mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
Rename member variables to follow the rest of LLVM.
No functional change. llvm-svn: 124257
This commit is contained in:
parent
134e5b7679
commit
5c0fcc03af
@ -41,51 +41,51 @@ AllowSplit("spiller-splits-edges",
|
||||
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
|
||||
const LiveIntervals &lis,
|
||||
const MachineLoopInfo &mli)
|
||||
: mf_(mf),
|
||||
lis_(lis),
|
||||
loops_(mli),
|
||||
tii_(*mf.getTarget().getInstrInfo()),
|
||||
curli_(0) {}
|
||||
: MF(mf),
|
||||
LIS(lis),
|
||||
Loops(mli),
|
||||
TII(*mf.getTarget().getInstrInfo()),
|
||||
CurLI(0) {}
|
||||
|
||||
void SplitAnalysis::clear() {
|
||||
UseSlots.clear();
|
||||
usingInstrs_.clear();
|
||||
usingBlocks_.clear();
|
||||
usingLoops_.clear();
|
||||
curli_ = 0;
|
||||
UsingInstrs.clear();
|
||||
UsingBlocks.clear();
|
||||
UsingLoops.clear();
|
||||
CurLI = 0;
|
||||
}
|
||||
|
||||
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
|
||||
MachineBasicBlock *T, *F;
|
||||
SmallVector<MachineOperand, 4> Cond;
|
||||
return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
|
||||
return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
|
||||
}
|
||||
|
||||
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
|
||||
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
|
||||
void SplitAnalysis::analyzeUses() {
|
||||
const MachineRegisterInfo &MRI = mf_.getRegInfo();
|
||||
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
|
||||
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
||||
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg);
|
||||
MachineInstr *MI = I.skipInstruction();) {
|
||||
if (MI->isDebugValue() || !usingInstrs_.insert(MI))
|
||||
if (MI->isDebugValue() || !UsingInstrs.insert(MI))
|
||||
continue;
|
||||
UseSlots.push_back(lis_.getInstructionIndex(MI).getDefIndex());
|
||||
UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
|
||||
MachineBasicBlock *MBB = MI->getParent();
|
||||
if (usingBlocks_[MBB]++)
|
||||
if (UsingBlocks[MBB]++)
|
||||
continue;
|
||||
for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
|
||||
for (MachineLoop *Loop = Loops.getLoopFor(MBB); Loop;
|
||||
Loop = Loop->getParentLoop())
|
||||
usingLoops_[Loop]++;
|
||||
UsingLoops[Loop]++;
|
||||
}
|
||||
array_pod_sort(UseSlots.begin(), UseSlots.end());
|
||||
DEBUG(dbgs() << " counted "
|
||||
<< usingInstrs_.size() << " instrs, "
|
||||
<< usingBlocks_.size() << " blocks, "
|
||||
<< usingLoops_.size() << " loops.\n");
|
||||
<< UsingInstrs.size() << " instrs, "
|
||||
<< UsingBlocks.size() << " blocks, "
|
||||
<< UsingLoops.size() << " loops.\n");
|
||||
}
|
||||
|
||||
void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
|
||||
for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
||||
unsigned count = usingBlocks_.lookup(*I);
|
||||
unsigned count = UsingBlocks.lookup(*I);
|
||||
OS << " BB#" << (*I)->getNumber();
|
||||
if (count)
|
||||
OS << '(' << count << ')';
|
||||
@ -127,12 +127,12 @@ void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
|
||||
print(B.Exits, OS);
|
||||
}
|
||||
|
||||
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
|
||||
/// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in
|
||||
/// and around the Loop.
|
||||
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
|
||||
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
|
||||
LoopPeripheralUse use = ContainedInLoop;
|
||||
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
|
||||
for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
|
||||
I != E; ++I) {
|
||||
const MachineBasicBlock *MBB = I->first;
|
||||
// Is this a peripheral block?
|
||||
@ -159,7 +159,7 @@ void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
||||
BlockPtrSet &CriticalExits) {
|
||||
CriticalExits.clear();
|
||||
|
||||
// A critical exit block has curli live-in, and has a predecessor that is not
|
||||
// A critical exit block has CurLI live-in, and has a predecessor that is not
|
||||
// in the loop nor a loop predecessor. For such an exit block, the edges
|
||||
// carrying the new variable must be moved to a new pre-exit block.
|
||||
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
|
||||
@ -168,8 +168,8 @@ void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
||||
// A single-predecessor exit block is definitely not a critical edge.
|
||||
if (Exit->pred_size() == 1)
|
||||
continue;
|
||||
// This exit may not have curli live in at all. No need to split.
|
||||
if (!lis_.isLiveInToMBB(*curli_, Exit))
|
||||
// This exit may not have CurLI live in at all. No need to split.
|
||||
if (!LIS.isLiveInToMBB(*CurLI, Exit))
|
||||
continue;
|
||||
// Does this exit block have a predecessor that is not a loop block or loop
|
||||
// predecessor?
|
||||
@ -189,8 +189,8 @@ void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
|
||||
BlockPtrSet &CriticalPreds) {
|
||||
CriticalPreds.clear();
|
||||
|
||||
// A critical predecessor block has curli live-out, and has a successor that
|
||||
// has curli live-in and is not in the loop nor a loop exit block. For such a
|
||||
// A critical predecessor block has CurLI live-out, and has a successor that
|
||||
// has CurLI live-in and is not in the loop nor a loop exit block. For such a
|
||||
// predecessor block, we must carry the value in both the 'inside' and
|
||||
// 'outside' registers.
|
||||
for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
|
||||
@ -199,8 +199,8 @@ void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
|
||||
// Definitely not a critical edge.
|
||||
if (Pred->succ_size() == 1)
|
||||
continue;
|
||||
// This block may not have curli live out at all if there is a PHI.
|
||||
if (!lis_.isLiveOutOfMBB(*curli_, Pred))
|
||||
// This block may not have CurLI live out at all if there is a PHI.
|
||||
if (!LIS.isLiveOutOfMBB(*CurLI, Pred))
|
||||
continue;
|
||||
// Does this block have a successor outside the loop?
|
||||
for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
|
||||
@ -208,7 +208,7 @@ void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
|
||||
const MachineBasicBlock *Succ = *SI;
|
||||
if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
|
||||
continue;
|
||||
if (!lis_.isLiveInToMBB(*curli_, Succ))
|
||||
if (!LIS.isLiveInToMBB(*CurLI, Succ))
|
||||
continue;
|
||||
// This is a critical predecessor block.
|
||||
CriticalPreds.insert(Pred);
|
||||
@ -245,7 +245,7 @@ SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
||||
// If Succ's layout predecessor falls through, that too must be analyzable.
|
||||
// We need to insert the pre-exit block in the gap.
|
||||
MachineFunction::const_iterator MFI = Succ;
|
||||
if (MFI == mf_.begin())
|
||||
if (MFI == MF.begin())
|
||||
continue;
|
||||
if (!canAnalyzeBranch(--MFI))
|
||||
return false;
|
||||
@ -256,21 +256,21 @@ SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
||||
|
||||
void SplitAnalysis::analyze(const LiveInterval *li) {
|
||||
clear();
|
||||
curli_ = li;
|
||||
CurLI = li;
|
||||
analyzeUses();
|
||||
}
|
||||
|
||||
void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) {
|
||||
assert(curli_ && "Call analyze() before getSplitLoops");
|
||||
if (usingLoops_.empty())
|
||||
assert(CurLI && "Call analyze() before getSplitLoops");
|
||||
if (UsingLoops.empty())
|
||||
return;
|
||||
|
||||
LoopBlocks Blocks;
|
||||
BlockPtrSet CriticalExits;
|
||||
|
||||
// We split around loops where curli is used outside the periphery.
|
||||
for (LoopCountMap::const_iterator I = usingLoops_.begin(),
|
||||
E = usingLoops_.end(); I != E; ++I) {
|
||||
// We split around loops where CurLI is used outside the periphery.
