1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00

[NVPTX] Added support for .f16x2 instructions.

This patch enables support for .f16x2 operations.

Added new register type Float16x2.
Added support for .f16x2 instructions.
Added handling of vectorized loads/stores of v2f16 values.

Differential Revision: https://reviews.llvm.org/D30057
Differential Revision: https://reviews.llvm.org/D30310

llvm-svn: 296032
This commit is contained in:
Artem Belevich 2017-02-23 22:38:24 +00:00
parent 26bd3a9606
commit 828acceeb5
15 changed files with 2346 additions and 156 deletions

View File

@ -64,6 +64,9 @@ void NVPTXInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
case 7:
OS << "%h";
break;
case 8:
OS << "%hh";
break;
}
unsigned VReg = RegNo & 0x0FFFFFFF;

View File

@ -363,6 +363,8 @@ unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
Ret = (6 << 28);
} else if (RC == &NVPTX::Float16RegsRegClass) {
Ret = (7 << 28);
} else if (RC == &NVPTX::Float16x2RegsRegClass) {
Ret = (8 << 28);
} else {
report_fatal_error("Bad register class");
}

View File

@ -84,6 +84,14 @@ void NVPTXDAGToDAGISel::Select(SDNode *N) {
if (tryStore(N))
return;
break;
case ISD::EXTRACT_VECTOR_ELT:
if (tryEXTRACT_VECTOR_ELEMENT(N))
return;
break;
case NVPTXISD::SETP_F16X2:
SelectSETP_F16X2(N);
return;
case NVPTXISD::LoadV2:
case NVPTXISD::LoadV4:
if (tryLoadVector(N))
@ -516,6 +524,127 @@ bool NVPTXDAGToDAGISel::tryConstantFP16(SDNode *N) {
return true;
}
// Map ISD:CONDCODE value to appropriate CmpMode expected by
// NVPTXInstPrinter::printCmpMode()
static unsigned getPTXCmpMode(const CondCodeSDNode &CondCode, bool FTZ) {
using NVPTX::PTXCmpMode::CmpMode;
unsigned PTXCmpMode = [](ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unexpected condition code.");
case ISD::SETOEQ:
return CmpMode::EQ;
case ISD::SETOGT:
return CmpMode::GT;
case ISD::SETOGE:
return CmpMode::GE;
case ISD::SETOLT:
return CmpMode::LT;
case ISD::SETOLE:
return CmpMode::LE;
case ISD::SETONE:
return CmpMode::NE;
case ISD::SETO:
return CmpMode::NUM;
case ISD::SETUO:
return CmpMode::NotANumber;
case ISD::SETUEQ:
return CmpMode::EQU;
case ISD::SETUGT:
return CmpMode::GTU;
case ISD::SETUGE:
return CmpMode::GEU;
case ISD::SETULT:
return CmpMode::LTU;
case ISD::SETULE:
return CmpMode::LEU;
case ISD::SETUNE:
return CmpMode::NEU;
case ISD::SETEQ:
return CmpMode::EQ;
case ISD::SETGT:
return CmpMode::GT;
case ISD::SETGE:
return CmpMode::GE;
case ISD::SETLT:
return CmpMode::LT;
case ISD::SETLE:
return CmpMode::LE;
case ISD::SETNE:
return CmpMode::NE;
}
}(CondCode.get());
if (FTZ)
PTXCmpMode |= NVPTX::PTXCmpMode::FTZ_FLAG;
return PTXCmpMode;
}
bool NVPTXDAGToDAGISel::SelectSETP_F16X2(SDNode *N) {
unsigned PTXCmpMode =
getPTXCmpMode(*cast<CondCodeSDNode>(N->getOperand(2)), useF32FTZ());
SDLoc DL(N);
SDNode *SetP = CurDAG->getMachineNode(
NVPTX::SETP_f16x2rr, DL, MVT::i1, MVT::i1, N->getOperand(0),
N->getOperand(1), CurDAG->getTargetConstant(PTXCmpMode, DL, MVT::i32));
ReplaceNode(N, SetP);
return true;
}
// Find all instances of extract_vector_elt that use this v2f16 vector
// and coalesce them into a scattering move instruction.
bool NVPTXDAGToDAGISel::tryEXTRACT_VECTOR_ELEMENT(SDNode *N) {
SDValue Vector = N->getOperand(0);
// We only care about f16x2 as it's the only real vector type we
// need to deal with.
if (Vector.getSimpleValueType() != MVT::v2f16)
return false;
// Find and record all uses of this vector that extract element 0 or 1.
SmallVector<SDNode *, 4> E0, E1;
for (const auto &U : Vector.getNode()->uses()) {
if (U->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
continue;
if (U->getOperand(0) != Vector)
continue;
if (const ConstantSDNode *IdxConst =
dyn_cast<ConstantSDNode>(U->getOperand(1))) {
if (IdxConst->getZExtValue() == 0)
E0.push_back(U);
else if (IdxConst->getZExtValue() == 1)
E1.push_back(U);
else
llvm_unreachable("Invalid vector index.");
}
}
// There's no point scattering f16x2 if we only ever access one
// element of it.
if (E0.empty() || E1.empty())
return false;
unsigned Op = NVPTX::SplitF16x2;
// If the vector has been BITCAST'ed from i32, we can use original
// value directly and avoid register-to-register move.
SDValue Source = Vector;
if (Vector->getOpcode() == ISD::BITCAST) {
Op = NVPTX::SplitI32toF16x2;
Source = Vector->getOperand(0);
}
// Merge (f16 extractelt(V, 0), f16 extractelt(V,1))
// into f16,f16 SplitF16x2(V)
SDNode *ScatterOp =
CurDAG->getMachineNode(Op, SDLoc(N), MVT::f16, MVT::f16, Source);
for (auto *Node : E0)
ReplaceUses(SDValue(Node, 0), SDValue(ScatterOp, 0));
for (auto *Node : E1)
ReplaceUses(SDValue(Node, 0), SDValue(ScatterOp, 1));
return true;
}
static unsigned int getCodeAddrSpace(MemSDNode *N) {
const Value *Src = N->getMemOperand()->getValue();
@ -689,29 +818,26 @@ bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) {
codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
isVolatile = false;
// Vector Setting
MVT SimpleVT = LoadedVT.getSimpleVT();
unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
if (SimpleVT.isVector()) {
unsigned num = SimpleVT.getVectorNumElements();
if (num == 2)
vecType = NVPTX::PTXLdStInstCode::V2;
else if (num == 4)
vecType = NVPTX::PTXLdStInstCode::V4;
else
return false;
}
// Type Setting: fromType + fromTypeWidth
//
// Sign : ISD::SEXTLOAD
// Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the
// type is integer
// Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float
MVT SimpleVT = LoadedVT.getSimpleVT();
MVT ScalarVT = SimpleVT.getScalarType();
