1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00

[LoopFlatten] Use SCEV and Loop APIs to identify increment and trip count

Replace pattern-matching with existing SCEV and Loop APIs as a more
robust way of identifying the loop increment and trip count. Also
rename 'Limit' as 'TripCount' to be consistent with terminology.

Differential Revision: https://reviews.llvm.org/D106580
This commit is contained in:
Rosie Sumpter 2021-07-22 17:54:40 +01:00
parent ee2584c4c2
commit 565fcd6a48
2 changed files with 104 additions and 58 deletions

View File

@ -63,7 +63,7 @@ static cl::opt<bool>
AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
cl::init(false), cl::init(false),
cl::desc("Assume that the product of the two iteration " cl::desc("Assume that the product of the two iteration "
"limits will never overflow")); "trip counts will never overflow"));
static cl::opt<bool> static cl::opt<bool>
WidenIV("loop-flatten-widen-iv", cl::Hidden, WidenIV("loop-flatten-widen-iv", cl::Hidden,
@ -74,10 +74,12 @@ static cl::opt<bool>
struct FlattenInfo { struct FlattenInfo {
Loop *OuterLoop = nullptr; Loop *OuterLoop = nullptr;
Loop *InnerLoop = nullptr; Loop *InnerLoop = nullptr;
// These PHINodes correspond to loop induction variables, which are expected
// to start at zero and increment by one on each loop.
PHINode *InnerInductionPHI = nullptr; PHINode *InnerInductionPHI = nullptr;
PHINode *OuterInductionPHI = nullptr; PHINode *OuterInductionPHI = nullptr;
Value *InnerLimit = nullptr; Value *InnerTripCount = nullptr;
Value *OuterLimit = nullptr; Value *OuterTripCount = nullptr;
BinaryOperator *InnerIncrement = nullptr; BinaryOperator *InnerIncrement = nullptr;
BinaryOperator *OuterIncrement = nullptr; BinaryOperator *OuterIncrement = nullptr;
BranchInst *InnerBranch = nullptr; BranchInst *InnerBranch = nullptr;
@ -91,12 +93,12 @@ struct FlattenInfo {
FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {}; FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
}; };
// Finds the induction variable, increment and limit for a simple loop that we // Finds the induction variable, increment and trip count for a simple loop that
// can flatten. // we can flatten.
static bool findLoopComponents( static bool findLoopComponents(
Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment, PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
BranchInst *&BackBranch, ScalarEvolution *SE) { BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
if (!L->isLoopSimplifyForm()) { if (!L->isLoopSimplifyForm()) {
@ -104,6 +106,13 @@ static bool findLoopComponents(
return false; return false;
} }
// Currently, to simplify the implementation, the Loop induction variable must
// start at zero and increment with a step size of one.
if (!L->isCanonical(*SE)) {
LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
return false;
}
// There must be exactly one exiting block, and it must be the same at the // There must be exactly one exiting block, and it must be the same at the
// latch. // latch.
BasicBlock *Latch = L->getLoopLatch(); BasicBlock *Latch = L->getLoopLatch();
@ -144,40 +153,44 @@ static bool findLoopComponents(
IterationInstructions.insert(Compare); IterationInstructions.insert(Compare);
LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
// Find increment and limit from the compare // Find increment and trip count.
Increment = nullptr; // There are exactly 2 incoming values to the induction phi; one from the
if (match(Compare->getOperand(0), // pre-header and one from the latch. The incoming latch value is the
m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { // increment variable.
Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0)); Increment =
Limit = Compare->getOperand(1); dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
} else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE && if (Increment->hasNUsesOrMore(3)) {
match(Compare->getOperand(1), LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
Limit = Compare->getOperand(0);
}
if (!Increment || Increment->hasNUsesOrMore(3)) {
LLVM_DEBUG(dbgs() << "Cound not find valid increment\n");
return false; return false;
} }
// The trip count is the RHS of the compare. If this doesn't match the trip
// count computed by SCEV then this is either because the trip count variable
// has been widened (then leave the trip count as it is), or because it is a
// constant and another transformation has changed the compare, e.g.
// icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, then we don't flatten
// the loop (yet).
TripCount = Compare->getOperand(1);
const SCEV *SCEVTripCount =
SE->getTripCountFromExitCount(SE->getBackedgeTakenCount(L));
if (SE->getSCEV(TripCount) != SCEVTripCount) {
if (!IsWidened) {
LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
return false;
}
auto TripCountInst = dyn_cast<Instruction>(TripCount);
if (!TripCountInst) {
LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
return false;
}
if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
return false;
}
}
IterationInstructions.insert(Increment); IterationInstructions.insert(Increment);
LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump()); LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump()); LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
assert(InductionPHI->getNumIncomingValues() == 2);
if (InductionPHI->getIncomingValueForBlock(Latch) != Increment) {
LLVM_DEBUG(
dbgs() << "Incoming value from latch is not the increment inst\n");
return false;
}
auto *CI = dyn_cast<ConstantInt>(
InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
if (!CI || !CI->isZero()) {
LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump());
return false;
}
LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
return true; return true;
@ -300,7 +313,7 @@ checkOuterLoopInsts(FlattenInfo &FI,
// Multiplies of the outer iteration variable and inner iteration // Multiplies of the outer iteration variable and inner iteration
// count will be optimised out. // count will be optimised out.
