1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00

Reapply with r182909 with a fix to the calculation of the new indices for

insertelement instructions.

llvm-svn: 182976
This commit is contained in:
Nick Lewycky 2013-05-31 00:59:42 +00:00
parent f24042e79b
commit 5d48f77ca0
3 changed files with 278 additions and 2 deletions

View File

@ -234,6 +234,7 @@ private:
bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS); bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Value *EmitGEPOffset(User *GEP); Value *EmitGEPOffset(User *GEP);
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN); Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
public: public:
// InsertNewInstBefore - insert an instruction New before instruction Old // InsertNewInstBefore - insert an instruction New before instruction Old

View File

@ -494,6 +494,250 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
return 0; return 0;
} }
/// Return true if we can evaluate the specified expression tree if the vector
/// elements were shuffled in a different order.
static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
unsigned Depth = 100) {
// We can always reorder the elements of a constant.
if (isa<Constant>(V))
return true;
// We won't reorder vector arguments. No IPO here.
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
// Two users may expect different orders of the elements. Don't try it.
if (!I->hasOneUse())
return false;
if (Depth == 0) return false;
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::GetElementPtr: {
for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
return false;
}
return true;
}
case Instruction::InsertElement: {
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
if (!CI) return false;
int ElementNumber = CI->getLimitedValue();
// Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
// can't put an element into multiple indices.
bool SeenOnce = false;
for (int i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] == ElementNumber) {
if (SeenOnce)
return false;
SeenOnce = true;
}
}
return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
}
}
return false;
}
/// Rebuild a new instruction just like 'I' but with the new operands given.
/// In the event of type mismatch, the type of the operands is correct.
static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
// We don't want to use the IRBuilder here because we want the replacement
// instructions to appear next to 'I', not the builder's insertion point.
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
BinaryOperator *BO = cast<BinaryOperator>(I);
assert(NewOps.size() == 2 && "binary operator with #ops != 2");
BinaryOperator *New =
BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
NewOps[0], NewOps[1], "", BO);
if (isa<OverflowingBinaryOperator>(BO)) {
New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
New->setHasNoSignedWrap(BO->hasNoSignedWrap());
}
if (isa<PossiblyExactOperator>(BO)) {
New->setIsExact(BO->isExact());
}
return New;
}
case Instruction::ICmp:
assert(NewOps.size() == 2 && "icmp with #ops != 2");
return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
NewOps[0], NewOps[1]);
case Instruction::FCmp:
assert(NewOps.size() == 2 && "fcmp with #ops != 2");
return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
NewOps[0], NewOps[1]);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt: {
// It's possible that the mask has a different number of elements from
// the original cast. We recompute the destination type to match the mask.
Type *DestTy =
VectorType::get(I->getType()->getScalarType(),
NewOps[0]->getType()->getVectorNumElements());
assert(NewOps.size() == 1 && "cast with #ops != 1");
return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
"", I);
}
case Instruction::GetElementPtr: {
Value *Ptr = NewOps[0];
ArrayRef<Value*> Idx = NewOps.slice(1);
GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
return GEP;
}
}
llvm_unreachable("failed to rebuild vector instructions");
}
Value *
InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
// Mask.size() does not need to be equal to the number of vector elements.
assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
if (isa<UndefValue>(V)) {
return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
Mask.size()));
}
if (isa<ConstantAggregateZero>(V)) {
return ConstantAggregateZero::get(
VectorType::get(V->getType()->getScalarType(),
Mask.size()));
}
if (Constant *C = dyn_cast<Constant>(V)) {
SmallVector<Constant *, 16> MaskValues;
for (int i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] == -1)
MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
else
MaskValues.push_back(Builder->getInt32(Mask[i]));
}
return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
ConstantVector::get(MaskValues));
}
Instruction *I = cast<Instruction>(V);
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::Select:
case Instruction::GetElementPtr: {
SmallVector<Value*, 8> NewOps;
bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
NewOps.push_back(V);
NeedsRebuild |= (V != I->getOperand(i));
}
if (NeedsRebuild) {
return BuildNew(I, NewOps);
}
return I;
}
case Instruction::InsertElement: {
int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
if (Element < 0 || Element >= (int)Mask.size()) {
// Such instructions are valid and exhibit undefined behaviour.
return UndefValue::get(I->getType());
}
// The insertelement was inserting at Element. Figure out which element
// that becomes after shuffling. The answer is guaranteed to be unique
// by CanEvaluateShuffled.
int Index = 0;
for (int e = Mask.size(); Index != e; ++Index)
if (Mask[Index] == Element)
break;
Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
return InsertElementInst::Create(V, I->getOperand(1),
Builder->getInt32(Index), "", I);
}
}
llvm_unreachable("failed to reorder elements of vector instruction!");
}
Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
Value *LHS = SVI.getOperand(0); Value *LHS = SVI.getOperand(0);
@ -525,9 +769,9 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
if (LHS == RHS || isa<UndefValue>(LHS)) { if (LHS == RHS || isa<UndefValue>(LHS)) {
if (isa<UndefValue>(LHS) && LHS == RHS) { if (isa<UndefValue>(LHS) && LHS == RHS) {
// shuffle(undef,undef,mask) -> undef. // shuffle(undef,undef,mask) -> undef.
Value* result = (VWidth == LHSWidth) Value *Result = (VWidth == LHSWidth)
? LHS : UndefValue::get(SVI.getType()); ? LHS : UndefValue::get(SVI.getType());
return ReplaceInstUsesWith(SVI, result); return ReplaceInstUsesWith(SVI, Result);
} }
// Remap any references to RHS to use LHS. // Remap any references to RHS to use LHS.
@ -574,6 +818,16 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
} }
if (isa<UndefValue>(RHS) &&
// This isn't necessary for correctness, but the comment block below
// claims that there are cases where folding two shuffles into one would
// cause worse codegen on some targets.
!isa<ShuffleVectorInst>(LHS) &&
CanEvaluateShuffled(LHS, Mask)) {
Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
return ReplaceInstUsesWith(SVI, V);
}
// If the LHS is a shufflevector itself, see if we can combine it with this // If the LHS is a shufflevector itself, see if we can combine it with this
// one without producing an unusual shuffle. // one without producing an unusual shuffle.
// Cases that might be simplified: // Cases that might be simplified:

