1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 18:42:46 +02:00

Adjust MachineScheduler to use ProcResource counts

This fix allows the scheduler to take into account the number of instances of
each ProcResource specified. Previously a declaration in a scheduler of
ProcResource<1> would be treated identically to a declaration of
ProcResource<2>. Now the hazard recognizer would report a hazard only after all
of the resource instances are busy.

Patch by Jackson Woodruff and Momchil Velikov.

Differential Revision: https://reviews.llvm.org/D51160

llvm-svn: 360441
This commit is contained in:
Momchil Velikov 2019-05-10 16:54:32 +00:00
parent bb85ceb346
commit 6bb92bf8e9
4 changed files with 88 additions and 19 deletions

View File

@ -666,6 +666,10 @@ private:
// scheduled instruction.
SmallVector<unsigned, 16> ReservedCycles;
// For each PIdx, stores first index into ReservedCycles that corresponds to
// it.
SmallVector<unsigned, 16> ReservedCyclesIndex;
#ifndef NDEBUG
// Remember the greatest possible stall as an upper bound on the number of
// times we should retry the pending queue because of a hazard.
@ -740,7 +744,11 @@ public:
/// cycle.
unsigned getLatencyStallCycles(SUnit *SU);
unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
unsigned getNextResourceCycleByInstance(unsigned InstanceIndex,
unsigned Cycles);
std::pair<unsigned, unsigned> getNextResourceCycle(unsigned PIdx,
unsigned Cycles);
bool checkHazard(SUnit *SU);

View File

@ -1863,6 +1863,7 @@ void SchedBoundary::reset() {
ZoneCritResIdx = 0;
IsResourceLimited = false;
ReservedCycles.clear();
ReservedCyclesIndex.clear();
#ifndef NDEBUG
// Track the maximum number of stall cycles that could arise either from the
// latency of a DAG edge or the number of cycles that a processor resource is
@ -1901,8 +1902,17 @@ init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
SchedModel = smodel;
Rem = rem;
if (SchedModel->hasInstrSchedModel()) {
ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
ReservedCyclesIndex.resize(ResourceCount);
ExecutedResCounts.resize(ResourceCount);
unsigned NumUnits = 0;
for (unsigned i = 0; i < ResourceCount; ++i) {
ReservedCyclesIndex[i] = NumUnits;
NumUnits += SchedModel->getProcResource(i)->NumUnits;
}
ReservedCycles.resize(NumUnits, InvalidCycle);
}
}
@ -1923,11 +1933,11 @@ unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
return 0;
}
/// Compute the next cycle at which the given processor resource can be
/// scheduled.
unsigned SchedBoundary::
getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
unsigned NextUnreserved = ReservedCycles[PIdx];
/// Compute the next cycle at which the given processor resource unit
/// can be scheduled.
unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
unsigned Cycles) {
unsigned NextUnreserved = ReservedCycles[InstanceIdx];
// If this resource has never been used, always return cycle zero.
if (NextUnreserved == InvalidCycle)
return 0;
@ -1937,6 +1947,29 @@ getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
return NextUnreserved;
}
/// Compute the next cycle at which the given processor resource can be
/// scheduled. Returns the next cycle and the index of the processor resource
/// instance in the reserved cycles vector.
std::pair<unsigned, unsigned>
SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
unsigned MinNextUnreserved = InvalidCycle;
unsigned InstanceIdx = 0;
unsigned StartIndex = ReservedCyclesIndex[PIdx];
unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
assert(NumberOfInstances > 0 &&
"Cannot have zero instances of a ProcResource");
for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
++I) {
unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
if (MinNextUnreserved > NextUnreserved) {
InstanceIdx = I;
MinNextUnreserved = NextUnreserved;
}
}
return std::make_pair(MinNextUnreserved, InstanceIdx);
}
/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
@ -1978,14 +2011,16 @@ bool SchedBoundary::checkHazard(SUnit *SU) {
SchedModel->getWriteProcResEnd(SC))) {
unsigned ResIdx = PE.ProcResourceIdx;
unsigned Cycles = PE.Cycles;
unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
unsigned NRCycle, InstanceIdx;
std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
if (NRCycle > CurrCycle) {
#ifndef NDEBUG
MaxObservedStall = std::max(Cycles, MaxObservedStall);
#endif
LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
<< SchedModel->getResourceName(ResIdx) << "="
<< NRCycle << "c\n");
<< SchedModel->getResourceName(ResIdx)
<< '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'
<< "=" << NRCycle << "c\n");
return true;
}
}
@ -2140,10 +2175,12 @@ countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
<< "c\n");
}
// For reserved resources, record the highest cycle using the resource.
unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
unsigned NextAvailable, InstanceIdx;
std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
if (NextAvailable > CurrCycle) {
LLVM_DEBUG(dbgs() << " Resource conflict: "
<< SchedModel->getProcResource(PIdx)->Name
<< SchedModel->getResourceName(PIdx)
<< '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'
<< " reserved until @" << NextAvailable << "\n");
}
return NextAvailable;
@ -2233,12 +2270,13 @@ void SchedBoundary::bumpNode(SUnit *SU) {
PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
unsigned PIdx = PI->ProcResourceIdx;
if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
unsigned ReservedUntil, InstanceIdx;
std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
if (isTop()) {
ReservedCycles[PIdx] =
std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
}
else
ReservedCycles[PIdx] = NextCycle;
ReservedCycles[InstanceIdx] =
std::max(ReservedUntil, NextCycle + PI->Cycles);
} else
ReservedCycles[InstanceIdx] = NextCycle;
}
}
}

View File

@ -205,7 +205,9 @@ entry:
; CHECK-LABEL: aes_load_store:
; CHECK: aese [[VA:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VA]], [[VA]]
; aese and aesmc are described to share a unit, hence won't be scheduled on the
; same cycle and the scheduler can find another instruction to place inbetween
; CHECK: aesmc [[VA]], [[VA]]
; CHECK: aese [[VB:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VB]], [[VB]]
; CHECK-NOT: aesmc

View File

@ -0,0 +1,21 @@
; RUN: llc -mtriple=arm-eabi -mcpu=cortex-r52 -debug-only=machine-scheduler %s -o - 2>&1 | FileCheck %s --check-prefix=CHECK-R52
; REQUIRES: asserts
; source_filename = "sched-2.c"
target datalayout = "e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64"
define dso_local i32 @f(i32 %a, i32 %b, i32 %c, i32 %d) local_unnamed_addr {
entry:
%add = add nsw i32 %b, %a
%add1 = add nsw i32 %d, %c
%div = sdiv i32 %add, %add1
ret i32 %div
}
; Cortex-R52 model describes it as dual-issue with two integer ALUs
; It should be able to issue the two additions in the same cycle.
; CHECK-R52: MI Scheduling
; CHECK-R52: Cycle: 14
; CHECK-R52: Scheduling SU(5) %5:gpr = nsw ADDrr %3:gpr, %2:gpr, 14, $noreg, $noreg
; CHECK-R52: Scheduling SU(4) %4:gpr = nsw ADDrr %1:gpr, %0:gpr, 14, $noreg, $noreg
; CHECK-R52: Cycle: 15