1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00

Fix time-trace breaking flame graph assumptions

-ftime-trace could break flame-graph assumptions on Windows, with an
inner scope overrunning outer scopes. This was due to the way that times
were truncated. Changed this so time_points for the flame-graph are
truncated instead of durations, preserving the relative order of event
starts and ends.

I have tried to retain the extra precision for the totals, which count
thousands or millions of events.

Added assert to check this property holds in future.

Fixes PR43043

Differential Revision: https://reviews.llvm.org/D66411

llvm-svn: 371039
This commit is contained in:
Russell Gallop 2019-09-05 09:26:04 +00:00
parent 322242289e
commit 6be57efcf5

View File

@ -27,20 +27,35 @@ namespace llvm {
TimeTraceProfiler *TimeTraceProfilerInstance = nullptr;
typedef duration<steady_clock::rep, steady_clock::period> DurationType;
typedef time_point<steady_clock> TimePointType;
typedef std::pair<size_t, DurationType> CountAndDurationType;
typedef std::pair<std::string, CountAndDurationType>
NameAndCountAndDurationType;
struct Entry {
time_point<steady_clock> Start;
DurationType Duration;
TimePointType Start;
TimePointType End;
std::string Name;
std::string Detail;
Entry(time_point<steady_clock> &&S, DurationType &&D, std::string &&N,
std::string &&Dt)
: Start(std::move(S)), Duration(std::move(D)), Name(std::move(N)),
Entry(TimePointType &&S, TimePointType &&E, std::string &&N, std::string &&Dt)
: Start(std::move(S)), End(std::move(E)), Name(std::move(N)),
Detail(std::move(Dt)){};
// Calculate timings for FlameGraph. Cast time points to microsecond precision
// rather than casting duration. This avoid truncation issues causing inner
// scopes overruning outer scopes.
steady_clock::rep getFlameGraphStartUs(TimePointType StartTime) const {
return (time_point_cast<microseconds>(Start) -
time_point_cast<microseconds>(StartTime))
.count();
}
steady_clock::rep getFlameGraphDurUs() const {
return (time_point_cast<microseconds>(End) -
time_point_cast<microseconds>(Start))
.count();
}
};
struct TimeTraceProfiler {
@ -49,17 +64,27 @@ struct TimeTraceProfiler {
}
void begin(std::string Name, llvm::function_ref<std::string()> Detail) {
Stack.emplace_back(steady_clock::now(), DurationType{}, std::move(Name),
Stack.emplace_back(steady_clock::now(), TimePointType(), std::move(Name),
Detail());
}
void end() {
assert(!Stack.empty() && "Must call begin() first");
auto &E = Stack.back();
E.Duration = steady_clock::now() - E.Start;
E.End = steady_clock::now();
// Check that end times monotonically increase.
assert((Entries.empty() ||
(E.getFlameGraphStartUs(StartTime) + E.getFlameGraphDurUs() >=
Entries.back().getFlameGraphStartUs(StartTime) +
Entries.back().getFlameGraphDurUs())) &&
"TimeProfiler scope ended earlier than previous scope");
// Calculate duration at full precision for overall counts.
DurationType Duration = E.End - E.Start;
// Only include sections longer or equal to TimeTraceGranularity msec.
if (duration_cast<microseconds>(E.Duration).count() >= TimeTraceGranularity)
if (duration_cast<microseconds>(Duration).count() >= TimeTraceGranularity)
Entries.emplace_back(E);
// Track total time taken by each "name", but only the topmost levels of
@ -72,7 +97,7 @@ struct TimeTraceProfiler {
}) == Stack.rend()) {
auto &CountAndTotal = CountAndTotalPerName[E.Name];
CountAndTotal.first++;
CountAndTotal.second += E.Duration;
CountAndTotal.second += Duration;
}
Stack.pop_back();
@ -88,8 +113,8 @@ struct TimeTraceProfiler {
// Emit all events for the main flame graph.
for (const auto &E : Entries) {
auto StartUs = duration_cast<microseconds>(E.Start - StartTime).count();
auto DurUs = duration_cast<microseconds>(E.Duration).count();
auto StartUs = E.getFlameGraphStartUs(StartTime);
auto DurUs = E.getFlameGraphDurUs();
J.object([&]{
J.attribute("pid", 1);
@ -154,7 +179,7 @@ struct TimeTraceProfiler {
SmallVector<Entry, 16> Stack;
SmallVector<Entry, 128> Entries;
StringMap<CountAndDurationType> CountAndTotalPerName;
time_point<steady_clock> StartTime;
TimePointType StartTime;
// Minimum time granularity (in microseconds)
unsigned TimeTraceGranularity;