1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

Support: Add BranchProbability::scale() and ::scaleByInverse()

Add API to `BranchProbability` for scaling big integers.  Next job is to
rip the logic out of `BlockMass` and `BlockFrequency`.

llvm-svn: 207544
This commit is contained in:
Duncan P. N. Exon Smith 2014-04-29 16:15:35 +00:00
parent 7443a54439
commit 795a469331
3 changed files with 139 additions and 0 deletions

View File

@ -50,6 +50,30 @@ public:
void dump() const;
/// \brief Scale a large integer.
///
/// Scales \c Num. Guarantees full precision. Returns the floor of the
/// result.
///
/// \return \c Num times \c this.
///
/// \note This code should be shared with (or replaced by) the implementation
/// of \a BlockFrequency::scale(), which seems to be calculating something
/// similar.
uint64_t scale(uint64_t Num) const;
/// \brief Scale a large integer by the inverse.
///
/// Scales \c Num by the inverse of \c this. Guarantees full precision.
/// Returns the floor of the result.
///
/// \return \c Num divided by \c this.
///
/// \note This code should be shared with (or replaced by) the implementation
/// of \a BlockFrequency::scale(), which seems to be calculating something
/// similar.
uint64_t scaleByInverse(uint64_t Num) const;
bool operator==(BranchProbability RHS) const {
return (uint64_t)N * RHS.D == (uint64_t)D * RHS.N;
}

View File

@ -26,6 +26,53 @@ void BranchProbability::dump() const {
dbgs() << *this << '\n';
}
static uint64_t scale(uint64_t Num, uint32_t N, uint32_t D) {
assert(D && "divide by 0");
// Fast path for multiplying by 1.0.
if (!Num || D == N)
return Num;
// Split Num into upper and lower parts to multiply, then recombine.
uint64_t ProductHigh = (Num >> 32) * N;
uint64_t ProductLow = (Num & UINT32_MAX) * N;
// Split into 32-bit digits.
uint32_t Upper32 = ProductHigh >> 32;
uint32_t Lower32 = ProductLow & UINT32_MAX;
uint32_t Mid32Partial = ProductHigh & UINT32_MAX;
uint32_t Mid32 = Mid32Partial + (ProductLow >> 32);
// Carry.
Upper32 += Mid32 < Mid32Partial;
// Check for overflow.
if (Upper32 >= D)
return UINT64_MAX;
uint64_t Rem = (uint64_t(Upper32) << 32) | Mid32;
uint64_t UpperQ = Rem / D;
// Check for overflow.
if (UpperQ > UINT32_MAX)
return UINT64_MAX;
Rem = ((Rem % D) << 32) | Lower32;
uint64_t LowerQ = Rem / D;
uint64_t Q = (UpperQ << 32) + LowerQ;
// Check for overflow.
return Q < LowerQ ? UINT64_MAX : Q;
}
uint64_t BranchProbability::scale(uint64_t Num) const {
return ::scale(Num, N, D);
}
uint64_t BranchProbability::scaleByInverse(uint64_t Num) const {
return ::scale(Num, D, N);
}
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const BranchProbability &Prob) {

View File

@ -87,4 +87,72 @@ TEST(BranchProbabilityTest, getCompl) {
EXPECT_EQ(BP::getOne(), BP(0, 7).getCompl());
}
TEST(BranchProbabilityTest, scale) {
// Multiply by 1.0.
EXPECT_EQ(UINT64_MAX, BP(1, 1).scale(UINT64_MAX));
EXPECT_EQ(UINT64_MAX, BP(7, 7).scale(UINT64_MAX));
EXPECT_EQ(UINT32_MAX, BP(1, 1).scale(UINT32_MAX));
EXPECT_EQ(UINT32_MAX, BP(7, 7).scale(UINT32_MAX));
EXPECT_EQ(0u, BP(1, 1).scale(0));
EXPECT_EQ(0u, BP(7, 7).scale(0));
// Multiply by 0.0.
EXPECT_EQ(0u, BP(0, 1).scale(UINT64_MAX));
EXPECT_EQ(0u, BP(0, 1).scale(UINT64_MAX));
EXPECT_EQ(0u, BP(0, 1).scale(0));
auto Two63 = UINT64_C(1) << 63;
auto Two31 = UINT64_C(1) << 31;
// Multiply by 0.5.
EXPECT_EQ(Two63 - 1, BP(1, 2).scale(UINT64_MAX));
// Big fractions.
EXPECT_EQ(1u, BP(Two31, UINT32_MAX).scale(2));
EXPECT_EQ(Two31, BP(Two31, UINT32_MAX).scale(Two31 * 2));
EXPECT_EQ(Two63 + Two31, BP(Two31, UINT32_MAX).scale(UINT64_MAX));
// High precision.
EXPECT_EQ(UINT64_C(9223372047592194055),
BP(Two31 + 1, UINT32_MAX - 2).scale(UINT64_MAX));
}
TEST(BranchProbabilityTest, scaleByInverse) {
// Divide by 1.0.
EXPECT_EQ(UINT64_MAX, BP(1, 1).scaleByInverse(UINT64_MAX));
EXPECT_EQ(UINT64_MAX, BP(7, 7).scaleByInverse(UINT64_MAX));
EXPECT_EQ(UINT32_MAX, BP(1, 1).scaleByInverse(UINT32_MAX));
EXPECT_EQ(UINT32_MAX, BP(7, 7).scaleByInverse(UINT32_MAX));
EXPECT_EQ(0u, BP(1, 1).scaleByInverse(0));
EXPECT_EQ(0u, BP(7, 7).scaleByInverse(0));
// Divide by something very small.
EXPECT_EQ(UINT64_MAX, BP(1, UINT32_MAX).scaleByInverse(UINT64_MAX));
EXPECT_EQ(uint64_t(UINT32_MAX) * UINT32_MAX,
BP(1, UINT32_MAX).scaleByInverse(UINT32_MAX));
EXPECT_EQ(UINT32_MAX, BP(1, UINT32_MAX).scaleByInverse(1));
auto Two63 = UINT64_C(1) << 63;
auto Two31 = UINT64_C(1) << 31;
// Divide by 0.5.
EXPECT_EQ(UINT64_MAX - 1, BP(1, 2).scaleByInverse(Two63 - 1));
EXPECT_EQ(UINT64_MAX, BP(1, 2).scaleByInverse(Two63));
// Big fractions.
EXPECT_EQ(1u, BP(Two31, UINT32_MAX).scaleByInverse(1));
EXPECT_EQ(2u, BP(Two31 - 1, UINT32_MAX).scaleByInverse(1));
EXPECT_EQ(Two31 * 2 - 1, BP(Two31, UINT32_MAX).scaleByInverse(Two31));
EXPECT_EQ(Two31 * 2 + 1, BP(Two31 - 1, UINT32_MAX).scaleByInverse(Two31));
EXPECT_EQ(UINT64_MAX, BP(Two31, UINT32_MAX).scaleByInverse(Two63 + Two31));
// High precision. The exact answers to these are close to the successors of
// the floor. If we were rounding, these would round up.
EXPECT_EQ(UINT64_C(18446744065119617030),
BP(Two31 + 2, UINT32_MAX - 2)
.scaleByInverse(UINT64_C(9223372047592194055)));
EXPECT_EQ(UINT64_C(18446744065119617026),
BP(Two31 + 1, UINT32_MAX).scaleByInverse(Two63 + Two31));
}
}