1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00

[Hexagon] Improve casting of boolean HVX vectors to scalars

- Mark memory access for bool vectors as disallowed in target lowering.
  This will prevent combining bitcasts of bool vectors with stores.
- Replace the actual bitcasting code with a faster version.
- Handle casting of v16i1 to i16.
This commit is contained in:
Krzysztof Parzyszek 2020-02-26 09:56:12 -06:00
parent d5b09af4ad
commit 7752ba906a
7 changed files with 302 additions and 271 deletions

View File

@ -1681,8 +1681,6 @@ HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
setOperationAction(ISD::STORE, VT, Custom);
}
setOperationAction(ISD::STORE, MVT::v128i1, Custom);
for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
MVT::v2i32}) {
setCondCodeAction(ISD::SETNE, VT, Expand);
@ -1696,8 +1694,6 @@ HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
// Custom-lower bitcasts from i8 to v8i1.
setOperationAction(ISD::BITCAST, MVT::i8, Custom);
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
setOperationAction(ISD::VSELECT, MVT::v4i8, Custom);
setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
@ -3081,6 +3077,12 @@ void
HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
if (isHvxOperation(N)) {
LowerHvxOperationWrapper(N, Results, DAG);
if (!Results.empty())
return;
}
// We are only custom-lowering stores to verify the alignment of the
// address if it is a compile-time constant. Since a store can be modified
// during type-legalization (the value being stored may need legalization),
@ -3094,6 +3096,12 @@ void
HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
if (isHvxOperation(N)) {
ReplaceHvxNodeResults(N, Results, DAG);
if (!Results.empty())
return;
}
const SDLoc &dl(N);
switch (N->getOpcode()) {
case ISD::SRL:
@ -3378,12 +3386,25 @@ EVT HexagonTargetLowering::getOptimalMemOpType(
return MVT::Other;
}
bool HexagonTargetLowering::allowsMemoryAccess(LLVMContext &Context,
const DataLayout &DL, EVT VT, unsigned AddrSpace, unsigned Alignment,
MachineMemOperand::Flags Flags, bool *Fast) const {
MVT SVT = VT.getSimpleVT();
if (Subtarget.isHVXVectorType(SVT, true))
return allowsHvxMemoryAccess(SVT, Alignment, Flags, Fast);
return TargetLoweringBase::allowsMemoryAccess(
Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
}
bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
bool *Fast) const {
EVT VT, unsigned AddrSpace, unsigned Alignment,
MachineMemOperand::Flags Flags, bool *Fast) const {
MVT SVT = VT.getSimpleVT();
if (Subtarget.isHVXVectorType(SVT, true))
return allowsHvxMisalignedMemoryAccesses(SVT, Alignment, Flags, Fast);
if (Fast)
*Fast = false;
return Subtarget.isHVXVectorType(VT.getSimpleVT());
return false;
}
std::pair<const TargetRegisterClass*, uint8_t>

View File

@ -305,8 +305,12 @@ namespace HexagonISD {
EVT getOptimalMemOpType(const MemOp &Op,
const AttributeList &FuncAttributes) const override;
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
unsigned AddrSpace, unsigned Alignment, MachineMemOperand::Flags Flags,
bool *Fast) const override;
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
unsigned Align, MachineMemOperand::Flags Flags, bool *Fast)
unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast)
const override;
/// Returns relocation base for the given PIC jumptable.
@ -404,6 +408,11 @@ namespace HexagonISD {
VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const;
SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const;
bool allowsHvxMemoryAccess(MVT VecTy, unsigned Alignment,
MachineMemOperand::Flags Flags, bool *Fast) const;
bool allowsHvxMisalignedMemoryAccesses(MVT VecTy, unsigned Align,
MachineMemOperand::Flags Flags, bool *Fast) const;
bool isHvxSingleTy(MVT Ty) const;
bool isHvxPairTy(MVT Ty) const;
bool isHvxBoolTy(MVT Ty) const;
@ -438,6 +447,8 @@ namespace HexagonISD {
const SDLoc &dl, SelectionDAG &DAG) const;
SDValue extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy,
bool ZeroExt, SelectionDAG &DAG) const;
SDValue compressHvxPred(SDValue VecQ, const SDLoc &dl, MVT ResTy,
SelectionDAG &DAG) const;
SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const;
@ -467,8 +478,12 @@ namespace HexagonISD {
const override;
bool isHvxOperation(SDValue Op) const;
bool isHvxOperation(SDNode *N) const;
SDValue LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const;
void LowerHvxOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
void ReplaceHvxNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
SDValue PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
};

