mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
This is a prototype of an experimental register allocation
framework. It's purpose is not to improve register allocation per se, but to make it easier to develop powerful live range splitting. I call it the basic allocator because it is as simple as a global allocator can be but provides the building blocks for sophisticated register allocation with live range splitting. A minimal implementation is provided that trivially spills whenever it runs out of registers. I'm checking in now to get high-level design and style feedback. I've only done minimal testing. The next step is implementing a "greedy" allocation algorithm that does some register reassignment and makes better splitting decisions. llvm-svn: 117174
This commit is contained in:
parent
2d807f4ed0
commit
7a1dadd47d
@ -34,6 +34,7 @@ namespace {
|
||||
(void) llvm::createDeadMachineInstructionElimPass();
|
||||
|
||||
(void) llvm::createFastRegisterAllocator();
|
||||
(void) llvm::createBasicRegisterAllocator();
|
||||
(void) llvm::createLinearScanRegisterAllocator();
|
||||
(void) llvm::createDefaultPBQPRegisterAllocator();
|
||||
|
||||
|
@ -95,6 +95,11 @@ namespace llvm {
|
||||
///
|
||||
FunctionPass *createFastRegisterAllocator();
|
||||
|
||||
/// BasicRegisterAllocation Pass - This pass implements a degenerate global
|
||||
/// register allocator using the basic regalloc framework.
|
||||
///
|
||||
FunctionPass *createBasicRegisterAllocator();
|
||||
|
||||
/// LinearScanRegisterAllocation Pass - This pass implements the linear scan
|
||||
/// register allocation algorithm, a global register allocator.
|
||||
///
|
||||
|
@ -21,6 +21,7 @@ add_llvm_library(LLVMCodeGen
|
||||
LatencyPriorityQueue.cpp
|
||||
LiveInterval.cpp
|
||||
LiveIntervalAnalysis.cpp
|
||||
LiveIntervalUnion.cpp
|
||||
LiveStackAnalysis.cpp
|
||||
LiveVariables.cpp
|
||||
LiveRangeEdit.cpp
|
||||
@ -55,6 +56,7 @@ add_llvm_library(LLVMCodeGen
|
||||
ProcessImplicitDefs.cpp
|
||||
PrologEpilogInserter.cpp
|
||||
PseudoSourceValue.cpp
|
||||
RegAllocBasic.cpp
|
||||
RegAllocFast.cpp
|
||||
RegAllocLinearScan.cpp
|
||||
RegAllocPBQP.cpp
|
||||
|
167
lib/CodeGen/LiveIntervalUnion.cpp
Normal file
167
lib/CodeGen/LiveIntervalUnion.cpp
Normal file
@ -0,0 +1,167 @@
|
||||
//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// LiveIntervalUnion represents a coalesced set of live intervals. This may be
|
||||
// used during coalescing to represent a congruence class, or during register
|
||||
// allocation to model liveness of a physical register.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "regalloc"
|
||||
#include "LiveIntervalUnion.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
// Merge a LiveInterval's segments. Guarantee no overlaps.
|
||||
void LiveIntervalUnion::unify(LiveInterval &lvr) {
|
||||
// Add this live virtual register to the union
|
||||
LiveVirtRegs::iterator pos = std::upper_bound(lvrs_.begin(), lvrs_.end(),
|
||||
&lvr, less_ptr<LiveInterval>());
|
||||
assert(pos == lvrs_.end() || *pos != &lvr && "duplicate LVR insertion");
|
||||
lvrs_.insert(pos, &lvr);
|
||||
// Insert each of the virtual register's live segments into the map
|
||||
SegmentIter segPos = segments_.begin();
|
||||
for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
|
||||
lvrI != lvrEnd; ++lvrI ) {
|
||||
LiveSegment segment(lvrI->start, lvrI->end, lvr);
|
||||
segPos = segments_.insert(segPos, segment);
|
||||
assert(*segPos == segment && "need equal val for equal key");
|
||||
}
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
// Keep LVRs sorted for fast membership test and extraction.
|
||||
struct LessReg
|
||||
: public std::binary_function<LiveInterval*, LiveInterval*, bool> {
|
||||
bool operator()(const LiveInterval *left, const LiveInterval *right) const {
|
||||
return left->reg < right->reg;
|
||||
}
|
||||
};
|
||||
|
||||
// Low-level helper to find the first segment in the range [segI,segEnd) that
|
||||
// intersects with a live virtual register segment, or segI.start >= lvr.end
|
||||
//
|
||||
// This logic is tied to the underlying LiveSegments data structure. For now, we
|
||||
// use a binary search within the vector to find the nearest starting position,
|
||||
// then reverse iterate to find the first overlap.
