1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00

This patch contains support for encoding FMA4 instructions and

tablegen patterns for scalar FMA4 operations and intrinsic. Also
add tests for vfmaddsd.

Patch by Jan Sjodin

llvm-svn: 145133
This commit is contained in:
Bruno Cardoso Lopes 2011-11-25 19:33:42 +00:00
parent 48face75c4
commit 626d04cc6f
7 changed files with 118 additions and 7 deletions

View File

@ -1821,6 +1821,16 @@ let TargetPrefix = "x86" in { // All intrinsics start with "llvm.x86.".
Intrinsic<[llvm_v4i64_ty], [llvm_ptr_ty], [IntrReadMem]>;
}
//===----------------------------------------------------------------------===//
// FMA4
let TargetPrefix = "x86" in { // All intrinsics start with "llvm.x86.".
def int_x86_fma4_vfmadd_sd : GCCBuiltin<"__builtin_ia32_vfmaddsd">,
Intrinsic<[llvm_v2f64_ty],
[llvm_v2f64_ty, llvm_v2f64_ty, llvm_v2f64_ty],
[IntrNoMem]>;
}
//===----------------------------------------------------------------------===//
// MMX

View File

@ -418,7 +418,12 @@ namespace X86II {
/// storing a classifier in the imm8 field. To simplify our implementation,
/// we handle this by storeing the classifier in the opcode field and using
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
Has3DNow0F0FOpcode = 1U << 7
Has3DNow0F0FOpcode = 1U << 7,
/// XOP_W - Same bit as VEX_W. Used to indicate swapping of
/// operand 3 and 4 to be encoded in ModRM or I8IMM. This is used
/// for FMA4 and XOP instructions.
XOP_W = 1U << 8
};
// getBaseOpcodeFor - This function returns the "base" X86 opcode for the
@ -488,9 +493,12 @@ namespace X86II {
return 0;
case X86II::MRMSrcMem: {
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasXOP_W = (TSFlags >> X86II::VEXShift) & X86II::XOP_W;
unsigned FirstMemOp = 1;
if (HasVEX_4V)
++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
if (HasXOP_W)
++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
// FIXME: Maybe lea should have its own form? This is a horrible hack.
//if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||

View File

@ -415,6 +415,10 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// opcode extension, or ignored, depending on the opcode byte)
unsigned char VEX_W = 0;
// XOP_W: opcode specific, same bit as VEX_W, but used to
// swap operand 3 and 4 for FMA4 and XOP instructions
unsigned char XOP_W = 0;
// VEX_5M (VEX m-mmmmm field):
//
// 0b00000: Reserved for future use
@ -453,6 +457,9 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
VEX_W = 1;
if ((TSFlags >> X86II::VEXShift) & X86II::XOP_W)
XOP_W = 1;
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
VEX_L = 1;
@ -529,6 +536,9 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// src1(ModR/M), MemAddr, imm8
// src1(ModR/M), MemAddr, src2(VEX_I8IMM)
//
// FMA4:
// dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
// dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
VEX_R = 0x0;
@ -629,7 +639,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// 3 byte VEX prefix
EmitByte(0xC4, CurByte, OS);
EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
EmitByte(LastByte | ((VEX_W | XOP_W) << 7), CurByte, OS);
}
/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
@ -889,6 +899,8 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
// It uses the VEX.VVVV field?
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
bool HasXOP_W = (TSFlags >> X86II::VEXShift) & X86II::XOP_W;
unsigned XOP_W_I8IMMOperand = 2;
// Determine where the memory operand starts, if present.
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
@ -961,6 +973,10 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
SrcRegNum++;
// GAS sets the XOP_W even with register operands, we want to match this.
// XOP_W is ignored, so there is no swapping of the operands
XOP_W_I8IMMOperand = 3;
EmitRegModRMByte(MI.getOperand(SrcRegNum),
GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
CurOp = SrcRegNum + 1;
@ -975,14 +991,20 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
++AddrOperands;
++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
}
if(HasXOP_W) // Skip second register source (encoded in I8IMM)
++FirstMemOp;
EmitByte(BaseOpcode, CurByte, OS);
EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
TSFlags, CurByte, OS, Fixups);
CurOp += AddrOperands + 1;
if (HasVEX_4VOp3)
++CurOp;
if(HasXOP_W) {
CurOp = NumOps - 1; // We have consumed all except one operand (third)
} else {
CurOp += AddrOperands + 1;
if (HasVEX_4VOp3)
++CurOp;
}
break;
}
@ -1064,7 +1086,9 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
// The last source register of a 4 operand instruction in AVX is encoded
// in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
const MCOperand &MO = MI.getOperand(CurOp++);
const MCOperand &MO = MI.getOperand(HasXOP_W ? XOP_W_I8IMMOperand
: CurOp);
CurOp++;
bool IsExtReg = X86II::isX86_64ExtendedReg(MO.getReg());
unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
RegNum |= GetX86RegNum(MO) << 4;