View File

@ -65,6 +65,15 @@ HexagonTargetLowering::initializeHVXLowering() {
AddPromotedToType(Opc, FromTy, ToTy);
};
// Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32).
// Note: v16i1 -> i16 is handled in type legalization instead of op
// legalization.
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
setOperationAction(ISD::BITCAST, MVT::v16i1, Custom);
setOperationAction(ISD::BITCAST, MVT::v128i1, Custom);
setOperationAction(ISD::BITCAST, MVT::i128, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
@ -290,6 +299,25 @@ HexagonTargetLowering::isHvxBoolTy(MVT Ty) const {
Ty.getVectorElementType() == MVT::i1;
}
bool
HexagonTargetLowering::allowsHvxMemoryAccess(MVT VecTy, unsigned Alignment,
MachineMemOperand::Flags Flags, bool *Fast) const {
// Bool vectors are excluded by default, but make it explicit to
// emphasize that bool vectors cannot be loaded or stored.
return Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false);
}
bool
HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses(MVT VecTy,
unsigned Align, MachineMemOperand::Flags Flags, bool *Fast) const {
if (!Subtarget.isHVXVectorType(VecTy))
return false;
// XXX Should this be false? vmemu are a bit slower than vmem.
if (Fast)
*Fast = true;
return true;
}
SDValue
HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
SelectionDAG &DAG) const {
@ -1029,6 +1057,61 @@ HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
return DAG.getSelect(dl, ResTy, VecV, True, False);
}
SDValue
HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl,
MVT ResTy, SelectionDAG &DAG) const {
// Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1]
// (i.e. the entire predicate register) to bits [0..HwLen-1] of a
// vector register. The remaining bits of the vector register are
// unspecified.
MachineFunction &MF = DAG.getMachineFunction();
unsigned HwLen = Subtarget.getVectorLength();
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
MVT PredTy = ty(VecQ);
unsigned PredLen = PredTy.getVectorNumElements();
assert(HwLen % PredLen == 0);
MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen);
Type *Int8Ty = Type::getInt8Ty(*DAG.getContext());
SmallVector<Constant*, 128> Tmp;
// Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,...
// These are bytes with the LSB rotated left with respect to their index.
for (unsigned i = 0; i != HwLen/8; ++i) {
for (unsigned j = 0; j != 8; ++j)
Tmp.push_back(ConstantInt::get(Int8Ty, 1u << j));
}
Constant *CV = ConstantVector::get(Tmp);
unsigned Align = HwLen;
SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Align), DAG);
SDValue Bytes = DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(MF), Align);
// Select the bytes that correspond to true bits in the vector predicate.
SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes),
getZero(dl, VecTy, DAG));
// Calculate the OR of all bytes in each group of 8. That will compress
// all the individual bits into a single byte.
// First, OR groups of 4, via vrmpy with 0x01010101.
SDValue All1 =
DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32));
SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG);
// Then rotate the accumulated vector by 4 bytes, and do the final OR.
SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy,
{Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG);
SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot});
// Pick every 8th byte and coalesce them at the beginning of the output.