|
||||
for (LoopCountMap::const_iterator I = UsingLoops.begin(),
|
||||
E = UsingLoops.end(); I != E; ++I) {
|
||||
const MachineLoop *Loop = I->first;
|
||||
getLoopBlocks(Loop, Blocks);
|
||||
DEBUG({ dbgs() << " "; print(Blocks, dbgs()); });
|
||||
@ -320,7 +320,7 @@ const MachineLoop *SplitAnalysis::getBestSplitLoop() {
|
||||
SlotIndex BestIdx;
|
||||
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
|
||||
++I) {
|
||||
SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
|
||||
SlotIndex Idx = LIS.getMBBStartIdx((*I)->getHeader());
|
||||
if (!Best || Idx < BestIdx)
|
||||
Best = *I, BestIdx = Idx;
|
||||
}
|
||||
@ -328,25 +328,25 @@ const MachineLoop *SplitAnalysis::getBestSplitLoop() {
|
||||
return Best;
|
||||
}
|
||||
|
||||
/// isBypassLoop - Return true if curli is live through Loop and has no uses
|
||||
/// isBypassLoop - Return true if CurLI is live through Loop and has no uses
|
||||
/// inside the loop. Bypass loops are candidates for splitting because it can
|
||||
/// prevent interference inside the loop.
|
||||
bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) {
|
||||
// If curli is live into the loop header and there are no uses in the loop, it
|
||||
// If CurLI is live into the loop header and there are no uses in the loop, it
|
||||
// must be live in the entire loop and live on at least one exiting edge.
|
||||
return !usingLoops_.count(Loop) &&
|
||||
lis_.isLiveInToMBB(*curli_, Loop->getHeader());
|
||||
return !UsingLoops.count(Loop) &&
|
||||
LIS.isLiveInToMBB(*CurLI, Loop->getHeader());
|
||||
}
|
||||
|
||||
/// getBypassLoops - Get all the maximal bypass loops. These are the bypass
|
||||
/// loops whose parent is not a bypass loop.
|
||||
void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) {
|
||||
SmallVector<MachineLoop*, 8> Todo(loops_.begin(), loops_.end());
|
||||
SmallVector<MachineLoop*, 8> Todo(Loops.begin(), Loops.end());
|
||||
while (!Todo.empty()) {
|
||||
MachineLoop *Loop = Todo.pop_back_val();
|
||||
if (!usingLoops_.count(Loop)) {
|
||||
if (!UsingLoops.count(Loop)) {
|
||||
// This is either a bypass loop or completely irrelevant.
|
||||
if (lis_.isLiveInToMBB(*curli_, Loop->getHeader()))
|
||||
if (LIS.isLiveInToMBB(*CurLI, Loop->getHeader()))
|
||||
BypassLoops.insert(Loop);
|
||||
// Either way, skip the child loops.
|
||||
continue;
|
||||
@ -370,26 +370,26 @@ makeVV(const VNInfo *a, VNInfo *b) {
|
||||
}
|
||||
|
||||
void LiveIntervalMap::reset(LiveInterval *li) {
|
||||
li_ = li;
|
||||
valueMap_.clear();
|
||||
liveOutCache_.clear();
|
||||
LI = li;
|
||||
Values.clear();
|
||||
LiveOutCache.clear();
|
||||
}
|
||||
|
||||
bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
|
||||
ValueMap::const_iterator i = valueMap_.find(ParentVNI);
|
||||
return i != valueMap_.end() && i->second == 0;
|
||||
ValueMap::const_iterator i = Values.find(ParentVNI);
|
||||
return i != Values.end() && i->second == 0;
|
||||
}
|
||||
|
||||
// defValue - Introduce a li_ def for ParentVNI that could be later than
|
||||
// defValue - Introduce a LI def for ParentVNI that could be later than
|
||||
// ParentVNI->def.
|
||||
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
|
||||
assert(li_ && "call reset first");
|
||||
assert(LI && "call reset first");
|
||||
assert(ParentVNI && "Mapping NULL value");
|
||||
assert(Idx.isValid() && "Invalid SlotIndex");
|
||||
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
||||
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
||||
|
||||
// Create a new value.
|
||||
VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
|
||||
VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
|
||||
|
||||
// Preserve the PHIDef bit.
|
||||
if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
|
||||
@ -397,7 +397,7 @@ VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
|
||||
|
||||
// Use insert for lookup, so we can add missing values with a second lookup.
|
||||
std::pair<ValueMap::iterator,bool> InsP =
|
||||
valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
|
||||
Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
|
||||
|
||||
// This is now a complex def. Mark with a NULL in valueMap.
|
||||
if (!InsP.second)
|
||||
@ -411,20 +411,20 @@ VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
|
||||
// Potentially create phi-def values.
|
||||
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
bool *simple) {
|
||||
assert(li_ && "call reset first");
|
||||
assert(LI && "call reset first");
|
||||
assert(ParentVNI && "Mapping NULL value");
|
||||
assert(Idx.isValid() && "Invalid SlotIndex");
|
||||
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
||||
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
||||
|
||||
// Use insert for lookup, so we can add missing values with a second lookup.
|
||||
std::pair<ValueMap::iterator,bool> InsP =
|
||||
valueMap_.insert(makeVV(ParentVNI, 0));
|
||||
Values.insert(makeVV(ParentVNI, 0));
|
||||
|
||||
// This was an unknown value. Create a simple mapping.
|
||||
if (InsP.second) {
|
||||
if (simple) *simple = true;
|
||||
return InsP.first->second = li_->createValueCopy(ParentVNI,
|
||||
lis_.getVNInfoAllocator());
|
||||
return InsP.first->second = LI->createValueCopy(ParentVNI,
|
||||
LIS.getVNInfoAllocator());
|
||||
}
|
||||
|
||||
// This was a simple mapped value.
|
||||
@ -436,7 +436,7 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
// This is a complex mapped value. There may be multiple defs, and we may need
|
||||
// to create phi-defs.
|
||||
if (simple) *simple = false;
|
||||
MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
|
||||
MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
|
||||
assert(IdxMBB && "No MBB at Idx");
|
||||
|
||||
// Is there a def in the same MBB we can extend?
|
||||
@ -448,14 +448,14 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
// Perform a search for all predecessor blocks where we know the dominating
|
||||
// VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
|
||||
DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
|
||||
<< " at " << Idx << " in " << *li_ << '\n');
|
||||
<< " at " << Idx << " in " << *LI << '\n');
|
||||
DEBUG(dumpCache());
|
||||
|
||||
// Blocks where li_ should be live-in.
|
||||
// Blocks where LI should be live-in.
|
||||
SmallVector<MachineDomTreeNode*, 16> LiveIn;
|
||||
LiveIn.push_back(mdt_[IdxMBB]);
|
||||
LiveIn.push_back(MDT[IdxMBB]);
|
||||
|
||||
// Using liveOutCache_ as a visited set, perform a BFS for all reaching defs.
|
||||
// Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
|
||||
for (unsigned i = 0; i != LiveIn.size(); ++i) {
|
||||
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
|
||||
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
||||
@ -463,7 +463,7 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
MachineBasicBlock *Pred = *PI;
|
||||
// Is this a known live-out block?
|
||||
std::pair<LiveOutMap::iterator,bool> LOIP =
|
||||
liveOutCache_.insert(std::make_pair(Pred, LiveOutPair()));
|
||||
LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
|
||||
// Yes, we have been here before.
|
||||
if (!LOIP.second) {
|
||||
DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
|
||||
@ -473,20 +473,20 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
}
|
||||
|
||||
// Does Pred provide a live-out value?
|
||||
SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot();
|
||||
SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
|
||||
if (VNInfo *VNI = extendTo(Pred, Last)) {
|
||||
MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def);
|
||||
MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
|
||||
DEBUG(dbgs() << " found valno #" << VNI->id
|
||||
<< " from BB#" << DefMBB->getNumber()
|
||||
<< " at BB#" << Pred->getNumber() << '\n');
|
||||
LiveOutPair &LOP = LOIP.first->second;
|
||||
LOP.first = VNI;
|
||||
LOP.second = mdt_[DefMBB];
|
||||
LOP.second = MDT[DefMBB];
|
||||
continue;
|
||||
}
|
||||
// No, we need a live-in value for Pred as well
|
||||
if (Pred != IdxMBB)
|
||||
LiveIn.push_back(mdt_[Pred]);
|
||||
LiveIn.push_back(MDT[Pred]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -512,8 +512,8 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
|
||||
// Get the IDom live-out value.
