mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 10:42:39 +01:00
[PM] Port NaryReassociate to the new PM
Differential Revision: https://reviews.llvm.org/D22648 llvm-svn: 276349
This commit is contained in:
parent
5117f51865
commit
6b0c2bfc2b
@ -236,7 +236,7 @@ void initializeMetaRenamerPass(PassRegistry&);
|
||||
void initializeModuleDebugInfoPrinterPass(PassRegistry&);
|
||||
void initializeModuleSummaryIndexWrapperPassPass(PassRegistry &);
|
||||
void initializeNameAnonFunctionPass(PassRegistry &);
|
||||
void initializeNaryReassociatePass(PassRegistry&);
|
||||
void initializeNaryReassociateLegacyPassPass(PassRegistry &);
|
||||
void initializeNoAAPass(PassRegistry&);
|
||||
void initializeObjCARCAAWrapperPassPass(PassRegistry&);
|
||||
void initializeObjCARCAPElimPass(PassRegistry&);
|
||||
|
174
include/llvm/Transforms/Scalar/NaryReassociate.h
Normal file
174
include/llvm/Transforms/Scalar/NaryReassociate.h
Normal file
@ -0,0 +1,174 @@
|
||||
//===- NaryReassociate.h - Reassociate n-ary expressions ------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass reassociates n-ary add expressions and eliminates the redundancy
|
||||
// exposed by the reassociation.
|
||||
//
|
||||
// A motivating example:
|
||||
//
|
||||
// void foo(int a, int b) {
|
||||
// bar(a + b);
|
||||
// bar((a + 2) + b);
|
||||
// }
|
||||
//
|
||||
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
|
||||
// the above code to
|
||||
//
|
||||
// int t = a + b;
|
||||
// bar(t);
|
||||
// bar(t + 2);
|
||||
//
|
||||
// However, the Reassociate pass is unable to do that because it processes each
|
||||
// instruction individually and believes (a + 2) + b is the best form according
|
||||
// to its rank system.
|
||||
//
|
||||
// To address this limitation, NaryReassociate reassociates an expression in a
|
||||
// form that reuses existing instructions. As a result, NaryReassociate can
|
||||
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
|
||||
// (a + b) is computed before.
|
||||
//
|
||||
// NaryReassociate works as follows. For every instruction in the form of (a +
|
||||
// b) + c, it checks whether a + c or b + c is already computed by a dominating
|
||||
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
|
||||
// c) + a and removes the redundancy accordingly. To efficiently look up whether
|
||||
// an expression is computed before, we store each instruction seen and its SCEV
|
||||
// into an SCEV-to-instruction map.
|
||||
//
|
||||
// Although the algorithm pattern-matches only ternary additions, it
|
||||
// automatically handles many >3-ary expressions by walking through the function
|
||||
// in the depth-first order. For example, given
|
||||
//
|
||||
// (a + c) + d
|
||||
// ((a + b) + c) + d
|
||||
//
|
||||
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
|
||||
// ((a + c) + b) + d into ((a + c) + d) + b.
|
||||
//
|
||||
// Finally, the above dominator-based algorithm may need to be run multiple
|
||||
// iterations before emitting optimal code. One source of this need is that we
|
||||
// only split an operand when it is used only once. The above algorithm can
|
||||
// eliminate an instruction and decrease the usage count of its operands. As a
|
||||
// result, an instruction that previously had multiple uses may become a
|
||||
// single-use instruction and thus eligible for split consideration. For
|
||||
// example,
|
||||
//
|
||||
// ac = a + c
|
||||
// ab = a + b
|
||||
// abc = ab + c
|
||||
// ab2 = ab + b
|
||||
// ab2c = ab2 + c
|
||||
//
|
||||
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
|
||||
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
|
||||
// result, ab2 becomes dead and ab will be used only once in the second
|
||||
// iteration.
|
||||
//
|
||||
// Limitations and TODO items:
|
||||
//
|
||||
// 1) We only considers n-ary adds and muls for now. This should be extended
|
||||
// and generalized.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
|
||||
#define LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
|
||||
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/Analysis/AssumptionCache.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/PassManager.h"
|
||||
|
||||
namespace llvm {
|
||||
class NaryReassociatePass : public PassInfoMixin<NaryReassociatePass> {
|
||||
public:
|
||||
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
|
||||
|
||||
// Glue for old PM.