// For symmetry, coalesce every 1+8th byte after that, then every 2+8th
// byte and so on.
SmallVector<int,128> Mask;
for (unsigned i = 0; i != HwLen; ++i)
Mask.push_back((8*i) % HwLen + i/(HwLen/8));
SDValue Collect =
DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask);
return DAG.getBitcast(ResTy, Collect);
}
SDValue
HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
const {
@ -1437,192 +1520,58 @@ HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
return T7;
}
// This function does the computation needed to bitcast a vector of predicate
// register to a vector of integers.
SDValue
HexagonTargetLowering::HvxVecPredBitcastComputation(SDValue Op,
SelectionDAG &DAG) const {
HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const {
SDValue ValQ = Op.getOperand(0);
MVT ResTy = ty(Op);
MVT VecTy = ty(ValQ);
const SDLoc &dl(Op);
MVT VecTy;
int Length;
if (Subtarget.useHVX64BOps()) {
VecTy = MVT::getVectorVT(MVT::i32, 16);
Length = 2;
}
if (Subtarget.useHVX128BOps()) {
VecTy = MVT::getVectorVT(MVT::i32, 32);
Length = 4;
}
// r0 = ##0x08040201 // Pre-rotated bits per 4 consecutive bytes.
SDValue C8421 = DAG.getTargetConstant(0x08040201, dl, MVT::i32);
SDValue InstrC8421 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C8421, DAG);
// v0 = vand(q0,r0)
SDValue Vand =
getInstr(Hexagon::V6_vandqrt, dl, VecTy, {Op, InstrC8421}, DAG);
// Or the bytes in each word into a single byte: that will form packs
// of 4 bits of the output.
// v1 = valign(v0,v0,#2)
SDValue C2 = DAG.getTargetConstant(2, dl, MVT::i32);
SDValue Valign =
getInstr(Hexagon::V6_valignbi, dl, VecTy, {Vand, Vand, C2}, DAG);
// v0 = vor(v0,v1)
SDValue Vor = getInstr(Hexagon::V6_vor, dl, VecTy, {Vand, Valign}, DAG);
// v1 = valign(v0,v0,#1)
SDValue C1 = DAG.getTargetConstant(1, dl, MVT::i32);
SDValue Valign1 =
getInstr(Hexagon::V6_valignbi, dl, VecTy, {Vor, Vor, C1}, DAG);
// v0 = vor(v0,v1)
SDValue Vor1 = getInstr(Hexagon::V6_vor, dl, VecTy, {Vor, Valign1}, DAG);
if (isHvxBoolTy(VecTy) && ResTy.isScalarInteger()) {
unsigned HwLen = Subtarget.getVectorLength();
MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
SDValue VQ = compressHvxPred(ValQ, dl, WordTy, DAG);
unsigned BitWidth = ResTy.getSizeInBits();
// Clear all the bytes per word except the lowest one.
// r0 = #0xff
SDValue Cff = DAG.getTargetConstant(0xff, dl, MVT::i32);
SDValue InstrCff = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, Cff, DAG);
// v1 = vsplat(r0)
SDValue Vsplat = getInstr(Hexagon::V6_lvsplatw, dl, VecTy, InstrCff, DAG);
// v0 = vand(v0,v1)
SDValue Vand1 = getInstr(Hexagon::V6_vand, dl, VecTy, {Vor1, Vsplat}, DAG);
if (BitWidth < 64) {
SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32),
dl, MVT::i32, DAG);
if (BitWidth == 32)
return W0;
assert(BitWidth < 32u);
return DAG.getZExtOrTrunc(W0, dl, ResTy);
}
// Shift each word left by its index to position the 4-bit packs for oring.
// The words 0..8 and 16..31 need to be ored to form the 64-bit output.
// r0 = ##.Lshifts
// .Lshifts:
// .word 0
// .word 4
// .word 8
// .word 12
// .word 16
// .word 20
// .word 24
// .word 28
// .word 0
// .word 4
// .word 8
// .word 12
// .word 16
// .word 20
// .word 24
// .word 28
// v1 = vmem(r0+#0)
SmallVector<SDValue, 32> Elems;
for (int i = 0; i < Length; ++i) {
Elems.push_back(DAG.getConstant(0, dl, MVT::i32));
Elems.push_back(DAG.getConstant(4, dl, MVT::i32));
Elems.push_back(DAG.getConstant(8, dl, MVT::i32));
Elems.push_back(DAG.getConstant(12, dl, MVT::i32));