View File

@ -153,3 +153,24 @@ define <8 x i8> @test12a(<8 x i8> %tmp6, <8 x i8> %tmp2) nounwind {
ret <8 x i8> %tmp3 ret <8 x i8> %tmp3
} }
define <2 x i8> @test13a(i8 %x1, i8 %x2) {
; CHECK: @test13a
; CHECK-NEXT: insertelement {{.*}} undef, i8 %x1, i32 1
; CHECK-NEXT: insertelement {{.*}} i8 %x2, i32 0
; CHECK-NEXT: add {{.*}} <i8 7, i8 5>
; CHECK-NEXT: ret
%A = insertelement <2 x i8> undef, i8 %x1, i32 0
%B = insertelement <2 x i8> %A, i8 %x2, i32 1
%C = add <2 x i8> %B, <i8 5, i8 7>
%D = shufflevector <2 x i8> %C, <2 x i8> undef, <2 x i32> <i32 1, i32 0>
ret <2 x i8> %D
}
define <2 x i8> @test13b(i8 %x) {
; CHECK: @test13b
; CHECK-NEXT: insertelement <2 x i8> undef, i8 %x, i32 1
; CHECK-NEXT: ret
%A = insertelement <2 x i8> undef, i8 %x, i32 0
%B = shufflevector <2 x i8> %A, <2 x i8> undef, <2 x i32> <i32 undef, i32 0>
ret <2 x i8> %B
}