|
||||
if (!needPHI) {
|
||||
LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock());
|
||||
if (I != liveOutCache_.end())
|
||||
LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
|
||||
if (I != LiveOutCache.end())
|
||||
IDomValue = I->second;
|
||||
else
|
||||
// If IDom is outside our set of live-out blocks, there must be new
|
||||
@ -527,13 +527,13 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
if (!needPHI) {
|
||||
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
||||
PE = MBB->pred_end(); PI != PE; ++PI) {
|
||||
LiveOutPair Value = liveOutCache_[*PI];
|
||||
LiveOutPair Value = LiveOutCache[*PI];
|
||||
if (!Value.first || Value.first == IDomValue.first)
|
||||
continue;
|
||||
// This predecessor is carrying something other than IDomValue.
|
||||
// It could be because IDomValue hasn't propagated yet, or it could be
|
||||
// because MBB is in the dominance frontier of that value.
|
||||
if (mdt_.dominates(IDom, Value.second)) {
|
||||
if (MDT.dominates(IDom, Value.second)) {
|
||||
needPHI = true;
|
||||
break;
|
||||
}
|
||||
@ -543,25 +543,25 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
// Create a phi-def if required.
|
||||
if (needPHI) {
|
||||
++Changes;
|
||||
SlotIndex Start = lis_.getMBBStartIdx(MBB);
|
||||
VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
|
||||
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
||||
VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
|
||||
VNI->setIsPHIDef(true);
|
||||
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
|
||||
<< " phi-def #" << VNI->id << " at " << Start << '\n');
|
||||
// We no longer need li_ to be live-in.
|
||||
// We no longer need LI to be live-in.
|
||||
LiveIn.erase(LiveIn.begin()+(i-1));
|
||||
// Blocks in LiveIn are either IdxMBB, or have a value live-through.
|
||||
if (MBB == IdxMBB)
|
||||
IdxVNI = VNI;
|
||||
// Check if we need to update live-out info.
|
||||
LiveOutMap::iterator I = liveOutCache_.find(MBB);
|
||||
if (I == liveOutCache_.end() || I->second.second == Node) {
|
||||
LiveOutMap::iterator I = LiveOutCache.find(MBB);
|
||||
if (I == LiveOutCache.end() || I->second.second == Node) {
|
||||
// We already have a live-out defined in MBB, so this must be IdxMBB.
|
||||
assert(MBB == IdxMBB && "Adding phi-def to known live-out");
|
||||
li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
|
||||
LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
|
||||
} else {
|
||||
// This phi-def is also live-out, so color the whole block.
|
||||
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
|
||||
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
||||
I->second = LiveOutPair(VNI, Node);
|
||||
}
|
||||
} else if (IDomValue.first) {
|
||||
@ -570,8 +570,8 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
IdxVNI = IDomValue.first;
|
||||
// Propagate IDomValue if needed:
|
||||
// MBB is live-out and doesn't define its own value.
|
||||
LiveOutMap::iterator I = liveOutCache_.find(MBB);
|
||||
if (I != liveOutCache_.end() && I->second.second != Node &&
|
||||
LiveOutMap::iterator I = LiveOutCache.find(MBB);
|
||||
if (I != LiveOutCache.end() && I->second.second != Node &&
|
||||
I->second.first != IDomValue.first) {
|
||||
++Changes;
|
||||
I->second = IDomValue;
|
||||
@ -588,8 +588,8 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
|
||||
#ifndef NDEBUG
|
||||
DEBUG(dumpCache());
|
||||
// Check the liveOutCache_ invariants.
|
||||
for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
|
||||
// Check the LiveOutCache invariants.
|
||||
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
|
||||
I != E; ++I) {
|
||||
assert(I->first && "Null MBB entry in cache");
|
||||
assert(I->second.first && "Null VNInfo in cache");
|
||||
@ -598,7 +598,7 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
continue;
|
||||
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
|
||||
PE = I->first->pred_end(); PI != PE; ++PI)
|
||||
assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant");
|
||||
assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -608,15 +608,15 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
// This makes the next mapValue call much faster.
|
||||
for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
|
||||
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
|
||||
SlotIndex Start = lis_.getMBBStartIdx(MBB);
|
||||
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
||||
if (MBB == IdxMBB) {
|
||||
li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
|
||||
LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
|
||||
continue;
|
||||
}
|
||||
// Anything in LiveIn other than IdxMBB is live-through.
|
||||
VNInfo *VNI = liveOutCache_.lookup(MBB).first;
|
||||
VNInfo *VNI = LiveOutCache.lookup(MBB).first;
|
||||
assert(VNI && "Missing block value");
|
||||
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
|
||||
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
||||
}
|
||||
|
||||
return IdxVNI;
|
||||
@ -624,7 +624,7 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
||||
|
||||
#ifndef NDEBUG
|
||||
void LiveIntervalMap::dumpCache() {
|
||||
for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
|
||||
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
|
||||
I != E; ++I) {
|
||||
assert(I->first && "Null MBB entry in cache");
|
||||
assert(I->second.first && "Null VNInfo in cache");
|
||||
@ -637,70 +637,70 @@ void LiveIntervalMap::dumpCache() {
|
||||
dbgs() << " BB#" << (*PI)->getNumber();
|
||||
dbgs() << '\n';
|
||||
}
|
||||
dbgs() << " cache: " << liveOutCache_.size() << " entries.\n";
|
||||
dbgs() << " cache: " << LiveOutCache.size() << " entries.\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
// extendTo - Find the last li_ value defined in MBB at or before Idx. The
|
||||
// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
|
||||
// extendTo - Find the last LI value defined in MBB at or before Idx. The
|
||||
// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
|
||||
// Return the found VNInfo, or NULL.
|
||||
VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
|
||||
assert(li_ && "call reset first");
|
||||
LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
|
||||
if (I == li_->begin())
|
||||
assert(LI && "call reset first");
|
||||
LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
|
||||
if (I == LI->begin())
|
||||
return 0;
|
||||
--I;
|
||||
if (I->end <= lis_.getMBBStartIdx(MBB))
|
||||
if (I->end <= LIS.getMBBStartIdx(MBB))
|
||||
return 0;
|
||||
if (I->end <= Idx)
|
||||
I->end = Idx.getNextSlot();
|
||||
return I->valno;
|
||||
}
|
||||
|
||||
// addSimpleRange - Add a simple range from parentli_ to li_.
|
||||
// addSimpleRange - Add a simple range from ParentLI to LI.
|
||||
// ParentVNI must be live in the [Start;End) interval.
|
||||
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
|
||||
const VNInfo *ParentVNI) {
|
||||
assert(li_ && "call reset first");
|
||||
assert(LI && "call reset first");
|
||||
bool simple;
|
||||
VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
|
||||
// A simple mapping is easy.
|
||||
if (simple) {
|
||||
li_->addRange(LiveRange(Start, End, VNI));
|
||||
LI->addRange(LiveRange(Start, End, VNI));
|
||||
return;
|
||||
}
|
||||
|
||||
// ParentVNI is a complex value. We must map per MBB.
|
||||
MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
|
||||
MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
|
||||
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
|
||||
MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
|
||||
|
||||
if (MBB == MBBE) {
|
||||
li_->addRange(LiveRange(Start, End, VNI));
|
||||
LI->addRange(LiveRange(Start, End, VNI));
|
||||
return;
|
||||
}
|
||||
|
||||
// First block.
|
||||
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
|
||||
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
||||
|
||||
// Run sequence of full blocks.
|
||||
for (++MBB; MBB != MBBE; ++MBB) {
|
||||
Start = lis_.getMBBStartIdx(MBB);
|
||||
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
|
||||
Start = LIS.getMBBStartIdx(MBB);
|
||||
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
|
||||
mapValue(ParentVNI, Start)));
|
||||
}
|
||||
|
||||
// Final block.
|
||||
Start = lis_.getMBBStartIdx(MBB);
|
||||
Start = LIS.getMBBStartIdx(MBB);
|
||||
if (Start != End)
|
||||
li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
|
||||
LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
|
||||
}
|
||||
|
||||
/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
|
||||
/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
|
||||
/// All needed values whose def is not inside [Start;End) must be defined
|
||||
/// beforehand so mapValue will work.