|
||||
//
|
||||
// Upon entry we have segI.start < lvrSeg.end
|
||||
// seg |--...
|
||||
// \ .
|
||||
// lvr ...-|
|
||||
//
|
||||
// After binary search, we have segI.start >= lvrSeg.start:
|
||||
// seg |--...
|
||||
// /
|
||||
// lvr |--...
|
||||
//
|
||||
// Assuming intervals are disjoint, if an intersection exists, it must be the
|
||||
// segment found or immediately behind it. We continue reverse iterating to
|
||||
// return the first overlap.
|
||||
//
|
||||
// FIXME: support extract(), handle tombstones of extracted lvrs.
|
||||
typedef LiveIntervalUnion::SegmentIter SegmentIter;
|
||||
SegmentIter upperBound(SegmentIter segBegin,
|
||||
SegmentIter segEnd,
|
||||
const LiveRange &lvrSeg) {
|
||||
assert(lvrSeg.end > segBegin->start && "segment iterator precondition");
|
||||
// get the next LIU segment such that setg.start is not less than
|
||||
// lvrSeg.start
|
||||
SegmentIter segI = std::upper_bound(segBegin, segEnd, lvrSeg.start);
|
||||
while (segI != segBegin) {
|
||||
--segI;
|
||||
if (lvrSeg.start >= segI->end)
|
||||
return ++segI;
|
||||
}
|
||||
return segI;
|
||||
}
|
||||
} // end anonymous namespace
|
||||
|
||||
// Private interface accessed by Query.
|
||||
//
|
||||
// Find a pair of segments that intersect, one in the live virtual register
|
||||
// (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query)
|
||||
// is responsible for advancing the LiveIntervalUnion segments to find a
|
||||
// "notable" intersection, which requires query-specific logic.
|
||||
//
|
||||
// This design assumes only a fast mechanism for intersecting a single live
|
||||
// virtual register segment with a set of LiveIntervalUnion segments. This may
|
||||
// be ok since most LVRs have very few segments. If we had a data
|
||||
// structure that optimizd MxN intersection of segments, then we would bypass
|
||||
// the loop that advances within the LiveInterval.
|
||||
//
|
||||
// If no intersection exists, set lvrI = lvrEnd, and set segI to the first
|
||||
// segment whose start point is greater than LiveInterval's end point.
|
||||
//
|
||||
// Assumes that segments are sorted by start position in both
|
||||
// LiveInterval and LiveSegments.
|
||||
void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const {
|
||||
LiveInterval::iterator lvrEnd = lvr_.end();
|
||||
SegmentIter liuEnd = liu_.end();
|
||||
while (ir.liuSegI_ != liuEnd) {
|
||||
// Slowly advance the live virtual reg iterator until we surpass the next
|
||||
// segment in this union. If this is ever used for coalescing of fixed
|
||||
// registers and we have a LiveInterval with thousands of segments, then use
|
||||
// upper bound instead.
|
||||
while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start)
|
||||
++ir.lvrSegI_;
|
||||
if (ir.lvrSegI_ == lvrEnd)
|
||||
break;
|
||||
// lvrSegI_ may have advanced far beyond liuSegI_,
|
||||
// do a fast intersection test to "catch up"
|
||||
ir.liuSegI_ = upperBound(ir.liuSegI_, liuEnd, *ir.lvrSegI_);
|
||||
// Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end
|
||||
if (ir.liuSegI_ == liuEnd)
|
||||
break;
|
||||
if (ir.liuSegI_->start < ir.lvrSegI_->end) {
|
||||
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) && "upperBound postcondition");
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (ir.liuSegI_ == liuEnd)
|
||||
ir.lvrSegI_ = lvrEnd;
|
||||
}
|
||||
|
||||
// Find the first intersection, and cache interference info
|
||||
// (retain segment iterators into both lvr_ and liu_).