|
||||
bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_,
|
||||
ScalarEvolution *SE_, TargetLibraryInfo *TLI_,
|
||||
TargetTransformInfo *TTI_);
|
||||
|
||||
private:
|
||||
// Runs only one iteration of the dominator-based algorithm. See the header
|
||||
// comments for why we need multiple iterations.
|
||||
bool doOneIteration(Function &F);
|
||||
|
||||
// Reassociates I for better CSE.
|
||||
Instruction *tryReassociate(Instruction *I);
|
||||
|
||||
// Reassociate GEP for better CSE.
|
||||
Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
|
||||
// Try splitting GEP at the I-th index and see whether either part can be
|
||||
// CSE'ed. This is a helper function for tryReassociateGEP.
|
||||
//
|
||||
// \p IndexedType The element type indexed by GEP's I-th index. This is
|
||||
// equivalent to
|
||||
// GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
|
||||
// ..., i-th index).
|
||||
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||||
unsigned I, Type *IndexedType);
|
||||
// Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
|
||||
// &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
|
||||
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||||
unsigned I, Value *LHS,
|
||||
Value *RHS, Type *IndexedType);
|
||||
|
||||
// Reassociate binary operators for better CSE.
|
||||
Instruction *tryReassociateBinaryOp(BinaryOperator *I);
|
||||
|
||||
// A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly
|
||||
// passed.
|
||||
Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS,
|
||||
BinaryOperator *I);
|
||||
// Rewrites I to (LHS op RHS) if LHS is computed already.
|
||||
Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS,
|
||||
BinaryOperator *I);
|
||||
|
||||
// Tries to match Op1 and Op2 by using V.
|
||||
bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2);
|
||||
|
||||
// Gets SCEV for (LHS op RHS).
|
||||
const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
|
||||
const SCEV *RHS);
|
||||
|
||||
// Returns the closest dominator of \c Dominatee that computes
|
||||
// \c CandidateExpr. Returns null if not found.
|
||||
Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
|
||||
Instruction *Dominatee);
|
||||
// GetElementPtrInst implicitly sign-extends an index if the index is shorter
|
||||
// than the pointer size. This function returns whether Index is shorter than
|
||||
// GEP's pointer size, i.e., whether Index needs to be sign-extended in order
|
||||
// to be an index of GEP.
|
||||
bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
|
||||
|
||||
AssumptionCache *AC;
|
||||
const DataLayout *DL;
|
||||
DominatorTree *DT;
|
||||
ScalarEvolution *SE;
|
||||
TargetLibraryInfo *TLI;
|
||||
TargetTransformInfo *TTI;
|
||||
// A lookup table quickly telling which instructions compute the given SCEV.
|
||||
// Note that there can be multiple instructions at different locations
|
||||
// computing to the same SCEV, so we map a SCEV to an instruction list. For
|
||||
// example,
|
||||
//
|
||||
// if (p1)
|
||||
// foo(a + b);
|
||||
// if (p2)
|
||||
// bar(a + b);
|
||||
DenseMap<const SCEV *, SmallVector<WeakVH, 2>> SeenExprs;
|
||||
};
|
||||
} // namespace llvm
|
||||
|
||||
#endif // LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
|
@ -104,6 +104,7 @@
|
||||
#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
|
||||
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
|
||||
#include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
|
||||
#include "llvm/Transforms/Scalar/NaryReassociate.h"
|
||||
#include "llvm/Transforms/Scalar/PartiallyInlineLibCalls.h"
|
||||
#include "llvm/Transforms/Scalar/Reassociate.h"
|
||||
#include "llvm/Transforms/Scalar/SCCP.h"
|
||||
|
@ -149,6 +149,7 @@ FUNCTION_PASS("loop-simplify", LoopSimplifyPass())
|
||||
FUNCTION_PASS("mem2reg", PromotePass())
|
||||
FUNCTION_PASS("memcpyopt", MemCpyOptPass())
|
||||
FUNCTION_PASS("mldst-motion", MergedLoadStoreMotionPass())
|
||||
FUNCTION_PASS("nary-reassociate", NaryReassociatePass())
|
||||
FUNCTION_PASS("jump-threading", JumpThreadingPass())
|
||||
FUNCTION_PASS("partially-inline-libcalls", PartiallyInlineLibCallsPass())
|
||||
FUNCTION_PASS("lcssa", LCSSAPass())
|
||||
|
@ -76,12 +76,8 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/AssumptionCache.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/Transforms/Scalar/NaryReassociate.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/IR/PatternMatch.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
@ -94,16 +90,15 @@ using namespace PatternMatch;
|
||||
#define DEBUG_TYPE "nary-reassociate"
|
||||
|
||||
namespace {
|
||||
class NaryReassociate : public FunctionPass {
|
||||
class NaryReassociateLegacyPass : public FunctionPass {
|
||||
public:
|
||||
static char ID;
|
||||
|
||||
NaryReassociate(): FunctionPass(ID) {
|
||||
initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
|
||||
NaryReassociateLegacyPass() : FunctionPass(ID) {
|
||||
initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
bool doInitialization(Module &M) override {
|
||||
DL = &M.getDataLayout();
|
||||
return false;
|
||||
}
|
||||
bool runOnFunction(Function &F) override;
|
||||
@ -121,101 +116,68 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
// Runs only one iteration of the dominator-based algorithm. See the header
|
||||
// comments for why we need multiple iterations.