|
||||
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
|
||||
assert(li_ && "call reset first");
|
||||
LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
|
||||
assert(LI && "call reset first");
|
||||
LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
|
||||
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
|
||||
|
||||
// Check if --I begins before Start and overlaps.
|
||||
@ -727,22 +727,22 @@ SplitEditor::SplitEditor(SplitAnalysis &sa,
|
||||
VirtRegMap &vrm,
|
||||
MachineDominatorTree &mdt,
|
||||
LiveRangeEdit &edit)
|
||||
: sa_(sa), lis_(lis), vrm_(vrm),
|
||||
mri_(vrm.getMachineFunction().getRegInfo()),
|
||||
tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
|
||||
tri_(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
|
||||
edit_(edit),
|
||||
dupli_(lis_, mdt, edit.getParent()),
|
||||
openli_(lis_, mdt, edit.getParent())
|
||||
: sa_(sa), LIS(lis), VRM(vrm),
|
||||
MRI(vrm.getMachineFunction().getRegInfo()),
|
||||
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
|
||||
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
|
||||
Edit(edit),
|
||||
DupLI(LIS, mdt, edit.getParent()),
|
||||
OpenLI(LIS, mdt, edit.getParent())
|
||||
{
|
||||
// We don't need an AliasAnalysis since we will only be performing
|
||||
// cheap-as-a-copy remats anyway.
|
||||
edit_.anyRematerializable(lis_, tii_, 0);
|
||||
Edit.anyRematerializable(LIS, TII, 0);
|
||||
}
|
||||
|
||||
bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
|
||||
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
|
||||
if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
|
||||
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
|
||||
if (*I != DupLI.getLI() && (*I)->liveAt(Idx))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
@ -758,14 +758,14 @@ VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg,
|
||||
|
||||
// Attempt cheap-as-a-copy rematerialization.
|
||||
LiveRangeEdit::Remat RM(ParentVNI);
|
||||
if (edit_.canRematerializeAt(RM, UseIdx, true, lis_)) {
|
||||
Def = edit_.rematerializeAt(MBB, I, Reg.getLI()->reg, RM,
|
||||
lis_, tii_, tri_);
|
||||
if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
|
||||
Def = Edit.rematerializeAt(MBB, I, Reg.getLI()->reg, RM,
|
||||
LIS, TII, TRI);
|
||||
} else {
|
||||
// Can't remat, just insert a copy from parent.
|
||||
CopyMI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY),
|
||||
Reg.getLI()->reg).addReg(edit_.getReg());
|
||||
Def = lis_.InsertMachineInstrInMaps(CopyMI).getDefIndex();
|
||||
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY),
|
||||
Reg.getLI()->reg).addReg(Edit.getReg());
|
||||
Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
|
||||
}
|
||||
|
||||
// Define the value in Reg.
|
||||
@ -781,121 +781,121 @@ VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg,
|
||||
|
||||
/// Create a new virtual register and live interval.
|
||||
void SplitEditor::openIntv() {
|
||||
assert(!openli_.getLI() && "Previous LI not closed before openIntv");
|
||||
if (!dupli_.getLI())
|
||||
dupli_.reset(&edit_.create(mri_, lis_, vrm_));
|
||||
assert(!OpenLI.getLI() && "Previous LI not closed before openIntv");
|
||||
if (!DupLI.getLI())
|
||||
DupLI.reset(&Edit.create(MRI, LIS, VRM));
|
||||
|
||||
openli_.reset(&edit_.create(mri_, lis_, vrm_));
|
||||
OpenLI.reset(&Edit.create(MRI, LIS, VRM));
|
||||
}
|
||||
|
||||
/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
|
||||
/// enterIntvBefore - Enter OpenLI before the instruction at Idx. If CurLI is
|
||||
/// not live before Idx, a COPY is not inserted.
|
||||
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
|
||||
assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
|
||||
assert(OpenLI.getLI() && "openIntv not called before enterIntvBefore");
|
||||
Idx = Idx.getUseIndex();
|
||||
DEBUG(dbgs() << " enterIntvBefore " << Idx);
|
||||
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx);
|
||||
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
||||
if (!ParentVNI) {
|
||||
DEBUG(dbgs() << ": not live\n");
|
||||
return;
|
||||
}
|
||||
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
||||
truncatedValues.insert(ParentVNI);
|
||||
MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
|
||||
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
||||
assert(MI && "enterIntvBefore called with invalid index");
|
||||
|
||||
defFromParent(openli_, ParentVNI, Idx, *MI->getParent(), MI);
|
||||
defFromParent(OpenLI, ParentVNI, Idx, *MI->getParent(), MI);
|
||||
|
||||
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
|
||||
DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
|
||||
}
|
||||
|
||||
/// enterIntvAtEnd - Enter openli at the end of MBB.
|
||||
/// enterIntvAtEnd - Enter OpenLI at the end of MBB.
|
||||
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
|
||||
assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
|
||||
SlotIndex End = lis_.getMBBEndIdx(&MBB).getPrevSlot();
|
||||
assert(OpenLI.getLI() && "openIntv not called before enterIntvAtEnd");
|
||||
SlotIndex End = LIS.getMBBEndIdx(&MBB).getPrevSlot();
|
||||
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
|
||||
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End);
|
||||
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(End);
|
||||
if (!ParentVNI) {
|
||||
DEBUG(dbgs() << ": not live\n");
|
||||
return;
|
||||
}
|
||||
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
||||
truncatedValues.insert(ParentVNI);
|
||||
defFromParent(openli_, ParentVNI, End, MBB, MBB.getFirstTerminator());
|
||||
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
|
||||
defFromParent(OpenLI, ParentVNI, End, MBB, MBB.getFirstTerminator());
|
||||
DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
|
||||
}
|
||||
|
||||
/// useIntv - indicate that all instructions in MBB should use openli.
|
||||
/// useIntv - indicate that all instructions in MBB should use OpenLI.
|
||||
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
|
||||
useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
|
||||
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
|
||||
}
|
||||
|
||||
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
|
||||
assert(openli_.getLI() && "openIntv not called before useIntv");
|
||||
openli_.addRange(Start, End);
|
||||
assert(OpenLI.getLI() && "openIntv not called before useIntv");
|
||||
OpenLI.addRange(Start, End);
|
||||
DEBUG(dbgs() << " use [" << Start << ';' << End << "): "
|
||||
<< *openli_.getLI() << '\n');
|
||||
<< *OpenLI.getLI() << '\n');
|
||||
}
|
||||
|
||||
/// leaveIntvAfter - Leave openli after the instruction at Idx.
|
||||
/// leaveIntvAfter - Leave OpenLI after the instruction at Idx.
|
||||
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
|
||||
assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
|
||||
assert(OpenLI.getLI() && "openIntv not called before leaveIntvAfter");
|
||||
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
|
||||
|
||||
// The interval must be live beyond the instruction at Idx.
|
||||
Idx = Idx.getBoundaryIndex();
|
||||
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx);
|
||||
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
||||
if (!ParentVNI) {
|
||||
DEBUG(dbgs() << ": not live\n");
|
||||
return;
|
||||
}
|
||||
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
||||
|
||||
MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
|
||||
VNInfo *VNI = defFromParent(dupli_, ParentVNI, Idx,
|
||||
MachineBasicBlock::iterator MII = LIS.getInstructionFromIndex(Idx);
|
||||
VNInfo *VNI = defFromParent(DupLI, ParentVNI, Idx,
|
||||
*MII->getParent(), llvm::next(MII));
|
||||
|
||||
// Make sure that openli is properly extended from Idx to the new copy.
|
||||
// Make sure that OpenLI is properly extended from Idx to the new copy.
|
||||
// FIXME: This shouldn't be necessary for remats.
|
||||
openli_.addSimpleRange(Idx, VNI->def, ParentVNI);
|
||||
OpenLI.addSimpleRange(Idx, VNI->def, ParentVNI);
|
||||
|
||||
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
|
||||
DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
|
||||
}
|
||||
|
||||
/// leaveIntvAtTop - Leave the interval at the top of MBB.
|
||||
/// Currently, only one value can leave the interval.