Elems.push_back(DAG.getConstant(16, dl, MVT::i32));
Elems.push_back(DAG.getConstant(20, dl, MVT::i32));
Elems.push_back(DAG.getConstant(24, dl, MVT::i32));
Elems.push_back(DAG.getConstant(28, dl, MVT::i32));
// The result is >= 64 bits. The only options are 64 or 128.
assert(BitWidth == 64 || BitWidth == 128);
SmallVector<SDValue,4> Words;
for (unsigned i = 0; i != BitWidth/32; ++i) {
SDValue W = extractHvxElementReg(
VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG);
Words.push_back(W);
}
SmallVector<SDValue,2> Combines;
assert(Words.size() % 2 == 0);
for (unsigned i = 0, e = Words.size(); i < e; i += 2) {
SDValue C = DAG.getNode(
HexagonISD::COMBINE, dl, MVT::i64, {Words[i], Words[i+1]});
Combines.push_back(C);
}
if (BitWidth == 64)
return Combines[0];
// It must be i128. I128 is not a legal type, so this part will be
// executed during type legalization. We need to generate code that
// the default expansion can break up into smaller pieces.
SDValue C0 = DAG.getZExtOrTrunc(Combines[0], dl, ResTy);
SDValue C1 = DAG.getNode(ISD::SHL, dl, ResTy,
DAG.getZExtOrTrunc(Combines[1], dl, ResTy),
DAG.getConstant(64, dl, MVT::i32));
return DAG.getNode(ISD::OR, dl, ResTy, C0, C1);
}
SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
// v0.w = vasl(v0.w,v1.w)
SDValue Vasl = getInstr(Hexagon::V6_vaslwv, dl, VecTy, {Vand1, BV}, DAG);
// 3 rounds of oring.
// r0 = #16 // HwLen/4
SDValue C16 = DAG.getTargetConstant(16, dl, MVT::i32);
SDValue InstrC16 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C16, DAG);
// v1 = vror(v0,r0)
SDValue Vror = getInstr(Hexagon::V6_vror, dl, VecTy, {Vasl, InstrC16}, DAG);
// v0 = vor(v0,v1)
SDValue Vor2 = getInstr(Hexagon::V6_vor, dl, VecTy, {Vasl, Vror}, DAG);
// r0 = #8 // HwLen/8
SDValue C8 = DAG.getTargetConstant(8, dl, MVT::i32);
SDValue InstrC8 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C8, DAG);
// v1 = vror(v0,r0)
SDValue Vror1 = getInstr(Hexagon::V6_vror, dl, VecTy, {Vor2, InstrC8}, DAG);
// v0 = vor(v0,v1)
SDValue Vor3 = getInstr(Hexagon::V6_vor, dl, VecTy, {Vor2, Vror1}, DAG);
// r0 = #4 // HwLen/16
SDValue C4 = DAG.getTargetConstant(4, dl, MVT::i32);
SDValue InstrC4 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C4, DAG);
// v1 = vror(v0,r0)
SDValue Vror2 = getInstr(Hexagon::V6_vror, dl, VecTy, {Vor3, InstrC4}, DAG);
// v0 = vor(v0,v1)
SDValue Vor4 = getInstr(Hexagon::V6_vor, dl, VecTy, {Vor3, Vror2}, DAG);
return Vor4;
}
SDValue HexagonTargetLowering::LowerHvxBitcast(SDValue Op,
SelectionDAG &DAG) const {
auto *N = Op.getNode();
EVT VT = N->getValueType(0);
const SDLoc &dl(Op);
SDValue Q0 = N->getOperand(0);
EVT VTOp = Q0.getNode()->getValueType(0);
if (!(VT == MVT::i64 || VT == MVT::i32) ||
!(VTOp == MVT::v64i1 || VTOp == MVT::v32i1))
return Op;
SDValue Vor4 = HvxVecPredBitcastComputation(Q0, DAG);
// The output is v.w[8]:v.w[0]
// r3 = #0
SDValue C0 = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue InstrC0 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C0, DAG);
// r0 = vextract(v0,r3)
SDValue Res =
getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC0}, DAG);
if (VT == MVT::i64) {
// r3 = #32
SDValue C32 = DAG.getTargetConstant(32, dl, MVT::i32);
SDValue InstrC32 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C32, DAG);
// r1 = vextract(v0,r3)
SDValue Vextract =
getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC32}, DAG);
Res = getInstr(Hexagon::A2_combinew, dl, MVT::i64, {Vextract, Res}, DAG);