if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
m_Specific(FI.InnerLimit)))) m_Specific(FI.InnerTripCount))))
continue; continue;
InstructionCost Cost = InstructionCost Cost =
TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
@ -325,16 +338,16 @@ checkOuterLoopInsts(FlattenInfo &FI,
static bool checkIVUsers(FlattenInfo &FI) { static bool checkIVUsers(FlattenInfo &FI) {
// We require all uses of both induction variables to match this pattern: // We require all uses of both induction variables to match this pattern:
// //
// (OuterPHI * InnerLimit) + InnerPHI // (OuterPHI * InnerTripCount) + InnerPHI
// //
// Any uses of the induction variables not matching that pattern would // Any uses of the induction variables not matching that pattern would
// require a div/mod to reconstruct in the flattened loop, so the // require a div/mod to reconstruct in the flattened loop, so the
// transformation wouldn't be profitable. // transformation wouldn't be profitable.
Value *InnerLimit = FI.InnerLimit; Value *InnerTripCount = FI.InnerTripCount;
if (FI.Widened && if (FI.Widened &&
(isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit))) (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0); InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
// Check that all uses of the inner loop's induction variable match the // Check that all uses of the inner loop's induction variable match the
// expected pattern, recording the uses of the outer IV. // expected pattern, recording the uses of the outer IV.
@ -368,7 +381,7 @@ static bool checkIVUsers(FlattenInfo &FI) {
m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)), m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
m_Value(MatchedItCount))); m_Value(MatchedItCount)));
if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) { if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
LLVM_DEBUG(dbgs() << "Use is optimisable\n"); LLVM_DEBUG(dbgs() << "Use is optimisable\n");
ValidOuterPHIUses.insert(MatchedMul); ValidOuterPHIUses.insert(MatchedMul);
FI.LinearIVUses.insert(U); FI.LinearIVUses.insert(U);
@ -417,7 +430,7 @@ static bool checkIVUsers(FlattenInfo &FI) {
} }
// Return an OverflowResult dependant on if overflow of the multiplication of // Return an OverflowResult dependant on if overflow of the multiplication of
// InnerLimit and OuterLimit can be assumed not to happen. // InnerTripCount and OuterTripCount can be assumed not to happen.
static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
AssumptionCache *AC) { AssumptionCache *AC) {
Function *F = FI.OuterLoop->getHeader()->getParent(); Function *F = FI.OuterLoop->getHeader()->getParent();
@ -430,7 +443,7 @@ static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
// Check if the multiply could not overflow due to known ranges of the // Check if the multiply could not overflow due to known ranges of the
// input values. // input values.
OverflowResult OR = computeOverflowForUnsignedMul( OverflowResult OR = computeOverflowForUnsignedMul(
FI.InnerLimit, FI.OuterLimit, DL, AC, FI.InnerTripCount, FI.OuterTripCount, DL, AC,
FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
if (OR != OverflowResult::MayOverflow) if (OR != OverflowResult::MayOverflow)
return OR; return OR;
@ -461,21 +474,23 @@ static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, AssumptionCache *AC, ScalarEvolution *SE, AssumptionCache *AC,
const TargetTransformInfo *TTI) { const TargetTransformInfo *TTI) {
SmallPtrSet<Instruction *, 8> IterationInstructions; SmallPtrSet<Instruction *, 8> IterationInstructions;
if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI, if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE)) FI.InnerInductionPHI, FI.InnerTripCount,
FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
return false; return false;
if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI, if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE)) FI.OuterInductionPHI, FI.OuterTripCount,
FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
return false; return false;
// Both of the loop limit values must be invariant in the outer loop // Both of the loop trip count values must be invariant in the outer loop
// (non-instructions are all inherently invariant). // (non-instructions are all inherently invariant).
if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) { if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n"); LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
return false; return false;
} }
if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) { if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n"); LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
return false; return false;
} }
@ -515,8 +530,8 @@ static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
ORE.emit(Remark); ORE.emit(Remark);
} }
Value *NewTripCount = Value *NewTripCount = BinaryOperator::CreateMul(
BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount", FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
FI.OuterLoop->getLoopPreheader()->getTerminator()); FI.OuterLoop->getLoopPreheader()->getTerminator());
LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
NewTripCount->dump()); NewTripCount->dump());
@ -581,7 +596,7 @@ static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
// If both induction types are less than the maximum legal integer width, // If both induction types are less than the maximum legal integer width,
// promote both to the widest type available so we know calculating // promote both to the widest type available so we know calculating
// (OuterLimit * InnerLimit) as the new trip count is safe. // (OuterTripCount * InnerTripCount) as the new trip count is safe.
if (InnerType != OuterType || if (InnerType != OuterType ||
InnerType->getScalarSizeInBits() >= MaxLegalSize || InnerType->getScalarSizeInBits() >= MaxLegalSize ||
MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) { MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {

