (A*B)-(A*C) -> A*(B-C)
return NV;
// If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
if (Value *V = dyn_castNegVal(Op1)) {
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);

View File

@ -984,6 +984,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyAndInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyDistributed(I)) // (A|B)&(A|C) -> A|(B&C)
return NV;
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
@ -1692,6 +1695,9 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyOrInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyDistributed(I)) // (A&B)|(A&C) -> A&(B|C)
return NV;
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
@ -1766,7 +1772,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *C = 0, *D = 0;
if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
match(Op1, m_And(m_Value(B), m_Value(D)))) {
Value *V1 = 0, *V2 = 0, *V3 = 0;
Value *V1 = 0, *V2 = 0;
C1 = dyn_cast<ConstantInt>(C);
C2 = dyn_cast<ConstantInt>(D);
if (C1 && C2) { // (A & C1)|(B & C2)
@ -1824,25 +1830,6 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
}
}
}
// Check to see if we have any common things being and'ed. If so, find the
// terms for V1 & (V2|V3).
if (Op0->hasOneUse() || Op1->hasOneUse()) {
V1 = 0;
if (A == B) // (A & C)|(A & D) == A & (C|D)
V1 = A, V2 = C, V3 = D;
else if (A == D) // (A & C)|(B & A) == A & (B|C)
V1 = A, V2 = B, V3 = C;
else if (C == B) // (A & C)|(C & D) == C & (A|D)
V1 = C, V2 = A, V3 = D;
else if (C == D) // (A & C)|(B & C) == C & (A|B)
V1 = C, V2 = A, V3 = B;
if (V1) {
Value *Or = Builder->CreateOr(V2, V3, "tmp");
return BinaryOperator::CreateAnd(V1, Or);
}
}
// (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
// Don't do this for vector select idioms, the code generator doesn't handle
@ -1979,6 +1966,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Value *V = SimplifyXorInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyDistributed(I)) // (A&B)^(A&C) -> A&(B^C)
return NV;
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
@ -2172,29 +2162,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
// (A & B)^(C & D)
if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
match(Op0I, m_And(m_Value(A), m_Value(B))) &&
match(Op1I, m_And(m_Value(C), m_Value(D)))) {
// (X & Y)^(X & Y) -> (Y^Z) & X
Value *X = 0, *Y = 0, *Z = 0;
if (A == C)
X = A, Y = B, Z = D;
else if (A == D)
X = A, Y = B, Z = C;
else if (B == C)
X = B, Y = A, Z = D;
else if (B == D)
X = B, Y = A, Z = C;
if (X) {
Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
return BinaryOperator::CreateAnd(NewOp, X);
}
}
}
// (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))

View File

@ -237,6 +237,117 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
} while (1);
}
/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
/// "(X LOp Y) ROp (Z LOp Z)".
static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
Instruction::BinaryOps ROp) {
switch (LOp) {
default:
return false;
case Instruction::And:
// And distributes over Or and Xor.
switch (ROp) {
default:
return false;
case Instruction::Or:
case Instruction::Xor:
return true;
}
case Instruction::Mul:
// Multiplication distributes over addition and subtraction.
switch (ROp) {
default:
return false;
case Instruction::Add:
case Instruction::Sub:
return true;
}
case Instruction::Or:
// Or distributes over And.
switch (ROp) {
default:
return false;
case Instruction::And:
return true;
}
}
}
/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
/// "(X ROp Z) LOp (Y ROp Z)".
static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
Instruction::BinaryOps ROp) {
if (Instruction::isCommutative(ROp))
return LeftDistributesOverRight(ROp, LOp);
// TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
// but this requires knowing that the addition does not overflow and other
// such subtleties.
return false;
}
/// SimplifyDistributed - This tries to simplify binary operations which some
/// other binary operation distributes over (eg "A*B+A*C" -> "A*(B+C)" since
/// addition is distributed over by multiplication). Returns the result of
/// the simplification, or null if no simplification was performed.
Instruction *InstCombiner::SimplifyDistributed(BinaryOperator &I) {
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
if (!Op0 || !Op1 || Op0->getOpcode() != Op1->getOpcode())
return 0;
// The instruction has the form "(A op' B) op (C op' D)".
Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1);
Value *C = Op1->getOperand(0); Value *D = Op1->getOperand(1);
Instruction::BinaryOps OuterOpcode = I.getOpcode(); // op
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
bool LeftDistributes = LeftDistributesOverRight(InnerOpcode, OuterOpcode);
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
bool RightDistributes = RightDistributesOverLeft(OuterOpcode, InnerOpcode);
// Does "X op' Y" always equal "Y op' X"?
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
if (LeftDistributes)
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
// commutative case, "(A op' B) op (C op' A)"?
if (A == C || (InnerCommutative && A == D)) {
if (A != C)
std::swap(C, D);
// Consider forming "A op' (B op D)".
// If "B op D" simplifies then it can be formed with no cost.
Value *RHS = SimplifyBinOp(OuterOpcode, B, D, TD);
// If "B op D" doesn't simplify then only proceed if both of the existing
// operations "A op' B" and "C op' D" will be zapped since no longer used.
if (!RHS && Op0->hasOneUse() && Op1->hasOneUse())
RHS = Builder->CreateBinOp(OuterOpcode, B, D, Op1->getName());
if (RHS)
return BinaryOperator::Create(InnerOpcode, A, RHS);
}
if (RightDistributes)
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
// commutative case, "(A op' B) op (B op' D)"?
if (B == D || (InnerCommutative && B == C)) {
if (B != D)
std::swap(C, D);
// Consider forming "(A op C) op' B".
// If "A op C" simplifies then it can be formed with no cost.
Value *LHS = SimplifyBinOp(OuterOpcode, A, C, TD);
// If "A op C" doesn't simplify then only proceed if both of the existing
// operations "A op' B" and "C op' D" will be zapped since no longer used.
if (!LHS && Op0->hasOneUse() && Op1->hasOneUse())
LHS = Builder->CreateBinOp(OuterOpcode, A, C, Op0->getName());
if (LHS)
return BinaryOperator::Create(InnerOpcode, LHS, B);
}
return 0;
}
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//

View File

@ -0,0 +1,11 @@
; RUN: opt < %s -instcombine -S | FileCheck %s
define i32 @foo(i32 %x, i32 %y) {
; CHECK: @foo
%add = add nsw i32 %y, %x
%mul = mul nsw i32 %add, %y
%square = mul nsw i32 %y, %y
%res = sub i32 %mul, %square
; CHECK: %res = mul i32 %x, %y
ret i32 %res
; CHECK: ret i32 %res
}