}
return Res;
}
SDValue HexagonTargetLowering::LowerHvxStore(SDValue Op,
SelectionDAG &DAG) const {
auto *N = Op.getNode();
const SDLoc &dl(Op);
SDValue Q0 = N->getOperand(1);
EVT VTOp = Q0.getNode()->getValueType(0);
if (Op.getOpcode() != ISD::STORE || VTOp != MVT::v128i1)
return Op;
SDValue Vor4 = HvxVecPredBitcastComputation(Q0, DAG);
// The output is v.w[8]:v.w[0]
// r3 = #0
SDValue C0 = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue InstrC0 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C0, DAG);
// r0 = vextract(v0,r3)
SDValue Vextract0 =
getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC0}, DAG);
// r3 = #32
SDValue C32 = DAG.getTargetConstant(32, dl, MVT::i32);
SDValue InstrC32 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C32, DAG);
// r1 = vextract(v0,r3)
SDValue Vextract1 =
getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC32}, DAG);
SDValue Combine0 =
getInstr(Hexagon::A2_combinew, dl, MVT::i64, {Vextract1, Vextract0}, DAG);
// r3 = #64
SDValue C64 = DAG.getTargetConstant(64, dl, MVT::i32);
SDValue InstrC64 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C64, DAG);
// r0 = vextract(v0,r3)
SDValue Vextract2 =
getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC64}, DAG);
// r3 = #96
SDValue C96 = DAG.getTargetConstant(96, dl, MVT::i32);
SDValue InstrC96 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C96, DAG);
// r1 = vextract(v0,r3)
SDValue Vextract3 =
getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC96}, DAG);
SDValue Combine1 =
getInstr(Hexagon::A2_combinew, dl, MVT::i64, {Vextract3, Vextract2}, DAG);
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
SDValue C8 = DAG.getTargetConstant(8, dl, MVT::i32);
const SDValue Ops1[] = {ST->getBasePtr(), C8, Combine1, ST->getChain()};
SDValue Store1 = getInstr(Hexagon::S2_storerd_io, dl, MVT::Other, Ops1, DAG);
const SDValue Ops0[] = {ST->getBasePtr(), C0, Combine0, Store1};
SDValue Store0 = getInstr(Hexagon::S2_storerd_io, dl, MVT::Other, Ops0, DAG);
return Store0;
return Op;
}
SDValue
@ -1798,7 +1747,6 @@ HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::SETCC:
case ISD::INTRINSIC_VOID: return Op;
case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG);
case ISD::STORE: return LowerHvxStore(Op, DAG);
// Unaligned loads will be handled by the default lowering.
case ISD::LOAD: return SDValue();
}
@ -1808,6 +1756,28 @@ HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
llvm_unreachable("Unhandled HVX operation");
}
void
HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
}
void
HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
unsigned Opc = N->getOpcode();
switch (Opc) {
case ISD::BITCAST:
if (isHvxBoolTy(ty(N->getOperand(0)))) {
SDValue Op(N, 0);
SDValue C = LowerHvxBitcast(Op, DAG);
Results.push_back(C);
}
break;
default:
break;
}
}
SDValue
HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
const {
@ -1840,3 +1810,16 @@ HexagonTargetLowering::isHvxOperation(SDValue Op) const {
return Subtarget.isHVXVectorType(ty(V), true);
});
}
bool
HexagonTargetLowering::isHvxOperation(SDNode *N) const {
// If the type of any result, or any operand type are HVX vector types,
// this is an HVX operation.
auto IsHvxTy = [this] (EVT Ty) {
return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true);
};
auto IsHvxOp = [this] (SDValue Op) {
return Subtarget.isHVXVectorType(ty(Op), true);
};
return llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp);
}