|
||||
LiveIntervalUnion::InterferenceResult
|
||||
LiveIntervalUnion::Query::firstInterference() {
|
||||
if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) {
|
||||
return firstInterference_;
|
||||
}
|
||||
firstInterference_ = InterferenceResult(lvr_.begin(), liu_.begin());
|
||||
findIntersection(firstInterference_);
|
||||
return firstInterference_;
|
||||
}
|
||||
|
||||
// Treat the result as an iterator and advance to the next interfering pair
|
||||
// of segments. This is a plain iterator with no filter.
|
||||
bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const {
|
||||
assert(isInterference(ir) && "iteration past end of interferences");
|
||||
// Advance either the lvr or liu segment to ensure that we visit all unique
|
||||
// overlapping pairs.
|
||||
if (ir.lvrSegI_->end < ir.liuSegI_->end) {
|
||||
if (++ir.lvrSegI_ == lvr_.end())
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
if (++ir.liuSegI_ == liu_.end()) {
|
||||
ir.lvrSegI_ = lvr_.end();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (overlap(*ir.lvrSegI_, *ir.liuSegI_))
|
||||
return true;
|
||||
// find the next intersection
|
||||
findIntersection(ir);
|
||||
return isInterference(ir);
|
||||
}
|
193
lib/CodeGen/LiveIntervalUnion.h
Normal file
193
lib/CodeGen/LiveIntervalUnion.h
Normal file
@ -0,0 +1,193 @@
|
||||
//===-- LiveIntervalUnion.h - Live interval union data struct --*- C++ -*--===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// LiveIntervalUnion is a union of live segments across multiple live virtual
|
||||
// registers. This may be used during coalescing to represent a congruence
|
||||
// class, or during register allocation to model liveness of a physical
|
||||
// register.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_LIVEINTERVALUNION
|
||||
#define LLVM_CODEGEN_LIVEINTERVALUNION
|
||||
|
||||
#include "llvm/CodeGen/LiveInterval.h"
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
// A LiveSegment is a copy of a LiveRange object used within
|
||||
// LiveIntervalUnion. LiveSegment additionally contains a pointer to its
|
||||
// original live virtual register (LiveInterval). This allows quick lookup of
|
||||
// the live virtual register as we iterate over live segments in a union. Note
|
||||
// that LiveRange is misnamed and actually represents only a single contiguous
|
||||
// interval within a virtual register's liveness. To limit confusion, in this
|
||||
// file we refer it as a live segment.
|
||||
struct LiveSegment {
|
||||
SlotIndex start;
|
||||
SlotIndex end;
|
||||
LiveInterval *liveVirtReg;
|
||||
|
||||
LiveSegment(SlotIndex s, SlotIndex e, LiveInterval &lvr)
|
||||
: start(s), end(e), liveVirtReg(&lvr) {}
|
||||
|
||||
bool operator==(const LiveSegment &ls) const {
|
||||
return start == ls.start && end == ls.end && liveVirtReg == ls.liveVirtReg;
|
||||
}
|
||||
|
||||
bool operator!=(const LiveSegment &ls) const {
|
||||
return !operator==(ls);
|
||||
}
|
||||
|
||||
bool operator<(const LiveSegment &ls) const {
|
||||
return start < ls.start || (start == ls.start && end < ls.end);
|
||||
}
|
||||
};
|
||||
|
||||
/// Compare a live virtual register segment to a LiveIntervalUnion segment.
|
||||
inline bool overlap(const LiveRange &lvrSeg, const LiveSegment &liuSeg) {
|
||||
return lvrSeg.start < liuSeg.end && liuSeg.start < lvrSeg.end;
|
||||
}
|
||||
|
||||
inline bool operator<(SlotIndex V, const LiveSegment &ls) {
|
||||
return V < ls.start;
|
||||
}
|
||||
|
||||
inline bool operator<(const LiveSegment &ls, SlotIndex V) {
|
||||
return ls.start < V;
|
||||
}
|
||||
|
||||
/// Union of live intervals that are strong candidates for coalescing into a
|
||||
/// single register (either physical or virtual depending on the context). We
|
||||
/// expect the constituent live intervals to be disjoint, although we may
|
||||
/// eventually make exceptions to handle value-based interference.
|
||||
class LiveIntervalUnion {
|
||||
// A set of live virtual register segments that supports fast insertion,
|
||||
// intersection, and removal.
|
||||
//
|
||||
// FIXME: std::set is a placeholder until we decide how to
|
||||
// efficiently represent it. Probably need to roll our own B-tree.
|
||||
typedef std::set<LiveSegment> LiveSegments;
|
||||
|
||||
// A set of live virtual registers. Elements have type LiveInterval, where
|
||||
// each element represents the liveness of a single live virtual register.