|
||||
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
|
||||
assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
|
||||
SlotIndex Start = lis_.getMBBStartIdx(&MBB);
|
||||
assert(OpenLI.getLI() && "openIntv not called before leaveIntvAtTop");
|
||||
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
|
||||
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
|
||||
|
||||
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
|
||||
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
|
||||
if (!ParentVNI) {
|
||||
DEBUG(dbgs() << ": not live\n");
|
||||
return;
|
||||
}
|
||||
|
||||
VNInfo *VNI = defFromParent(dupli_, ParentVNI, Start, MBB,
|
||||
VNInfo *VNI = defFromParent(DupLI, ParentVNI, Start, MBB,
|
||||
MBB.SkipPHIsAndLabels(MBB.begin()));
|
||||
|
||||
// Finally we must make sure that openli is properly extended from Start to
|
||||
// Finally we must make sure that OpenLI is properly extended from Start to
|
||||
// the new copy.
|
||||
openli_.addSimpleRange(Start, VNI->def, ParentVNI);
|
||||
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
|
||||
OpenLI.addSimpleRange(Start, VNI->def, ParentVNI);
|
||||
DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
|
||||
}
|
||||
|
||||
/// closeIntv - Indicate that we are done editing the currently open
|
||||
/// LiveInterval, and ranges can be trimmed.
|
||||
void SplitEditor::closeIntv() {
|
||||
assert(openli_.getLI() && "openIntv not called before closeIntv");
|
||||
DEBUG(dbgs() << " closeIntv " << *openli_.getLI() << '\n');
|
||||
openli_.reset(0);
|
||||
assert(OpenLI.getLI() && "openIntv not called before closeIntv");
|
||||
DEBUG(dbgs() << " closeIntv " << *OpenLI.getLI() << '\n');
|
||||
OpenLI.reset(0);
|
||||
}
|
||||
|
||||
/// rewrite - Rewrite all uses of reg to use the new registers.
|
||||
void SplitEditor::rewrite(unsigned reg) {
|
||||
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
|
||||
RE = mri_.reg_end(); RI != RE;) {
|
||||
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(reg),
|
||||
RE = MRI.reg_end(); RI != RE;) {
|
||||
MachineOperand &MO = RI.getOperand();
|
||||
unsigned OpNum = RI.getOperandNo();
|
||||
MachineInstr *MI = MO.getParent();
|
||||
@ -906,10 +906,10 @@ void SplitEditor::rewrite(unsigned reg) {
|
||||
MO.setReg(0);
|
||||
continue;
|
||||
}
|
||||
SlotIndex Idx = lis_.getInstructionIndex(MI);
|
||||
SlotIndex Idx = LIS.getInstructionIndex(MI);
|
||||
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
|
||||
LiveInterval *LI = 0;
|
||||
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
|
||||
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E;
|
||||
++I) {
|
||||
LiveInterval *testli = *I;
|
||||
if (testli->liveAt(Idx)) {
|
||||
@ -932,9 +932,9 @@ SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
|
||||
typedef std::pair<LiveInterval::const_iterator,
|
||||
LiveInterval::const_iterator> IIPair;
|
||||
SmallVector<IIPair, 8> Iters;
|
||||
for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
|
||||
for (LiveRangeEdit::iterator LI = Edit.begin(), LE = Edit.end(); LI != LE;
|
||||
++LI) {
|
||||
if (*LI == dupli_.getLI())
|
||||
if (*LI == DupLI.getLI())
|
||||
continue;
|
||||
LiveInterval::const_iterator I = (*LI)->find(Start);
|
||||
LiveInterval::const_iterator E = (*LI)->end();
|
||||
@ -968,7 +968,7 @@ SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
|
||||
}
|
||||
// Now, [sidx;eidx) doesn't overlap anything in intervals_.
|
||||
if (sidx < eidx)
|
||||
dupli_.addSimpleRange(sidx, eidx, VNI);
|
||||
DupLI.addSimpleRange(sidx, eidx, VNI);
|
||||
// If the interval end was truncated, we can try again from next.
|
||||
if (next <= sidx)
|
||||
break;
|
||||
@ -983,13 +983,13 @@ void SplitEditor::computeRemainder() {
|
||||
// If values were partially rematted, we should shrink to uses.
|
||||
// If values were fully rematted, they should be omitted.
|
||||
// FIXME: If a single value is redefined, just move the def and truncate.
|
||||
LiveInterval &parent = edit_.getParent();
|
||||
LiveInterval &parent = Edit.getParent();
|
||||
|
||||
DEBUG(dbgs() << "computeRemainder from " << parent << '\n');
|
||||
|
||||
// Values that are fully contained in the split intervals.
|
||||
SmallPtrSet<const VNInfo*, 8> deadValues;
|
||||
// Map all curli values that should have live defs in dupli.
|
||||
// Map all CurLI values that should have live defs in dupli.
|
||||
for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
|
||||
E = parent.vni_end(); I != E; ++I) {
|
||||
const VNInfo *VNI = *I;
|
||||
@ -999,15 +999,15 @@ void SplitEditor::computeRemainder() {
|
||||
// Original def is contained in the split intervals.
|
||||
if (intervalsLiveAt(VNI->def)) {
|
||||
// Did this value escape?
|
||||
if (dupli_.isMapped(VNI))
|
||||
if (DupLI.isMapped(VNI))
|
||||
truncatedValues.insert(VNI);
|
||||
else
|
||||
deadValues.insert(VNI);
|
||||
continue;
|
||||
}
|
||||
// Add minimal live range at the definition.
|
||||
VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
|
||||
dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
|
||||
VNInfo *DVNI = DupLI.defValue(VNI, VNI->def);
|
||||
DupLI.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
|
||||
}
|
||||
|
||||
// Add all ranges to dupli.
|
||||
@ -1019,40 +1019,40 @@ void SplitEditor::computeRemainder() {
|
||||
addTruncSimpleRange(LR.start, LR.end, LR.valno);
|
||||
} else if (!deadValues.count(LR.valno)) {
|
||||
// recolor without truncation.
|
||||
dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
|
||||
DupLI.addSimpleRange(LR.start, LR.end, LR.valno);
|
||||
}
|
||||
}
|
||||
|
||||
// Extend dupli_ to be live out of any critical loop predecessors.
|
||||
// Extend DupLI to be live out of any critical loop predecessors.
|
||||
// This means we have multiple registers live out of those blocks.
|
||||
// The alternative would be to split the critical edges.
|
||||
if (criticalPreds_.empty())
|
||||
return;
|
||||
for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
|
||||
E = criticalPreds_.end(); I != E; ++I)
|
||||
dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
|
||||
DupLI.extendTo(*I, LIS.getMBBEndIdx(*I).getPrevSlot());
|
||||
criticalPreds_.clear();
|
||||
}
|
||||
|
||||
void SplitEditor::finish() {
|
||||
assert(!openli_.getLI() && "Previous LI not closed before rewrite");
|
||||
assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
|
||||
assert(!OpenLI.getLI() && "Previous LI not closed before rewrite");
|
||||
assert(DupLI.getLI() && "No dupli for rewrite. Noop spilt?");
|
||||
|
||||
// Complete dupli liveness.
|
||||
computeRemainder();
|
||||
|
||||
// Get rid of unused values and set phi-kill flags.
|
||||
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
|
||||
(*I)->RenumberValues(lis_);
|
||||
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
|
||||
(*I)->RenumberValues(LIS);
|
||||
|
||||
// Rewrite instructions.
|
||||
rewrite(edit_.getReg());
|
||||
rewrite(Edit.getReg());
|
||||
|
||||
// Now check if any registers were separated into multiple components.
|
||||
ConnectedVNInfoEqClasses ConEQ(lis_);
|
||||
for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
|
||||
ConnectedVNInfoEqClasses ConEQ(LIS);
|
||||
for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
|
||||
// Don't use iterators, they are invalidated by create() below.
|
||||
LiveInterval *li = edit_.get(i);
|
||||
LiveInterval *li = Edit.get(i);
|
||||
unsigned NumComp = ConEQ.Classify(li);
|
||||
if (NumComp <= 1)
|
||||
continue;
|
||||
@ -1060,19 +1060,19 @@ void SplitEditor::finish() {
|
||||
SmallVector<LiveInterval*, 8> dups;
|
||||
dups.push_back(li);
|
||||
for (unsigned i = 1; i != NumComp; ++i)
|
||||
dups.push_back(&edit_.create(mri_, lis_, vrm_));
|
||||
dups.push_back(&Edit.create(MRI, LIS, VRM));
|
||||
ConEQ.Distribute(&dups[0]);
|
||||
// Rewrite uses to the new regs.
