1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00

Fix ModR/M byte output for 16-bit addressing modes (PR18220)

Add some tests to validate correct register selection, including a fix
to an existing test which was requiring the *wrong* output.

Patch from David Woodhouse.

llvm-svn: 198566
This commit is contained in:
Craig Topper 2014-01-05 19:40:56 +00:00
parent 886f4f8b40
commit 71734d085a
2 changed files with 67 additions and 1 deletions

View File

@ -402,6 +402,66 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
// 16-bit addressing forms of the ModR/M byte have a different encoding for
// the R/M field and are far more limited in which registers can be used.
if (Is16BitMemOperand(MI, Op)) {
if (BaseReg) {
// For 32-bit addressing, the row and column values in Table 2-2 are
// basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
// some special cases. And GetX86RegNum reflects that numbering.
// For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
// Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
// use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
// while values 0-3 indicate the allowed combinations (base+index) of
// those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
//
// R16Table[] is a lookup from the normal RegNo, to the row values from
// Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
unsigned RMfield = R16Table[BaseRegNo];
assert(RMfield && "invalid 16-bit base register");
if (IndexReg.getReg()) {
unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
assert(IndexReg16 && "invalid 16-bit index register");
// We must have one of SI/DI (4,5), and one of BP/BX (6,7).
assert(((IndexReg16 ^ RMfield) & 2) &&
"invalid 16-bit base/index register combination");
assert(Scale.getImm() == 1 &&
"invalid scale for 16-bit memory reference");
// Allow base/index to appear in either order (although GAS doesn't).
if (IndexReg16 & 2)
RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
else
RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
}
if (Disp.isImm() && isDisp8(Disp.getImm())) {
if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
// There is no displacement; just the register.
EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
return;
}
// Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
return;
}
// This is the [REG]+disp16 case.
EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
} else {
// There is no BaseReg; this is the plain [disp16] case.
EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
}
// Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
return;
}
// Determine whether a SIB byte is needed.
// If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table

View File

@ -8,6 +8,12 @@
.code32
movb $0x0, (%si)
// CHECK: encoding: [0x67,0xc6,0x06,0x00]
// CHECK: encoding: [0x67,0xc6,0x04,0x00]
movb $0x0, (%esi)
// CHECK: encoding: [0xc6,0x06,0x00]
movw $0x1234, (%si)
// CHECK: encoding: [0x67,0x66,0xc7,0x04,0x34,0x12]
movl $0x12345678, (%bx,%si,1)
// CHECK: encoding: [0x67,0xc7,0x00,0x78,0x56,0x34,0x12]
movw $0x1234, 0x5678(%bp)
// CHECK: encoding: [0x67,0x66,0xc7,0x86,0x78,0x56,0x34,0x12]