|
||||
// This is traditionally known as a live range, but we refer is as a live
|
||||
// virtual register to avoid confusing it with the misnamed LiveRange
|
||||
// class.
|
||||
typedef std::vector<LiveInterval*> LiveVirtRegs;
|
||||
|
||||
public:
|
||||
// SegmentIter can advance to the next segment ordered by starting position
|
||||
// which may belong to a different live virtual register. We also must be able
|
||||
// to reach the current segment's containing virtual register.
|
||||
typedef LiveSegments::iterator SegmentIter;
|
||||
|
||||
class InterferenceResult;
|
||||
class Query;
|
||||
|
||||
private:
|
||||
unsigned repReg_; // representative register number
|
||||
LiveSegments segments_; // union of virtual reg segements
|
||||
LiveVirtRegs lvrs_; // set of live virtual regs in the union
|
||||
|
||||
public:
|
||||
// default ctor avoids placement new
|
||||
LiveIntervalUnion() : repReg_(0) {}
|
||||
|
||||
void init(unsigned repReg) { repReg_ = repReg; }
|
||||
|
||||
SegmentIter begin() { return segments_.begin(); }
|
||||
SegmentIter end() { return segments_.end(); }
|
||||
|
||||
/// FIXME: !!!!!!!!!!! Keeps a non-const ref
|
||||
void unify(LiveInterval &lvr);
|
||||
|
||||
// FIXME: needed by RegAllocGreedy
|
||||
//void extract(const LiveInterval &li);
|
||||
|
||||
/// Cache a single interference test result in the form of two intersecting
|
||||
/// segments. This allows efficiently iterating over the interferences. The
|
||||
/// iteration logic is handled by LiveIntervalUnion::Query which may
|
||||
/// filter interferences depending on the type of query.
|
||||
class InterferenceResult {
|
||||
friend class Query;
|
||||
|
||||
LiveInterval::iterator lvrSegI_; // current position in _lvr
|
||||
SegmentIter liuSegI_; // current position in _liu
|
||||
|
||||
// Internal ctor.
|
||||
InterferenceResult(LiveInterval::iterator lvrSegI, SegmentIter liuSegI)
|
||||
: lvrSegI_(lvrSegI), liuSegI_(liuSegI) {}
|
||||
|
||||
public:
|
||||
// Public default ctor.
|
||||
InterferenceResult(): lvrSegI_(), liuSegI_() {}
|
||||
|
||||
// Note: this interface provides raw access to the iterators because the
|
||||
// result has no way to tell if it's valid to dereference them.
|
||||
|
||||
// Access the lvr segment.
|
||||
const LiveInterval::iterator &lvrSegPos() const { return lvrSegI_; }
|
||||
|
||||
// Access the liu segment.
|
||||
const SegmentIter &liuSeg() const { return liuSegI_; }
|
||||
|
||||
bool operator==(const InterferenceResult &ir) const {
|
||||
return lvrSegI_ == ir.lvrSegI_ && liuSegI_ == ir.liuSegI_;
|
||||
}
|
||||
bool operator!=(const InterferenceResult &ir) const {
|
||||
return !operator==(ir);
|
||||
}
|
||||
};
|
||||
|
||||
/// Query interferences between a single live virtual register and a live
|
||||
/// interval union.
|
||||
class Query {
|
||||
LiveIntervalUnion &liu_;
|
||||
LiveInterval &lvr_;
|
||||
InterferenceResult firstInterference_;
|
||||
// TBD: interfering vregs
|
||||
|
||||
public:
|
||||
Query(LiveInterval &lvr, LiveIntervalUnion &liu): liu_(liu), lvr_(lvr) {}
|
||||
|
||||
LiveInterval &lvr() const { return lvr_; }
|
||||
|
||||
bool isInterference(const InterferenceResult &ir) const {
|
||||
if (ir.lvrSegI_ != lvr_.end()) {
|
||||
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) &&
|
||||
"invalid segment iterators");
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Does this live virtual register interfere with the union.
|
||||
bool checkInterference() { return isInterference(firstInterference()); }
|
||||
|
||||
// First pair of interfering segments, or a noninterfering result.
|
||||
InterferenceResult firstInterference();
|
||||
|
||||
// Treat the result as an iterator and advance to the next interfering pair
|
||||
// of segments. Visiting each unique interfering pairs means that the same
|
||||
// lvr or liu segment may be visited multiple times.