|
||||
rewrite(li->reg);
|
||||
}
|
||||
|
||||
// Calculate spill weight and allocation hints for new intervals.
|
||||
VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
|
||||
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
|
||||
VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, sa_.Loops);
|
||||
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
|
||||
LiveInterval &li = **I;
|
||||
vrai.CalculateRegClass(li.reg);
|
||||
vrai.CalculateWeightAndHint(li);
|
||||
DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName()
|
||||
DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName()
|
||||
<< ":" << li << '\n');
|
||||
}
|
||||
}
|
||||
@ -1102,7 +1102,7 @@ void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
|
||||
openIntv();
|
||||
|
||||
// Insert copies in the predecessors if live-in to the header.
|
||||
if (lis_.isLiveInToMBB(edit_.getParent(), Loop->getHeader())) {
|
||||
if (LIS.isLiveInToMBB(Edit.getParent(), Loop->getHeader())) {
|
||||
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
|
||||
E = Blocks.Preds.end(); I != E; ++I) {
|
||||
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
|
||||
@ -1132,27 +1132,27 @@ void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
|
||||
// Single Block Splitting
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// getMultiUseBlocks - if curli has more than one use in a basic block, it
|
||||
/// may be an advantage to split curli for the duration of the block.
|
||||
/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
|
||||
/// may be an advantage to split CurLI for the duration of the block.
|
||||
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
|
||||
// If curli is local to one block, there is no point to splitting it.
|
||||
if (usingBlocks_.size() <= 1)
|
||||
// If CurLI is local to one block, there is no point to splitting it.
|
||||
if (UsingBlocks.size() <= 1)
|
||||
return false;
|
||||
// Add blocks with multiple uses.
|
||||
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
|
||||
for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
|
||||
I != E; ++I)
|
||||
switch (I->second) {
|
||||
case 0:
|
||||
case 1:
|
||||
continue;
|
||||
case 2: {
|
||||
// When there are only two uses and curli is both live in and live out,
|
||||
// When there are only two uses and CurLI is both live in and live out,
|
||||
// we don't really win anything by isolating the block since we would be
|
||||
// inserting two copies.
|
||||
// The remaing register would still have two uses in the block. (Unless it
|
||||
// separates into disconnected components).
|
||||
if (lis_.isLiveInToMBB(*curli_, I->first) &&
|
||||
lis_.isLiveOutOfMBB(*curli_, I->first))
|
||||
if (LIS.isLiveInToMBB(*CurLI, I->first) &&
|
||||
LIS.isLiveOutOfMBB(*CurLI, I->first))
|
||||
continue;
|
||||
} // Fall through.
|
||||
default:
|
||||
@ -1161,20 +1161,20 @@ bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
|
||||
return !Blocks.empty();
|
||||
}
|
||||
|
||||
/// splitSingleBlocks - Split curli into a separate live interval inside each
|
||||
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
|
||||
/// basic block in Blocks.
|
||||
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
|
||||
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
|
||||
// Determine the first and last instruction using curli in each block.
|
||||
// Determine the first and last instruction using CurLI in each block.
|
||||
typedef std::pair<SlotIndex,SlotIndex> IndexPair;
|
||||
typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
|
||||
IndexPairMap MBBRange;
|
||||
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
|
||||
E = sa_.usingInstrs_.end(); I != E; ++I) {
|
||||
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(),
|
||||
E = sa_.UsingInstrs.end(); I != E; ++I) {
|
||||
const MachineBasicBlock *MBB = (*I)->getParent();
|
||||
if (!Blocks.count(MBB))
|
||||
continue;
|
||||
SlotIndex Idx = lis_.getInstructionIndex(*I);
|
||||
SlotIndex Idx = LIS.getInstructionIndex(*I);
|
||||
DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
|
||||
IndexPair &IP = MBBRange[MBB];
|
||||
if (!IP.first.isValid() || Idx < IP.first)
|
||||
@ -1205,29 +1205,29 @@ void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
|
||||
// Sub Block Splitting
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// getBlockForInsideSplit - If curli is contained inside a single basic block,
|
||||
/// getBlockForInsideSplit - If CurLI is contained inside a single basic block,
|
||||
/// and it wou pay to subdivide the interval inside that block, return it.
|
||||
/// Otherwise return NULL. The returned block can be passed to
|
||||
/// SplitEditor::splitInsideBlock.
|
||||
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
|
||||
// The interval must be exclusive to one block.
|
||||
if (usingBlocks_.size() != 1)
|
||||
if (UsingBlocks.size() != 1)
|
||||
return 0;
|
||||
// Don't to this for less than 4 instructions. We want to be sure that
|
||||
// splitting actually reduces the instruction count per interval.
|
||||
if (usingInstrs_.size() < 4)
|
||||
if (UsingInstrs.size() < 4)
|
||||
return 0;
|
||||
return usingBlocks_.begin()->first;
|
||||
return UsingBlocks.begin()->first;
|
||||
}
|
||||
|
||||
/// splitInsideBlock - Split curli into multiple intervals inside MBB.
|
||||
/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
|
||||
void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
|
||||
SmallVector<SlotIndex, 32> Uses;
|
||||
Uses.reserve(sa_.usingInstrs_.size());
|
||||
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
|
||||
E = sa_.usingInstrs_.end(); I != E; ++I)
|
||||
Uses.reserve(sa_.UsingInstrs.size());
|
||||
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(),
|
||||
E = sa_.UsingInstrs.end(); I != E; ++I)
|
||||
if ((*I)->getParent() == MBB)
|
||||
Uses.push_back(lis_.getInstructionIndex(*I));
|
||||
Uses.push_back(LIS.getInstructionIndex(*I));
|
||||
DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for "
|
||||
<< Uses.size() << " instructions.\n");
|
||||
assert(Uses.size() >= 3 && "Need at least 3 instructions");
|
||||
|
@ -41,31 +41,31 @@ typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
|
||||
/// opportunities.
|
||||
class SplitAnalysis {
|
||||
public:
|
||||
const MachineFunction &mf_;
|
||||
const LiveIntervals &lis_;
|
||||
const MachineLoopInfo &loops_;
|
||||
const TargetInstrInfo &tii_;
|
||||
const MachineFunction &MF;
|
||||
const LiveIntervals &LIS;
|
||||
const MachineLoopInfo &Loops;
|
||||
const TargetInstrInfo &TII;
|
||||
|
||||
// Instructions using the the current register.
|
||||
typedef SmallPtrSet<const MachineInstr*, 16> InstrPtrSet;
|
||||
InstrPtrSet usingInstrs_;
|
||||
InstrPtrSet UsingInstrs;
|
||||
|
||||
// Sorted slot indexes of using instructions.
|
||||
SmallVector<SlotIndex, 8> UseSlots;
|
||||
|
||||
// The number of instructions using curli in each basic block.
|
||||
// The number of instructions using CurLI in each basic block.
|
||||
typedef DenseMap<const MachineBasicBlock*, unsigned> BlockCountMap;
|
||||
BlockCountMap usingBlocks_;
|
||||
BlockCountMap UsingBlocks;
|
||||
|
||||
// The number of basic block using curli in each loop.
|
||||
// The number of basic block using CurLI in each loop.
|
||||
typedef DenseMap<const MachineLoop*, unsigned> LoopCountMap;
|
||||
LoopCountMap usingLoops_;
|
||||
LoopCountMap UsingLoops;
|
||||
|
||||
private:
|
||||
// Current live interval.
|
||||
const LiveInterval *curli_;
|
||||
const LiveInterval *CurLI;
|
||||
|
||||
// Sumarize statistics by counting instructions using curli_.
|
||||
// Sumarize statistics by counting instructions using CurLI.
|
||||
void analyzeUses();
|
||||
|
||||
/// canAnalyzeBranch - Return true if MBB ends in a branch that can be
|
||||
@ -76,7 +76,7 @@ public:
|
||||
SplitAnalysis(const MachineFunction &mf, const LiveIntervals &lis,
|
||||
const MachineLoopInfo &mli);
|
||||
|
||||
/// analyze - set curli to the specified interval, and analyze how it may be
|
||||
/// analyze - set CurLI to the specified interval, and analyze how it may be
|
||||
/// split.