|
||||
bool doOneIteration(Function &F);
|
||||
|
||||
// Reassociates I for better CSE.
|
||||
Instruction *tryReassociate(Instruction *I);
|
||||
|
||||
// Reassociate GEP for better CSE.
|
||||
Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
|
||||
// Try splitting GEP at the I-th index and see whether either part can be
|
||||
// CSE'ed. This is a helper function for tryReassociateGEP.
|
||||
//
|
||||
// \p IndexedType The element type indexed by GEP's I-th index. This is
|
||||
// equivalent to
|
||||
// GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
|
||||
// ..., i-th index).
|
||||
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||||
unsigned I, Type *IndexedType);
|
||||
// Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
|
||||
// &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
|
||||
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||||
unsigned I, Value *LHS,
|
||||
Value *RHS, Type *IndexedType);
|
||||
|
||||
// Reassociate binary operators for better CSE.
|
||||
Instruction *tryReassociateBinaryOp(BinaryOperator *I);
|
||||
|
||||
// A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly
|
||||
// passed.
|
||||
Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS,
|
||||
BinaryOperator *I);
|
||||
// Rewrites I to (LHS op RHS) if LHS is computed already.
|
||||
Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS,
|
||||
BinaryOperator *I);
|
||||
|
||||
// Tries to match Op1 and Op2 by using V.
|
||||
bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2);
|
||||
|
||||
// Gets SCEV for (LHS op RHS).
|
||||
const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
|
||||
const SCEV *RHS);
|
||||
|
||||
// Returns the closest dominator of \c Dominatee that computes
|
||||
// \c CandidateExpr. Returns null if not found.
|
||||
Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
|
||||
Instruction *Dominatee);
|
||||
// GetElementPtrInst implicitly sign-extends an index if the index is shorter
|
||||
// than the pointer size. This function returns whether Index is shorter than
|
||||
// GEP's pointer size, i.e., whether Index needs to be sign-extended in order
|
||||
// to be an index of GEP.
|
||||
bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
|
||||
|
||||
AssumptionCache *AC;
|
||||
const DataLayout *DL;
|
||||
DominatorTree *DT;
|
||||
ScalarEvolution *SE;
|
||||
TargetLibraryInfo *TLI;
|
||||
TargetTransformInfo *TTI;
|
||||
// A lookup table quickly telling which instructions compute the given SCEV.
|
||||
// Note that there can be multiple instructions at different locations
|
||||
// computing to the same SCEV, so we map a SCEV to an instruction list. For
|
||||
// example,
|
||||
//
|
||||
// if (p1)
|
||||
// foo(a + b);
|
||||
// if (p2)
|
||||
// bar(a + b);
|
||||
DenseMap<const SCEV *, SmallVector<WeakVH, 2>> SeenExprs;
|
||||
NaryReassociatePass Impl;
|
||||
};
|
||||
} // anonymous namespace
|
||||
|
||||
char NaryReassociate::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
|
||||
false, false)
|
||||
char NaryReassociateLegacyPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
|
||||
"Nary reassociation", false, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
||||
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
|
||||
false, false)
|
||||
INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
|
||||
"Nary reassociation", false, false)
|
||||
|
||||
FunctionPass *llvm::createNaryReassociatePass() {
|
||||
return new NaryReassociate();
|
||||
return new NaryReassociateLegacyPass();
|
||||
}
|
||||
|
||||
bool NaryReassociate::runOnFunction(Function &F) {
|
||||
bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
|
||||
if (skipFunction(F))
|
||||
return false;
|
||||
|
||||
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
||||
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
||||
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
||||
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||||
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
||||
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
||||
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
||||
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||||
|
||||
return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
|
||||
}
|
||||
|
||||
PreservedAnalyses NaryReassociatePass::run(Function &F,
|
||||
FunctionAnalysisManager &AM) {
|
||||
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
|
||||
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
||||
auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
|
||||
auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
|
||||
auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
|
||||
|
||||
bool Changed = runImpl(F, AC, DT, SE, TLI, TTI);
|
||||
if (!Changed)
|
||||
return PreservedAnalyses::all();
|
||||
|
||||
// FIXME: This should also 'preserve the CFG'.