|
||||
bool nextInterference(InterferenceResult &ir) const;
|
||||
|
||||
// TBD: bool collectInterferingVirtRegs(unsigned maxInterference)
|
||||
|
||||
private:
|
||||
// Private interface for queries
|
||||
void findIntersection(InterferenceResult &ir) const;
|
||||
};
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // !defined(LLVM_CODEGEN_LIVEINTERVALUNION)
|
179
lib/CodeGen/RegAllocBase.h
Normal file
179
lib/CodeGen/RegAllocBase.h
Normal file
@ -0,0 +1,179 @@
|
||||
//===-- RegAllocBase.h - basic regalloc interface and driver --*- C++ -*---===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the RegAllocBase class, which is the skeleton of a basic
|
||||
// register allocation algorithm and interface for extending it. It provides the
|
||||
// building blocks on which to construct other experimental allocators and test
|
||||
// the validity of two principles:
|
||||
//
|
||||
// - If virtual and physical register liveness is modeled using intervals, then
|
||||
// on-the-fly interference checking is cheap. Furthermore, interferences can be
|
||||
// lazily cached and reused.
|
||||
//
|
||||
// - Register allocation complexity, and generated code performance is
|
||||
// determined by the effectiveness of live range splitting rather than optimal
|
||||
// coloring.
|
||||
//
|
||||
// Following the first principle, interfering checking revolves around the
|
||||
// LiveIntervalUnion data structure.
|
||||
//
|
||||
// To fulfill the second principle, the basic allocator provides a driver for
|
||||
// incremental splitting. It essentially punts on the problem of register
|
||||
// coloring, instead driving the assignment of virtual to physical registers by
|
||||
// the cost of splitting. The basic allocator allows for heuristic reassignment
|
||||
// of registers, if a more sophisticated allocator chooses to do that.
|
||||
//
|
||||
// This framework provides a way to engineer the compile time vs. code
|
||||
// quality trade-off without relying a particular theoretical solver.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_REGALLOCBASE
|
||||
#define LLVM_CODEGEN_REGALLOCBASE
|
||||
|
||||
#include "LiveIntervalUnion.h"
|
||||
#include "VirtRegMap.h"
|
||||
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
||||
#include "llvm/Target/TargetRegisterInfo.h"
|
||||
#include "llvm/ADT/OwningPtr.h"
|
||||
#include <vector>
|
||||
#include <queue>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class VirtRegMap;
|
||||
|
||||
/// RegAllocBase provides the register allocation driver and interface that can
|
||||
/// be extended to add interesting heuristics.
|
||||
///
|
||||
/// More sophisticated allocators must override the selectOrSplit() method to
|
||||
/// implement live range splitting and must specify a comparator to determine
|
||||
/// register assignment priority. LessSpillWeightPriority is provided as a
|
||||
/// standard comparator.
|
||||
class RegAllocBase {
|
||||
protected:
|
||||
typedef SmallVector<LiveInterval*, 4> LiveVirtRegs;
|
||||
typedef LiveVirtRegs::iterator LVRIter;
|
||||
|
||||
// Array of LiveIntervalUnions indexed by physical register.
|
||||
class LIUArray {
|
||||
unsigned nRegs_;
|
||||
OwningArrayPtr<LiveIntervalUnion> array_;
|
||||
public:
|
||||
LIUArray(): nRegs_(0) {}
|
||||
|
||||
unsigned numRegs() const { return nRegs_; }
|
||||
|
||||
void init(unsigned nRegs);
|
||||
|
||||
void clear();
|
||||
|
||||
LiveIntervalUnion& operator[](unsigned physReg) {
|
||||
assert(physReg < nRegs_ && "physReg out of bounds");
|
||||
return array_[physReg];
|
||||
}
|
||||
};
|
||||
|
||||
const TargetRegisterInfo *tri_;
|
||||
VirtRegMap *vrm_;
|
||||
LiveIntervals *lis_;
|
||||
LIUArray physReg2liu_;
|
||||
|
||||
RegAllocBase(): tri_(0), vrm_(0), lis_(0) {}
|
||||
|
||||
// A RegAlloc pass should call this before allocatePhysRegs.