|
||||
void analyze(const LiveInterval *li);
|
||||
|
||||
@ -84,9 +84,9 @@ public:
|
||||
/// new interval.
|
||||
void clear();
|
||||
|
||||
/// hasUses - Return true if MBB has any uses of curli.
|
||||
/// hasUses - Return true if MBB has any uses of CurLI.
|
||||
bool hasUses(const MachineBasicBlock *MBB) const {
|
||||
return usingBlocks_.lookup(MBB);
|
||||
return UsingBlocks.lookup(MBB);
|
||||
}
|
||||
|
||||
typedef SmallPtrSet<const MachineBasicBlock*, 16> BlockPtrSet;
|
||||
@ -123,12 +123,12 @@ public:
|
||||
OutsideLoop // Uses outside loop periphery.
|
||||
};
|
||||
|
||||
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
|
||||
/// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in
|
||||
/// and around the Loop.
|
||||
LoopPeripheralUse analyzeLoopPeripheralUse(const LoopBlocks&);
|
||||
|
||||
/// getCriticalExits - It may be necessary to partially break critical edges
|
||||
/// leaving the loop if an exit block has phi uses of curli. Collect the exit
|
||||
/// leaving the loop if an exit block has phi uses of CurLI. Collect the exit
|
||||
/// blocks that need special treatment into CriticalExits.
|
||||
void getCriticalExits(const LoopBlocks &Blocks, BlockPtrSet &CriticalExits);
|
||||
|
||||
@ -138,19 +138,19 @@ public:
|
||||
BlockPtrSet &CriticalExits);
|
||||
|
||||
/// getCriticalPreds - Get the set of loop predecessors with critical edges to
|
||||
/// blocks outside the loop that have curli live in. We don't have to break
|
||||
/// blocks outside the loop that have CurLI live in. We don't have to break
|
||||
/// these edges, but they do require special treatment.
|
||||
void getCriticalPreds(const LoopBlocks &Blocks, BlockPtrSet &CriticalPreds);
|
||||
|
||||
/// getSplitLoops - Get the set of loops that have curli uses and would be
|
||||
/// getSplitLoops - Get the set of loops that have CurLI uses and would be
|
||||
/// profitable to split.
|
||||
void getSplitLoops(LoopPtrSet&);
|
||||
|
||||
/// getBestSplitLoop - Return the loop where curli may best be split to a
|
||||
/// getBestSplitLoop - Return the loop where CurLI may best be split to a
|
||||
/// separate register, or NULL.
|
||||
const MachineLoop *getBestSplitLoop();
|
||||
|
||||
/// isBypassLoop - Return true if curli is live through Loop and has no uses
|
||||
/// isBypassLoop - Return true if CurLI is live through Loop and has no uses
|
||||
/// inside the loop. Bypass loops are candidates for splitting because it can
|
||||
/// prevent interference inside the loop.
|
||||
bool isBypassLoop(const MachineLoop *Loop);
|
||||
@ -160,13 +160,13 @@ public:
|
||||
void getBypassLoops(LoopPtrSet&);
|
||||
|
||||
/// getMultiUseBlocks - Add basic blocks to Blocks that may benefit from
|
||||
/// having curli split to a new live interval. Return true if Blocks can be
|
||||
/// having CurLI split to a new live interval. Return true if Blocks can be
|
||||
/// passed to SplitEditor::splitSingleBlocks.
|
||||
bool getMultiUseBlocks(BlockPtrSet &Blocks);
|
||||
|
||||
/// getBlockForInsideSplit - If curli is contained inside a single basic block,
|
||||
/// and it wou pay to subdivide the interval inside that block, return it.
|
||||
/// Otherwise return NULL. The returned block can be passed to
|
||||
/// getBlockForInsideSplit - If CurLI is contained inside a single basic
|
||||
/// block, and it would pay to subdivide the interval inside that block,
|
||||
/// return it. Otherwise return NULL. The returned block can be passed to
|
||||
/// SplitEditor::splitInsideBlock.
|
||||
const MachineBasicBlock *getBlockForInsideSplit();
|
||||
};
|
||||
@ -176,45 +176,45 @@ public:
|
||||
/// interval that is a subset. Insert phi-def values as needed. This class is
|
||||
/// used by SplitEditor to create new smaller LiveIntervals.
|
||||
///
|
||||
/// parentli_ is the larger interval, li_ is the subset interval. Every value
|
||||
/// in li_ corresponds to exactly one value in parentli_, and the live range
|
||||
/// of the value is contained within the live range of the parentli_ value.
|
||||
/// Values in parentli_ may map to any number of openli_ values, including 0.
|
||||
/// ParentLI is the larger interval, LI is the subset interval. Every value
|
||||
/// in LI corresponds to exactly one value in ParentLI, and the live range
|
||||
/// of the value is contained within the live range of the ParentLI value.
|
||||
/// Values in ParentLI may map to any number of OpenLI values, including 0.
|
||||
class LiveIntervalMap {
|
||||
LiveIntervals &lis_;
|
||||
MachineDominatorTree &mdt_;
|
||||
LiveIntervals &LIS;
|
||||
MachineDominatorTree &MDT;
|
||||
|
||||
// The parent interval is never changed.
|
||||
const LiveInterval &parentli_;
|
||||
const LiveInterval &ParentLI;
|
||||
|
||||
// The child interval's values are fully contained inside parentli_ values.
|
||||
LiveInterval *li_;
|
||||
// The child interval's values are fully contained inside ParentLI values.
|
||||
LiveInterval *LI;
|
||||
|
||||
typedef DenseMap<const VNInfo*, VNInfo*> ValueMap;
|
||||
|
||||
// Map parentli_ values to simple values in li_ that are defined at the same
|
||||
// SlotIndex, or NULL for parentli_ values that have complex li_ defs.
|
||||
// Map ParentLI values to simple values in LI that are defined at the same
|
||||
// SlotIndex, or NULL for ParentLI values that have complex LI defs.
|
||||
// Note there is a difference between values mapping to NULL (complex), and
|
||||
// values not present (unknown/unmapped).
|
||||
ValueMap valueMap_;
|
||||
ValueMap Values;
|
||||
|
||||
typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair;
|
||||
typedef DenseMap<MachineBasicBlock*,LiveOutPair> LiveOutMap;
|
||||
|
||||
// liveOutCache_ - Map each basic block where li_ is live out to the live-out
|
||||
// LiveOutCache - Map each basic block where LI is live out to the live-out
|
||||
// value and its defining block. One of these conditions shall be true:
|
||||
//
|
||||
// 1. !liveOutCache_.count(MBB)
|
||||
// 2. liveOutCache_[MBB].second.getNode() == MBB
|
||||
// 3. forall P in preds(MBB): liveOutCache_[P] == liveOutCache_[MBB]
|
||||
// 1. !LiveOutCache.count(MBB)
|
||||
// 2. LiveOutCache[MBB].second.getNode() == MBB
|
||||
// 3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB]
|
||||
//
|
||||
// This is only a cache, the values can be computed as:
|
||||
//
|
||||
// VNI = li_->getVNInfoAt(lis_.getMBBEndIdx(MBB))
|
||||
// Node = mbt_[lis_.getMBBFromIndex(VNI->def)]
|
||||
// VNI = LI->getVNInfoAt(LIS.getMBBEndIdx(MBB))
|
||||
// Node = mbt_[LIS.getMBBFromIndex(VNI->def)]
|
||||
//
|
||||
// The cache is also used as a visiteed set by mapValue().
|
||||
LiveOutMap liveOutCache_;
|
||||
LiveOutMap LiveOutCache;
|
||||
|
||||
// Dump the live-out cache to dbgs().
|
||||
void dumpCache();
|
||||
@ -223,32 +223,32 @@ public:
|
||||
LiveIntervalMap(LiveIntervals &lis,
|
||||
MachineDominatorTree &mdt,
|
||||
const LiveInterval &parentli)
|
||||
: lis_(lis), mdt_(mdt), parentli_(parentli), li_(0) {}
|
||||
: LIS(lis), MDT(mdt), ParentLI(parentli), LI(0) {}
|
||||
|
||||
/// reset - clear all data structures and start a new live interval.