|
||||
PreservedAnalyses PA;
|
||||
PA.preserve<DominatorTreeAnalysis>();
|
||||
PA.preserve<ScalarEvolutionAnalysis>();
|
||||
PA.preserve<TargetLibraryAnalysis>();
|
||||
return PA;
|
||||
}
|
||||
|
||||
bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
|
||||
DominatorTree *DT_, ScalarEvolution *SE_,
|
||||
TargetLibraryInfo *TLI_,
|
||||
TargetTransformInfo *TTI_) {
|
||||
AC = AC_;
|
||||
DT = DT_;
|
||||
SE = SE_;
|
||||
TLI = TLI_;
|
||||
TTI = TTI_;
|
||||
DL = &F.getParent()->getDataLayout();
|
||||
|
||||
bool Changed = false, ChangedInThisIteration;
|
||||
do {
|
||||
@ -237,7 +199,7 @@ static bool isPotentiallyNaryReassociable(Instruction *I) {
|
||||
}
|
||||
}
|
||||
|
||||
bool NaryReassociate::doOneIteration(Function &F) {
|
||||
bool NaryReassociatePass::doOneIteration(Function &F) {
|
||||
bool Changed = false;
|
||||
SeenExprs.clear();
|
||||
// Process the basic blocks in pre-order of the dominator tree. This order
|
||||
@ -287,7 +249,7 @@ bool NaryReassociate::doOneIteration(Function &F) {
|
||||
return Changed;
|
||||
}
|
||||
|
||||
Instruction *NaryReassociate::tryReassociate(Instruction *I) {
|
||||
Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
case Instruction::Mul:
|
||||
@ -308,7 +270,7 @@ static bool isGEPFoldable(GetElementPtrInst *GEP,
|
||||
Indices) == TargetTransformInfo::TCC_Free;
|
||||
}
|
||||
|
||||
Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) {
|
||||
Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
|
||||
// Not worth reassociating GEP if it is foldable.
|
||||
if (isGEPFoldable(GEP, TTI))
|
||||
return nullptr;
|
||||
@ -324,16 +286,16 @@ Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool NaryReassociate::requiresSignExtension(Value *Index,
|
||||
GetElementPtrInst *GEP) {
|
||||
bool NaryReassociatePass::requiresSignExtension(Value *Index,
|
||||
GetElementPtrInst *GEP) {
|
||||
unsigned PointerSizeInBits =
|
||||
DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
|
||||
return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
|
||||
}
|
||||
|
||||
GetElementPtrInst *
|
||||
NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
|
||||
Type *IndexedType) {
|
||||
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||||
unsigned I, Type *IndexedType) {
|
||||
Value *IndexToSplit = GEP->getOperand(I + 1);
|
||||
if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
|
||||
IndexToSplit = SExt->getOperand(0);
|
||||
@ -366,9 +328,10 @@ NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
GetElementPtrInst *NaryReassociate::tryReassociateGEPAtIndex(
|
||||
GetElementPtrInst *GEP, unsigned I, Value *LHS, Value *RHS,
|
||||
Type *IndexedType) {
|
||||
GetElementPtrInst *
|
||||
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||||
unsigned I, Value *LHS,
|
||||
Value *RHS, Type *IndexedType) {
|
||||
// Look for GEP's closest dominator that has the same SCEV as GEP except that
|
||||
// the I-th index is replaced with LHS.
|
||||
SmallVector<const SCEV *, 4> IndexExprs;
|
||||
@ -437,7 +400,7 @@ GetElementPtrInst *NaryReassociate::tryReassociateGEPAtIndex(
|
||||
return NewGEP;
|
||||
}
|
||||
|
||||
Instruction *NaryReassociate::tryReassociateBinaryOp(BinaryOperator *I) {
|
||||
Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
|
||||
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
||||
if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
|
||||
return NewI;
|
||||
@ -446,8 +409,8 @@ Instruction *NaryReassociate::tryReassociateBinaryOp(BinaryOperator *I) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Instruction *NaryReassociate::tryReassociateBinaryOp(Value *LHS, Value *RHS,
|
||||
BinaryOperator *I) {
|
||||
Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
|
||||
BinaryOperator *I) {
|
||||
Value *A = nullptr, *B = nullptr;
|
||||
// To be conservative, we reassociate I only when it is the only user of (A op
|
||||
// B).