|
||||
void init(const TargetRegisterInfo &tri, VirtRegMap &vrm, LiveIntervals &lis);
|
||||
|
||||
// The top-level driver. Specialize with the comparator that determines the
|
||||
// priority of assigning live virtual registers. The output is a VirtRegMap
|
||||
// that us updated with physical register assignments.
|
||||
template<typename LICompare>
|
||||
void allocatePhysRegs(LICompare liCompare);
|
||||
|
||||
// A RegAlloc pass should override this to provide the allocation heuristics.
|
||||
// Each call must guarantee forward progess by returning an available
|
||||
// PhysReg or new set of split LiveVirtRegs. It is up to the splitter to
|
||||
// converge quickly toward fully spilled live ranges.
|
||||
virtual unsigned selectOrSplit(LiveInterval &lvr,
|
||||
LiveVirtRegs &splitLVRs) = 0;
|
||||
|
||||
// A RegAlloc pass should call this when PassManager releases its memory.
|
||||
virtual void releaseMemory();
|
||||
|
||||
// Helper for checking interference between a live virtual register and a
|
||||
// physical register, including all its register aliases.
|
||||
bool checkPhysRegInterference(LiveIntervalUnion::Query &query, unsigned preg);
|
||||
|
||||
private:
|
||||
template<typename PQ>
|
||||
void seedLiveVirtRegs(PQ &lvrQ);
|
||||
};
|
||||
|
||||
// Heuristic that determines the priority of assigning virtual to physical
|
||||
// registers. The main impact of the heuristic is expected to be compile time.
|
||||
// The default is to simply compare spill weights.
|
||||
struct LessSpillWeightPriority
|
||||
: public std::binary_function<LiveInterval,LiveInterval, bool> {
|
||||
bool operator()(const LiveInterval *left, const LiveInterval *right) const {
|
||||
return left->weight < right->weight;
|
||||
}
|
||||
};
|
||||
|
||||
// Visit all the live virtual registers. If they are already assigned to a
|
||||
// physical register, unify them with the corresponding LiveIntervalUnion,
|
||||
// otherwise push them on the priority queue for later assignment.
|
||||
template<typename PQ>
|
||||
void RegAllocBase::seedLiveVirtRegs(PQ &lvrQ) {
|
||||
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
|
||||
liItr != liEnd; ++liItr) {
|
||||
unsigned reg = liItr->first;
|
||||
LiveInterval &li = *liItr->second;
|
||||
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
|
||||
physReg2liu_[reg].unify(li);
|
||||
}
|
||||
else {
|
||||
lvrQ.push(&li);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
|
||||
// selectOrSplit implementation.
|
||||
template<typename LICompare>
|
||||
void RegAllocBase::allocatePhysRegs(LICompare liCompare) {
|
||||
typedef std::priority_queue
|
||||
<LiveInterval*, std::vector<LiveInterval*>, LICompare> LiveVirtRegQueue;
|
||||
|
||||
LiveVirtRegQueue lvrQ(liCompare);
|
||||
seedLiveVirtRegs(lvrQ);
|
||||
while (!lvrQ.empty()) {
|
||||
LiveInterval *lvr = lvrQ.top();
|
||||
lvrQ.pop();
|
||||
LiveVirtRegs splitLVRs;
|
||||
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
|
||||
if (availablePhysReg) {
|
||||
assert(splitLVRs.empty() && "inconsistent splitting");
|
||||
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
|
||||
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
|
||||
physReg2liu_[availablePhysReg].unify(*lvr);
|
||||
}
|
||||
else {
|
||||
for (LVRIter lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
|
||||
lvrI != lvrEnd; ++lvrI ) {
|
||||
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
|
||||
"expect split value in virtual register");
|
||||
lvrQ.push(*lvrI);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // !defined(LLVM_CODEGEN_REGALLOCBASE)
|
259
lib/CodeGen/RegAllocBasic.cpp
Normal file
259
lib/CodeGen/RegAllocBasic.cpp
Normal file
@ -0,0 +1,259 @@
|
||||
//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the RABasic function pass, which provides a minimal
|
||||
// implementation of the basic register allocator.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "regalloc"
|
||||
#include "RegAllocBase.h"
|
||||
#include "RenderMachineFunction.h"
|
||||
#include "Spiller.h"
|
||||
#include "VirtRegRewriter.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/PassAnalysisSupport.h"
|
||||
#include "llvm/CodeGen/CalcSpillWeights.h"
|
||||
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/MachineLoopInfo.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/CodeGen/Passes.h"
|
||||
#include "llvm/CodeGen/RegAllocRegistry.h"
|
||||
#include "llvm/CodeGen/RegisterCoalescer.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Target/TargetOptions.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
|
||||
createBasicRegisterAllocator);
|
||||
|
||||
namespace {
|
||||
|
||||
/// RABasic provides a minimal implementation of the basic register allocation
|
||||
/// algorithm. It prioritizes live virtual registers by spill weight and spills
|
||||
/// whenever a register is unavailable. This is not practical in production but
|
||||
/// provides a useful baseline both for measuring other allocators and comparing
|
||||
/// the speed of the basic algorithm against other styles of allocators.