|
||||
void reset(LiveInterval *);
|
||||
|
||||
/// getLI - return the current live interval.
|
||||
LiveInterval *getLI() const { return li_; }
|
||||
LiveInterval *getLI() const { return LI; }
|
||||
|
||||
/// defValue - define a value in li_ from the parentli_ value VNI and Idx.
|
||||
/// defValue - define a value in LI from the ParentLI value VNI and Idx.
|
||||
/// Idx does not have to be ParentVNI->def, but it must be contained within
|
||||
/// ParentVNI's live range in parentli_.
|
||||
/// Return the new li_ value.
|
||||
/// ParentVNI's live range in ParentLI.
|
||||
/// Return the new LI value.
|
||||
VNInfo *defValue(const VNInfo *ParentVNI, SlotIndex Idx);
|
||||
|
||||
/// mapValue - map ParentVNI to the corresponding li_ value at Idx. It is
|
||||
/// mapValue - map ParentVNI to the corresponding LI value at Idx. It is
|
||||
/// assumed that ParentVNI is live at Idx.
|
||||
/// If ParentVNI has not been defined by defValue, it is assumed that
|
||||
/// ParentVNI->def dominates Idx.
|
||||
/// If ParentVNI has been defined by defValue one or more times, a value that
|
||||
/// dominates Idx will be returned. This may require creating extra phi-def
|
||||
/// values and adding live ranges to li_.
|
||||
/// values and adding live ranges to LI.
|
||||
/// If simple is not NULL, *simple will indicate if ParentVNI is a simply
|
||||
/// mapped value.
|
||||
VNInfo *mapValue(const VNInfo *ParentVNI, SlotIndex Idx, bool *simple = 0);
|
||||
|
||||
// extendTo - Find the last li_ value defined in MBB at or before Idx. The
|
||||
// extendTo - Find the last LI value defined in MBB at or before Idx. The
|
||||
// parentli is assumed to be live at Idx. Extend the live range to include
|
||||
// Idx. Return the found VNInfo, or NULL.
|
||||
VNInfo *extendTo(const MachineBasicBlock *MBB, SlotIndex Idx);
|
||||
@ -256,18 +256,18 @@ public:
|
||||
/// isMapped - Return true is ParentVNI is a known mapped value. It may be a
|
||||
/// simple 1-1 mapping or a complex mapping to later defs.
|
||||
bool isMapped(const VNInfo *ParentVNI) const {
|
||||
return valueMap_.count(ParentVNI);
|
||||
return Values.count(ParentVNI);
|
||||
}
|
||||
|
||||
/// isComplexMapped - Return true if ParentVNI has received new definitions
|
||||
/// with defValue.
|
||||
bool isComplexMapped(const VNInfo *ParentVNI) const;
|
||||
|
||||
// addSimpleRange - Add a simple range from parentli_ to li_.
|
||||
// addSimpleRange - Add a simple range from ParentLI to LI.
|
||||
// ParentVNI must be live in the [Start;End) interval.
|
||||
void addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI);
|
||||
|
||||
/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
|
||||
/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
|
||||
/// All needed values whose def is not inside [Start;End) must be defined
|
||||
/// beforehand so mapValue will work.
|
||||
void addRange(SlotIndex Start, SlotIndex End);
|
||||
@ -287,22 +287,22 @@ public:
|
||||
///
|
||||
class SplitEditor {
|
||||
SplitAnalysis &sa_;
|
||||
LiveIntervals &lis_;
|
||||
VirtRegMap &vrm_;
|
||||
MachineRegisterInfo &mri_;
|
||||
const TargetInstrInfo &tii_;
|
||||
const TargetRegisterInfo &tri_;
|
||||
LiveIntervals &LIS;
|
||||
VirtRegMap &VRM;
|
||||
MachineRegisterInfo &MRI;
|
||||
const TargetInstrInfo &TII;
|
||||
const TargetRegisterInfo &TRI;
|
||||
|
||||
/// edit_ - The current parent register and new intervals created.
|
||||
LiveRangeEdit &edit_;
|
||||
/// Edit - The current parent register and new intervals created.
|
||||
LiveRangeEdit &Edit;
|
||||
|
||||
/// dupli_ - Created as a copy of curli_, ranges are carved out as new
|
||||
/// DupLI - Created as a copy of CurLI, ranges are carved out as new
|
||||
/// intervals get added through openIntv / closeIntv. This is used to avoid
|
||||
/// editing curli_.
|
||||
LiveIntervalMap dupli_;
|
||||
/// editing CurLI.
|
||||
LiveIntervalMap DupLI;
|
||||
|
||||
/// Currently open LiveInterval.
|
||||
LiveIntervalMap openli_;
|
||||
LiveIntervalMap OpenLI;
|
||||
|
||||
/// defFromParent - Define Reg from ParentVNI at UseIdx using either
|
||||
/// rematerialization or a COPY from parent. Return the new value.
|
||||
@ -315,15 +315,15 @@ class SplitEditor {
|
||||
/// intervalsLiveAt - Return true if any member of intervals_ is live at Idx.
|
||||
bool intervalsLiveAt(SlotIndex Idx) const;
|
||||
|
||||
/// Values in curli whose live range has been truncated when entering an open
|
||||
/// Values in CurLI whose live range has been truncated when entering an open
|
||||
/// li.
|
||||
SmallPtrSet<const VNInfo*, 8> truncatedValues;
|
||||
|
||||
/// addTruncSimpleRange - Add the given simple range to dupli_ after
|
||||
/// addTruncSimpleRange - Add the given simple range to DupLI after
|
||||
/// truncating any overlap with intervals_.
|
||||
void addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI);
|
||||
|
||||
/// criticalPreds_ - Set of basic blocks where both dupli and openli should be
|
||||
/// criticalPreds_ - Set of basic blocks where both dupli and OpenLI should be
|
||||
/// live out because of a critical edge.
|
||||
SplitAnalysis::BlockPtrSet criticalPreds_;
|
||||
|
||||
@ -346,20 +346,20 @@ public:
|
||||
/// Create a new virtual register and live interval.
|
||||
void openIntv();
|
||||
|
||||
/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
|
||||
/// enterIntvBefore - Enter OpenLI before the instruction at Idx. If CurLI is
|
||||
/// not live before Idx, a COPY is not inserted.
|
||||
void enterIntvBefore(SlotIndex Idx);
|
||||
|
||||
/// enterIntvAtEnd - Enter openli at the end of MBB.
|
||||
/// enterIntvAtEnd - Enter OpenLI at the end of MBB.
|
||||
void enterIntvAtEnd(MachineBasicBlock &MBB);
|
||||
|
||||
/// useIntv - indicate that all instructions in MBB should use openli.
|
||||
/// useIntv - indicate that all instructions in MBB should use OpenLI.
|
||||
void useIntv(const MachineBasicBlock &MBB);
|
||||
|
||||
/// useIntv - indicate that all instructions in range should use openli.
|
||||
/// useIntv - indicate that all instructions in range should use OpenLI.
|
||||
void useIntv(SlotIndex Start, SlotIndex End);
|
||||
|
||||
/// leaveIntvAfter - Leave openli after the instruction at Idx.
|
||||
/// leaveIntvAfter - Leave OpenLI after the instruction at Idx.
|
||||
void leaveIntvAfter(SlotIndex Idx);
|
||||
|
||||
/// leaveIntvAtTop - Leave the interval at the top of MBB.
|
||||
@ -376,15 +376,15 @@ public:
|
||||
|
||||
// ===--- High level methods ---===
|
||||
|
||||
/// splitAroundLoop - Split curli into a separate live interval inside
|
||||
/// splitAroundLoop - Split CurLI into a separate live interval inside
|
||||
/// the loop.
|
||||
void splitAroundLoop(const MachineLoop*);
|
||||
|
||||
/// splitSingleBlocks - Split curli into a separate live interval inside each
|
||||
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
|
||||
/// basic block in Blocks.
|
||||
void splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks);
|
||||
|
||||
/// splitInsideBlock - Split curli into multiple intervals inside MBB.
|
||||
/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
|
||||
void splitInsideBlock(const MachineBasicBlock *);
|
||||
};
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user