View File

@ -58,3 +58,42 @@ let isAsmParserOnly = 1 in {
defm VFNMSUBPS : fma_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps">;
defm VFNMSUBPD : fma_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd">, VEX_W;
}
//===----------------------------------------------------------------------===//
// FMA4 - AMD 4 operand Fused Multiply-Add instructions
//===----------------------------------------------------------------------===//
multiclass fma4s<bits<8> opc, string OpcodeStr> {
def rr : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src2, $src3, $src1, $dst|$dst, $src1, $src3, $src2}"),
[]>, XOP_W;
def rm : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, f128mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, XOP_W;
def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>;
}
let isAsmParserOnly = 1 in {
defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd">;
}
// FMA4 Intrinsics patterns
def : Pat<(int_x86_fma4_vfmadd_sd VR128:$src1, VR128:$src2, VR128:$src3),
(VFMADDSD4rr VR128:$src1, VR128:$src2, VR128:$src3)>;
def : Pat<(int_x86_fma4_vfmadd_sd VR128:$src1, VR128:$src2,
(alignedloadv2f64 addr:$src3)),
(VFMADDSD4rm VR128:$src1, VR128:$src2, addr:$src3)>;
def : Pat<(int_x86_fma4_vfmadd_sd VR128:$src1, (alignedloadv2f64 addr:$src2),
VR128:$src3),
(VFMADDSD4mr VR128:$src1, addr:$src2, VR128:$src3)>;

View File

@ -118,7 +118,7 @@ class VEX_I8IMM { bit hasVEX_i8ImmReg = 1; }
class VEX_L { bit hasVEX_L = 1; }
class VEX_LIG { bit ignoresVEX_L = 1; }
class Has3DNow0F0FOpcode { bit has3DNow0F0FOpcode = 1; }
class XOP_W { bit hasXOP_WPrefix = 1; }
class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
string AsmStr, Domain d = GenericDomain>
: Instruction {
@ -158,6 +158,7 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
bit hasVEX_L = 0; // Does this inst use large (256-bit) registers?
bit ignoresVEX_L = 0; // Does this instruction ignore the L-bit
bit has3DNow0F0FOpcode =0;// Wacky 3dNow! encoding?
bit hasXOP_WPrefix = 0; // Same bit as VEX_W, but used for swapping operands
// TSFlags layout should be kept in sync with X86InstrInfo.h.
let TSFlags{5-0} = FormBits;
@ -179,6 +180,7 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
let TSFlags{38} = hasVEX_L;
let TSFlags{39} = ignoresVEX_L;
let TSFlags{40} = has3DNow0F0FOpcode;
let TSFlags{41} = hasXOP_WPrefix;
}
class PseudoI<dag oops, dag iops, list<dag> pattern>
@ -496,6 +498,12 @@ class FMA3<bits<8> o, Format F, dag outs, dag ins, string asm,
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8,
OpSize, VEX_4V, Requires<[HasFMA3]>;
// FMA4 Instruction Templates
class FMA4<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, TA,
OpSize, VEX_4V, VEX_I8IMM, Requires<[HasFMA4]>;
// X86-64 Instruction templates...
//

View File

@ -0,0 +1,9 @@
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -march=x86-64 -mattr=fma4 | FileCheck %s
define < 2 x double > @test_x86_fma4_vfmadd_sd(< 2 x double > %a0, < 2 x double > %a1, < 2 x double > %a2) {
; CHECK: vfmaddsd
%res = call < 2 x double > @llvm.x86.fma4.vfmadd.sd(< 2 x double > %a0, < 2 x double > %a1, < 2 x double > %a2) ; <i64> [#uses=1]
ret < 2 x double > %res
}
declare < 2 x double > @llvm.x86.fma4.vfmadd.sd(< 2 x double >, < 2 x double >, < 2 x double >) nounwind readnone

View File

@ -0,0 +1,13 @@
// RUN: llvm-mc -triple x86_64-unknown-unknown --show-encoding %s | FileCheck %s
// CHECK: vfmaddsd (%rcx), %xmm1, %xmm0, %xmm0
// CHECK: encoding: [0xc4,0xe3,0xf9,0x6b,0x01,0x10]
vfmaddsd (%rcx), %xmm1, %xmm0, %xmm0
// CHECK: vfmaddsd %xmm1, (%rcx), %xmm0, %xmm0
// CHECK: encoding: [0xc4,0xe3,0x79,0x6b,0x01,0x10]
vfmaddsd %xmm1, (%rcx),%xmm0, %xmm0
// CHECK: vfmaddsd %xmm2, %xmm1, %xmm0, %xmm0
// CHECK: encoding: [0xc4,0xe3,0xf9,0x6b,0xc2,0x10]
vfmaddsd %xmm2, %xmm1, %xmm0, %xmm0