View File

@ -341,6 +341,37 @@ for.end8: ; preds = %for.inc6
ret i32 10 ret i32 10
} }
; When the loop trip count is a constant (e.g. 20) and the step size is
; 1, InstCombine causes the transformation icmp ult i32 %inc, 20 ->
; icmp ult i32 %j, 19. In this case a valid trip count is not found so
; the loop is not flattened.
define i32 @test9(i32* nocapture %A) {
entry:
br label %for.cond1.preheader
for.cond1.preheader:
%i.017 = phi i32 [ 0, %entry ], [ %inc6, %for.cond.cleanup3 ]
%mul = mul i32 %i.017, 20
br label %for.body4
for.cond.cleanup3:
%inc6 = add i32 %i.017, 1
%cmp = icmp ult i32 %inc6, 11
br i1 %cmp, label %for.cond1.preheader, label %for.cond.cleanup
for.body4:
%j.016 = phi i32 [ 0, %for.cond1.preheader ], [ %inc, %for.body4 ]
%add = add i32 %j.016, %mul
%arrayidx = getelementptr inbounds i32, i32* %A, i32 %add
store i32 30, i32* %arrayidx, align 4
%inc = add nuw nsw i32 %j.016, 1
%cmp2 = icmp ult i32 %j.016, 19
br i1 %cmp2, label %for.body4, label %for.cond.cleanup3
for.cond.cleanup:
%0 = load i32, i32* %A, align 4
ret i32 %0
}
; Outer loop conditional phi ; Outer loop conditional phi
define i32 @e() { define i32 @e() {