|
||||
class RABasic : public MachineFunctionPass, public RegAllocBase
|
||||
{
|
||||
// context
|
||||
MachineFunction *mf_;
|
||||
const TargetMachine *tm_;
|
||||
MachineRegisterInfo *mri_;
|
||||
|
||||
// analyses
|
||||
LiveStacks *ls_;
|
||||
RenderMachineFunction *rmf_;
|
||||
|
||||
// state
|
||||
std::auto_ptr<Spiller> spiller_;
|
||||
|
||||
public:
|
||||
RABasic();
|
||||
|
||||
/// Return the pass name.
|
||||
virtual const char* getPassName() const {
|
||||
return "Basic Register Allocator";
|
||||
}
|
||||
|
||||
/// RABasic analysis usage.
|
||||
virtual void getAnalysisUsage(AnalysisUsage &au) const;
|
||||
|
||||
virtual void releaseMemory();
|
||||
|
||||
virtual unsigned selectOrSplit(LiveInterval &lvr, LiveVirtRegs &splitLVRs);
|
||||
|
||||
/// Perform register allocation.
|
||||
virtual bool runOnMachineFunction(MachineFunction &mf);
|
||||
|
||||
static char ID;
|
||||
};
|
||||
|
||||
char RABasic::ID = 0;
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
// We should not need to publish the initializer as long as no other passes
|
||||
// require RABasic.
|
||||
#if 0 // disable INITIALIZE_PASS
|
||||
INITIALIZE_PASS_BEGIN(RABasic, "basic-regalloc",
|
||||
"Basic Register Allocator", false, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
||||
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
|
||||
INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
|
||||
INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
|
||||
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
|
||||
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
||||
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
|
||||
#ifndef NDEBUG
|
||||
INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction)
|
||||
#endif
|
||||
INITIALIZE_PASS_END(RABasic, "basic-regalloc",
|
||||
"Basic Register Allocator", false, false)
|
||||
#endif // INITIALIZE_PASS
|
||||
|
||||
RABasic::RABasic(): MachineFunctionPass(ID) {
|
||||
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
|
||||
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
|
||||
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
|
||||
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
|
||||
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
|
||||
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
|
||||
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
|
||||
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
|
||||
initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
void RABasic::getAnalysisUsage(AnalysisUsage &au) const {
|
||||
au.setPreservesCFG();
|
||||
au.addRequired<LiveIntervals>();
|
||||
au.addPreserved<SlotIndexes>();
|
||||
if (StrongPHIElim)
|
||||
au.addRequiredID(StrongPHIEliminationID);
|
||||
au.addRequiredTransitive<RegisterCoalescer>();
|
||||
au.addRequired<CalculateSpillWeights>();
|
||||
au.addRequired<LiveStacks>();
|
||||
au.addPreserved<LiveStacks>();
|
||||
au.addRequired<MachineLoopInfo>();
|
||||
au.addPreserved<MachineLoopInfo>();
|
||||
au.addRequired<VirtRegMap>();
|
||||
au.addPreserved<VirtRegMap>();
|
||||
DEBUG(au.addRequired<RenderMachineFunction>());
|
||||
MachineFunctionPass::getAnalysisUsage(au);
|
||||
}
|
||||
|
||||
void RABasic::releaseMemory() {
|
||||
spiller_.reset(0);
|
||||
RegAllocBase::releaseMemory();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// RegAllocBase Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// Instantiate a LiveIntervalUnion for each physical register.