|
||||
@ -470,9 +433,9 @@ Instruction *NaryReassociate::tryReassociateBinaryOp(Value *LHS, Value *RHS,
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Instruction *NaryReassociate::tryReassociatedBinaryOp(const SCEV *LHSExpr,
|
||||
Value *RHS,
|
||||
BinaryOperator *I) {
|
||||
Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
|
||||
Value *RHS,
|
||||
BinaryOperator *I) {
|
||||
// Look for the closest dominator LHS of I that computes LHSExpr, and replace
|
||||
// I with LHS op RHS.
|
||||
auto *LHS = findClosestMatchingDominator(LHSExpr, I);
|
||||
@ -494,8 +457,8 @@ Instruction *NaryReassociate::tryReassociatedBinaryOp(const SCEV *LHSExpr,
|
||||
return NewI;
|
||||
}
|
||||
|
||||
bool NaryReassociate::matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1,
|
||||
Value *&Op2) {
|
||||
bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
|
||||
Value *&Op1, Value *&Op2) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
|
||||
@ -507,8 +470,9 @@ bool NaryReassociate::matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1,
|
||||
return false;
|
||||
}
|
||||
|
||||
const SCEV *NaryReassociate::getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
|
||||
const SCEV *RHS) {
|
||||
const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
|
||||
const SCEV *LHS,
|
||||
const SCEV *RHS) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
return SE->getAddExpr(LHS, RHS);
|
||||
@ -521,8 +485,8 @@ const SCEV *NaryReassociate::getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
|
||||
}
|
||||
|
||||
Instruction *
|
||||
NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr,
|
||||
Instruction *Dominatee) {
|
||||
NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
|
||||
Instruction *Dominatee) {
|
||||
auto Pos = SeenExprs.find(CandidateExpr);
|
||||
if (Pos == SeenExprs.end())
|
||||
return nullptr;
|
||||
|
@ -67,7 +67,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
|
||||
initializeLowerGuardIntrinsicPass(Registry);
|
||||
initializeMemCpyOptLegacyPassPass(Registry);
|
||||
initializeMergedLoadStoreMotionLegacyPassPass(Registry);
|
||||
initializeNaryReassociatePass(Registry);
|
||||
initializeNaryReassociateLegacyPassPass(Registry);
|
||||
initializePartiallyInlineLibCallsLegacyPassPass(Registry);
|
||||
initializeReassociateLegacyPassPass(Registry);
|
||||
initializeRegToMemPass(Registry);
|
||||
|
@ -1,4 +1,5 @@
|
||||
; RUN: opt < %s -nary-reassociate -early-cse -S | FileCheck %s
|
||||
; RUN: opt < %s -passes='nary-reassociate' -S | opt -early-cse -S | FileCheck %s
|
||||
|
||||
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
|
||||
target triple = "nvptx64-unknown-unknown"
|
||||
|
@ -1,4 +1,5 @@
|
||||
; RUN: opt < %s -slsr -nary-reassociate -S | FileCheck %s
|
||||
; RUN: opt < %s -slsr -S | opt -passes='nary-reassociate' -S | FileCheck %s
|
||||
; RUN: llc < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s --check-prefix=PTX
|
||||
|
||||
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
|
||||
|
@ -1,4 +1,5 @@
|
||||
; RUN: opt < %s -nary-reassociate -S | FileCheck %s
|
||||
; RUN: opt < %s -passes='nary-reassociate' -S | FileCheck %s
|
||||
|
||||
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
; RUN: opt < %s -nary-reassociate -S | FileCheck %s
|
||||
; RUN: opt < %s -passes='nary-reassociate' -S | FileCheck %s
|
||||
|
||||
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
; RUN: opt < %s -nary-reassociate -S | FileCheck %s
|
||||
; RUN: opt < %s -passes='nary-reassociate' -S | FileCheck %s
|
||||
|
||||
define i32 @foo(i32 %tmp4) {
|
||||
; CHECK-LABEL: @foo(
|
||||
|
Loading…
Reference in New Issue
Block a user