View File

@ -1,7 +1,7 @@
; RUN: llc -march=hexagon < %s | FileCheck %s
; CHECK-LABEL: danny:
; CHECK: vand
; CHECK: vrmpy
define i64 @danny(<64 x i8> %a0, <64 x i8> %a1) #0 {
%v0 = icmp eq <64 x i8> %a0, %a1
%v1 = bitcast <64 x i1> %v0 to i64
@ -9,18 +9,19 @@ define i64 @danny(<64 x i8> %a0, <64 x i8> %a1) #0 {
}
; CHECK-LABEL: sammy:
; CHECK: vand
; CHECK: vrmpy
define i32 @sammy(<32 x i16> %a0, <32 x i16> %a1) #0 {
%v0 = icmp eq <32 x i16> %a0, %a1
%v1 = bitcast <32 x i1> %v0 to i32
ret i32 %v1
}
; This one still doesn't work.
; define i16 @kirby(<16 x i32> %a0, <16 x i32> %a1) #0 {
; %v0 = icmp eq <16 x i32> %a0, %a1
; %v1 = bitcast <16 x i1> %v0 to i16
; ret i16 %v1
; }
; CHECK-LABEL: kirby:
; CHECK: vrmpy
define i16 @kirby(<16 x i32> %a0, <16 x i32> %a1) #0 {
%v0 = icmp eq <16 x i32> %a0, %a1
%v1 = bitcast <16 x i1> %v0 to i16
ret i16 %v1
}
attributes #0 = { nounwind "target-cpu"="hexagonv66" "target-features"="+v66,+hvx,+hvxv66,+hvx-length64b" }

View File

@ -0,0 +1,15 @@
; RUN: llc -march=hexagon < %s | FileCheck %s
; Primarily check if this compiles without failing.
; CHECK-LABEL: fred:
; CHECK: memd
define void @fred(<128 x i8> %a0, <128 x i8> %a1, i128* %a2) #0 {
%v0 = icmp eq <128 x i8> %a0, %a1
%v1 = bitcast <128 x i1> %v0 to i128
store i128 %v1, i128* %a2, align 16
ret void
}
attributes #0 = { nounwind "target-cpu"="hexagonv66" "target-features"="+v66,+hvx,+hvxv66,+hvx-length128b" }

