1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00

CodeGen: Handle ConstantVector and undef in WinCOFF constant pools

The constant pool entry code for WinCOFF assumed that vector constants
would be formed using ConstantDataVector, it did not expect to see a
ConstantVector.  Furthermore, it did not expect undef as one of the
elements of the vector.

ConstantVectors should be handled like ConstantDataVectors, treat Undef
as zero.

llvm-svn: 213038
This commit is contained in:
David Majnemer 2014-07-15 02:34:12 +00:00
parent a13b19d75f
commit 7f4b6696c1
2 changed files with 38 additions and 13 deletions

View File

@ -109,7 +109,8 @@ const MCExpr *X86WindowsTargetObjectFile::getExecutableRelativeSymbol(
getContext());
}
static std::string APIntToHexString(const APInt &AI, unsigned Width) {
static std::string APIntToHexString(const APInt &AI) {
unsigned Width = (AI.getBitWidth() / 8) * 2;
std::string HexString = utohexstr(AI.getLimitedValue(), /*LowerCase=*/true);
unsigned Size = HexString.size();
assert(Width >= Size && "hex string is too large!");
@ -121,17 +122,19 @@ static std::string APIntToHexString(const APInt &AI, unsigned Width) {
static std::string scalarConstantToHexString(const Constant *C) {
Type *Ty = C->getType();
if (Ty->isFloatTy()) {
APInt AI;
if (isa<UndefValue>(C)) {
AI = APInt(Ty->getPrimitiveSizeInBits(), /*val=*/0);
} else if (Ty->isFloatTy() || Ty->isDoubleTy()) {
const auto *CFP = cast<ConstantFP>(C);
return APIntToHexString(CFP->getValueAPF().bitcastToAPInt(), /*Width=*/8);
} else if (Ty->isDoubleTy()) {
const auto *CFP = cast<ConstantFP>(C);
return APIntToHexString(CFP->getValueAPF().bitcastToAPInt(), /*Width=*/16);
} else if (const auto *ITy = dyn_cast<IntegerType>(Ty)) {
AI = CFP->getValueAPF().bitcastToAPInt();
} else if (Ty->isIntegerTy()) {
const auto *CI = cast<ConstantInt>(C);
return APIntToHexString(CI->getValue(), (ITy->getBitWidth() / 8) * 2);
AI = CI->getValue();
} else {
llvm_unreachable("unexpected constant pool element type!");
}
llvm_unreachable("unexpected constant pool element type!");
return APIntToHexString(AI);
}
const MCSection *
@ -147,11 +150,16 @@ X86WindowsTargetObjectFile::getSectionForConstant(SectionKind Kind,
} else if (const auto *VTy = dyn_cast<VectorType>(Ty)) {
uint64_t NumBits = VTy->getBitWidth();
if (NumBits == 128 || NumBits == 256) {
const auto *CDV = cast<ConstantDataVector>(C);
COMDATSymName = NumBits == 128 ? "__xmm@" : "__ymm@";
for (int I = CDV->getNumElements() - 1, E = -1; I != E; --I)
COMDATSymName +=
scalarConstantToHexString(CDV->getElementAsConstant(I));
if (const auto *CDV = dyn_cast<ConstantDataVector>(C)) {
for (int I = CDV->getNumElements() - 1, E = -1; I != E; --I)
COMDATSymName +=
scalarConstantToHexString(CDV->getElementAsConstant(I));
} else {
const auto *CV = cast<ConstantVector>(C);
for (int I = CV->getNumOperands() - 1, E = -1; I != E; --I)
COMDATSymName += scalarConstantToHexString(CV->getOperand(I));
}
}
}
if (!COMDATSymName.empty()) {

View File

@ -47,3 +47,20 @@ define <8 x i16> @vec2() {
; CHECK: vec2:
; CHECK: movaps __xmm@00000001000200030004000500060007(%rip), %xmm0
; CHECK-NEXT: ret
define <4 x float> @undef1() {
ret <4 x float> <float 1.0, float 1.0, float undef, float undef>
; CHECK: .globl __xmm@00000000000000003f8000003f800000
; CHECK-NEXT: .section .rdata,"rd",discard,__xmm@00000000000000003f8000003f800000
; CHECK-NEXT: .align 16
; CHECK-NEXT: __xmm@00000000000000003f8000003f800000:
; CHECK-NEXT: .long 1065353216 # float 1
; CHECK-NEXT: .long 1065353216 # float 1
; CHECK-NEXT: .zero 4
; CHECK-NEXT: .zero 4
; CHECK: undef1:
; CHECK: movaps __xmm@00000000000000003f8000003f800000(%rip), %xmm0
; CHECK-NEXT: ret
}