|
||||
void RegAllocBase::LIUArray::init(unsigned nRegs) {
|
||||
array_.reset(new LiveIntervalUnion[nRegs]);
|
||||
nRegs_ = nRegs;
|
||||
for (unsigned pr = 0; pr < nRegs; ++pr) {
|
||||
array_[pr].init(pr);
|
||||
}
|
||||
}
|
||||
|
||||
void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
|
||||
LiveIntervals &lis) {
|
||||
tri_ = &tri;
|
||||
vrm_ = &vrm;
|
||||
lis_ = &lis;
|
||||
physReg2liu_.init(tri_->getNumRegs());
|
||||
}
|
||||
|
||||
void RegAllocBase::LIUArray::clear() {
|
||||
nRegs_ = 0;
|
||||
array_.reset(0);
|
||||
}
|
||||
|
||||
void RegAllocBase::releaseMemory() {
|
||||
physReg2liu_.clear();
|
||||
}
|
||||
|
||||
// Check if this live virtual reg interferes with a physical register. If not,
|
||||
// then check for interference on each register that aliases with the physical
|
||||
// register.
|
||||
bool RegAllocBase::checkPhysRegInterference(LiveIntervalUnion::Query &query,
|
||||
unsigned preg) {
|
||||
if (query.checkInterference())
|
||||
return true;
|
||||
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
|
||||
// We assume it's very unlikely for a register in the alias set to also be
|
||||
// in the original register class. So we don't bother caching the
|
||||
// interference.
|
||||
LiveIntervalUnion::Query subQuery(query.lvr(), physReg2liu_[*asI] );
|
||||
if (subQuery.checkInterference())
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// RABasic Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// Driver for the register assignment and splitting heuristics.
|
||||
// Manages iteration over the LiveIntervalUnions.
|
||||
//
|
||||
// Minimal implementation of register assignment and splitting--spills whenever
|
||||
// we run out of registers.
|
||||
//
|
||||
// selectOrSplit can only be called once per live virtual register. We then do a
|
||||
// single interference test for each register the correct class until we find an
|
||||
// available register. So, the number of interference tests in the worst case is
|
||||
// |vregs| * |machineregs|. And since the number of interference tests is
|
||||
// minimal, there is no value in caching them.
|
||||
unsigned RABasic::selectOrSplit(LiveInterval &lvr, LiveVirtRegs &splitLVRs) {
|
||||
// Check for an available reg in this class.
|
||||
const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg);
|
||||
for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_),
|
||||
trcEnd = trc->allocation_order_end(*mf_);
|
||||
trcI != trcEnd; ++trcI) {
|
||||
unsigned preg = *trcI;
|
||||
LiveIntervalUnion::Query query(lvr, physReg2liu_[preg]);
|
||||
if (!checkPhysRegInterference(query, preg)) {
|
||||
DEBUG(dbgs() << "\tallocating: " << tri_->getName(preg) << lvr << '\n');
|
||||
return preg;
|
||||
}
|
||||
}
|
||||
DEBUG(dbgs() << "\tspilling: " << lvr << '\n');
|
||||
SmallVector<LiveInterval*, 1> spillIs; // ignored
|
||||
spiller_->spill(&lvr, splitLVRs, spillIs);
|
||||
|
||||
// FIXME: update LiveStacks
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
|
||||
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
|
||||
<< "********** Function: "
|
||||
<< ((Value*)mf.getFunction())->getName() << '\n');
|
||||
|
||||
mf_ = &mf;
|
||||
tm_ = &mf.getTarget();
|
||||
mri_ = &mf.getRegInfo();
|
||||
|
||||
DEBUG(rmf_ = &getAnalysis<RenderMachineFunction>());
|
||||
|
||||
RegAllocBase::init(*tm_->getRegisterInfo(), getAnalysis<VirtRegMap>(),
|
||||
getAnalysis<LiveIntervals>());
|
||||
|
||||
spiller_.reset(createSpiller(*this, *mf_, *vrm_));
|
||||
|
||||
allocatePhysRegs(LessSpillWeightPriority());
|
||||
|
||||
// Diagnostic output before rewriting
|
||||
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_ << "\n");
|
||||
|
||||
// optional HTML output
|
||||
DEBUG(rmf_->renderMachineFunction("After basic register allocation.", vrm_));
|
||||
|
||||
// Run rewriter
|
||||
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
|
||||
rewriter->runOnMachineFunction(*mf_, *vrm_, lis_);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
FunctionPass* llvm::createBasicRegisterAllocator()
|
||||
{
|
||||
return new RABasic();
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
|
||||
//===-------- SplitKit.cpp - Toolkit for splitting live ranges --*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
|
Loading…
Reference in New Issue
Block a user