View File

@ -1,51 +1,47 @@
; RUN: llc -march=hexagon < %s | FileCheck %s
; Test that LLVM does not assert and bitcast v64i1 to i64 is lowered.
; CHECK: v[[REG1:[0-9]+]] = valign(v{{[0-9]+}},v{{[0-9]+}},#2)
; CHECK: v[[REG2:[0-9]+]] = vor(v{{[0-9]+}},v[[REG1]])
; CHECK: v[[REG3:[0-9]+]] = valign(v[[REG2]],v[[REG2]],#1)
; CHECK: v[[REG4:[0-9]+]] = vor(v{{[0-9]+}},v[[REG3]])
; CHECK: v[[REG5:[0-9]+]] = vand(v[[REG4]],v{{[0-9]+}})
; CHECK: v{{[0-9]+}}.w = vasl(v[[REG5]].w,v{{[0-9]+}}.w)
; Test that LLVM does not assert and bitcast v64i1 to i64 is lowered
; without crashing.
; CHECK: valign
target triple = "hexagon"
define dso_local void @fun() local_unnamed_addr #0 {
entry:
br i1 undef, label %cleanup, label %if.end
define dso_local void @f0() local_unnamed_addr #0 {
b0:
br i1 undef, label %b2, label %b1
if.end:
%0 = load i8, i8* undef, align 1
%conv13.i = zext i8 %0 to i32
%trip.count.minus.1216 = add nsw i32 %conv13.i, -1
%broadcast.splatinsert221 = insertelement <64 x i32> undef, i32 %trip.count.minus.1216, i32 0
%broadcast.splat222 = shufflevector <64 x i32> %broadcast.splatinsert221, <64 x i32> undef, <64 x i32> zeroinitializer
%1 = icmp ule <64 x i32> undef, %broadcast.splat222
%wide.masked.load223 = call <64 x i8> @llvm.masked.load.v64i8.p0v64i8(<64 x i8>* nonnull undef, i32 1, <64 x i1> %1, <64 x i8> undef)
%2 = lshr <64 x i8> %wide.masked.load223, <i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4>
%3 = and <64 x i8> %2, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
%4 = zext <64 x i8> %3 to <64 x i32>
%5 = add nsw <64 x i32> undef, %4
%6 = select <64 x i1> %1, <64 x i32> %5, <64 x i32> undef
%bin.rdx225 = add <64 x i32> %6, undef
%bin.rdx227 = add <64 x i32> %bin.rdx225, undef
%bin.rdx229 = add <64 x i32> %bin.rdx227, undef
%bin.rdx231 = add <64 x i32> %bin.rdx229, undef
%bin.rdx233 = add <64 x i32> %bin.rdx231, undef
%bin.rdx235 = add <64 x i32> %bin.rdx233, undef
%bin.rdx237 = add <64 x i32> %bin.rdx235, undef
%7 = extractelement <64 x i32> %bin.rdx237, i32 0
%nChans = getelementptr inbounds i8, i8* null, i32 2160
%8 = bitcast i8* %nChans to i32*
store i32 %7, i32* %8, align 4
br label %cleanup
b1: ; preds = %b0
%v0 = load i8, i8* undef, align 1
%v1 = zext i8 %v0 to i32
%v2 = add nsw i32 %v1, -1
%v3 = insertelement <64 x i32> undef, i32 %v2, i32 0
%v4 = shufflevector <64 x i32> %v3, <64 x i32> undef, <64 x i32> zeroinitializer
%v5 = icmp ule <64 x i32> undef, %v4
%v6 = call <64 x i8> @llvm.masked.load.v64i8.p0v64i8(<64 x i8>* nonnull undef, i32 1, <64 x i1> %v5, <64 x i8> undef)
%v7 = lshr <64 x i8> %v6, <i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4>
%v8 = and <64 x i8> %v7, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
%v9 = zext <64 x i8> %v8 to <64 x i32>
%v10 = add nsw <64 x i32> undef, %v9
%v11 = select <64 x i1> %v5, <64 x i32> %v10, <64 x i32> undef
%v12 = add <64 x i32> %v11, undef
%v13 = add <64 x i32> %v12, undef
%v14 = add <64 x i32> %v13, undef
%v15 = add <64 x i32> %v14, undef
%v16 = add <64 x i32> %v15, undef
%v17 = add <64 x i32> %v16, undef
%v18 = add <64 x i32> %v17, undef
%v19 = extractelement <64 x i32> %v18, i32 0
%v20 = getelementptr inbounds i8, i8* null, i32 2160
%v21 = bitcast i8* %v20 to i32*
store i32 %v19, i32* %v21, align 4
br label %b2
cleanup:
b2: ; preds = %b1, %b0
ret void
}
; Function Attrs: argmemonly nounwind readonly willreturn
declare <64 x i8> @llvm.masked.load.v64i8.p0v64i8(<64 x i8>*, i32, <64 x i1>, <64 x i8>)
declare <64 x i8> @llvm.masked.load.v64i8.p0v64i8(<64 x i8>*, i32 immarg, <64 x i1>, <64 x i8>) #1
attributes #0 = { "target-features"="+hvx-length64b,+hvxv67,+v67,-long-calls" }
attributes #1 = { argmemonly nounwind readonly willreturn }

View File

@ -1,47 +1,47 @@
; RUN: llc < %s | FileCheck %s
; RUN: llc -march=hexagon < %s | FileCheck %s
; This test checks that store a vector predicate of type v128i1 is lowered
; and two double stores are generated.
; CHECK-DAG: memd(r{{[0-9]+}}+#0) = r{{[0-9]+}}:{{[0-9]+}}
; CHECK-DAG: memd(r{{[0-9]+}}+#8) = r{{[0-9]+}}:{{[0-9]+}}
; without crashing.
; CHECK: valign
target triple = "hexagon"
define dso_local void @raac_UnpackADIFHeader() local_unnamed_addr #0 {
entry:
br i1 undef, label %cleanup, label %if.end
define dso_local void @f0() local_unnamed_addr #0 {
b0:
br i1 undef, label %b2, label %b1
if.end:
%0 = load i8, i8* undef, align 1
%conv13.i = zext i8 %0 to i32
%trip.count.minus.1216 = add nsw i32 %conv13.i, -1
%broadcast.splatinsert221 = insertelement <128 x i32> undef, i32 %trip.count.minus.1216, i32 0
%broadcast.splat222 = shufflevector <128 x i32> %broadcast.splatinsert221, <128 x i32> undef, <128 x i32> zeroinitializer
%1 = icmp ule <128 x i32> undef, %broadcast.splat222
%wide.masked.load223 = call <128 x i8> @llvm.masked.load.v128i8.p0v128i8(<128 x i8>* nonnull undef, i32 1, <128 x i1> %1, <128 x i8> undef)
%2 = lshr <128 x i8> %wide.masked.load223, <i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4>
%3 = and <128 x i8> %2, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
%4 = zext <128 x i8> %3 to <128 x i32>
%5 = add nsw <128 x i32> undef, %4
%6 = select <128 x i1> %1, <128 x i32> %5, <128 x i32> undef
%bin.rdx225 = add <128 x i32> %6, undef
%bin.rdx227 = add <128 x i32> %bin.rdx225, undef
%bin.rdx229 = add <128 x i32> %bin.rdx227, undef
%bin.rdx231 = add <128 x i32> %bin.rdx229, undef
%bin.rdx233 = add <128 x i32> %bin.rdx231, undef
%bin.rdx235 = add <128 x i32> %bin.rdx233, undef
%bin.rdx237 = add <128 x i32> %bin.rdx235, undef
%7 = extractelement <128 x i32> %bin.rdx237, i32 0
%nChans = getelementptr inbounds i8, i8* null, i32 2160
%8 = bitcast i8* %nChans to i32*
store i32 %7, i32* %8, align 4
br label %cleanup
b1: ; preds = %b0
%v0 = load i8, i8* undef, align 1
%v1 = zext i8 %v0 to i32
%v2 = add nsw i32 %v1, -1
%v3 = insertelement <128 x i32> undef, i32 %v2, i32 0
%v4 = shufflevector <128 x i32> %v3, <128 x i32> undef, <128 x i32> zeroinitializer
%v5 = icmp ule <128 x i32> undef, %v4
%v6 = call <128 x i8> @llvm.masked.load.v128i8.p0v128i8(<128 x i8>* nonnull undef, i32 1, <128 x i1> %v5, <128 x i8> undef)
%v7 = lshr <128 x i8> %v6, <i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4>
%v8 = and <128 x i8> %v7, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
%v9 = zext <128 x i8> %v8 to <128 x i32>
%v10 = add nsw <128 x i32> undef, %v9
%v11 = select <128 x i1> %v5, <128 x i32> %v10, <128 x i32> undef
%v12 = add <128 x i32> %v11, undef
%v13 = add <128 x i32> %v12, undef
%v14 = add <128 x i32> %v13, undef
%v15 = add <128 x i32> %v14, undef
%v16 = add <128 x i32> %v15, undef
%v17 = add <128 x i32> %v16, undef
%v18 = add <128 x i32> %v17, undef
%v19 = extractelement <128 x i32> %v18, i32 0
%v20 = getelementptr inbounds i8, i8* null, i32 2160
%v21 = bitcast i8* %v20 to i32*
store i32 %v19, i32* %v21, align 4
br label %b2
cleanup:
b2: ; preds = %b1, %b0
ret void
}
}
declare <128 x i8> @llvm.masked.load.v128i8.p0v128i8(<128 x i8>*, i32 immarg, <128 x i1>, <128 x i8>)
; Function Attrs: argmemonly nounwind readonly willreturn
declare <128 x i8> @llvm.masked.load.v128i8.p0v128i8(<128 x i8>*, i32 immarg, <128 x i1>, <128 x i8>) #1
attributes #0 = { "target-features"="+hvx-length128b,+hvxv67,+v67,-long-calls" }
attributes #1 = { argmemonly nounwind readonly willreturn }