// Read at least 8 bits (predicates are stored as 8-bit values)
unsigned fromTypeWidth = std::max(8U, ScalarVT.getSizeInBits());
unsigned int fromType;
// Vector Setting
unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
if (SimpleVT.isVector()) {
assert(LoadedVT == MVT::v2f16 && "Unexpected vector type");
// v2f16 is loaded using ld.b32
fromTypeWidth = 32;
}
if ((LD->getExtensionType() == ISD::SEXTLOAD))
fromType = NVPTX::PTXLdStInstCode::Signed;
else if (ScalarVT.isFloatingPoint())
@ -746,6 +872,9 @@ bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::LD_f16_avar;
break;
case MVT::v2f16:
Opcode = NVPTX::LD_f16x2_avar;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_avar;
break;
@ -777,6 +906,9 @@ bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::LD_f16_asi;
break;
case MVT::v2f16:
Opcode = NVPTX::LD_f16x2_asi;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_asi;
break;
@ -809,6 +941,9 @@ bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::LD_f16_ari_64;
break;
case MVT::v2f16:
Opcode = NVPTX::LD_f16x2_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_ari_64;
break;
@ -835,6 +970,9 @@ bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::LD_f16_ari;
break;
case MVT::v2f16:
Opcode = NVPTX::LD_f16x2_ari;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_ari;
break;
@ -867,6 +1005,9 @@ bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::LD_f16_areg_64;
break;
case MVT::v2f16:
Opcode = NVPTX::LD_f16x2_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_areg_64;
break;
@ -893,6 +1034,9 @@ bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::LD_f16_areg;
break;
case MVT::v2f16:
Opcode = NVPTX::LD_f16x2_areg;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_areg;
break;
@ -968,7 +1112,8 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
if (ExtensionType == ISD::SEXTLOAD)
FromType = NVPTX::PTXLdStInstCode::Signed;
else if (ScalarVT.isFloatingPoint())
FromType = NVPTX::PTXLdStInstCode::Float;
FromType = ScalarVT.SimpleTy == MVT::f16 ? NVPTX::PTXLdStInstCode::Untyped
: NVPTX::PTXLdStInstCode::Float;
else
FromType = NVPTX::PTXLdStInstCode::Unsigned;
@ -987,6 +1132,16 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
EVT EltVT = N->getValueType(0);
// v8f16 is a special case. PTX doesn't have ld.v8.f16
// instruction. Instead, we split the vector into v2f16 chunks and
// load them with ld.v4.b32.
if (EltVT == MVT::v2f16) {
assert(N->getOpcode() == NVPTXISD::LoadV4 && "Unexpected load opcode.");
EltVT = MVT::i32;
FromType = NVPTX::PTXLdStInstCode::Untyped;
FromTypeWidth = 32;
}
if (SelectDirectAddr(Op1, Addr)) {
switch (N->getOpcode()) {
default:
@ -1007,6 +1162,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_avar;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v2_avar;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_avar;
break;
@ -1028,6 +1186,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_avar;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v4_avar;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_avar;
break;
@ -1060,6 +1221,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_asi;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v2_asi;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_asi;
break;
@ -1081,6 +1245,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_asi;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v4_asi;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_asi;
break;
@ -1114,6 +1281,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_ari_64;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v2_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_ari_64;
break;
@ -1135,6 +1305,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_ari_64;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v4_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_ari_64;
break;
@ -1161,6 +1334,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_ari;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v2_ari;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_ari;
break;
@ -1182,6 +1358,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_ari;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v4_ari;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_ari;
break;
@ -1216,6 +1395,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_areg_64;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v2_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_areg_64;
break;
@ -1237,6 +1419,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_areg_64;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v4_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_areg_64;
break;
@ -1263,6 +1448,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_areg;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v2_areg;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_areg;
break;
@ -1284,6 +1472,9 @@ bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_areg;
break;
case MVT::f16:
Opcode = NVPTX::LDV_f16_v4_areg;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_areg;
break;
@ -2151,21 +2342,18 @@ bool NVPTXDAGToDAGISel::tryStore(SDNode *N) {
// Vector Setting
MVT SimpleVT = StoreVT.getSimpleVT();
unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
if (SimpleVT.isVector()) {
unsigned num = SimpleVT.getVectorNumElements();
if (num == 2)
vecType = NVPTX::PTXLdStInstCode::V2;
else if (num == 4)
vecType = NVPTX::PTXLdStInstCode::V4;
else
return false;
}
// Type Setting: toType + toTypeWidth
// - for integer type, always use 'u'
//
MVT ScalarVT = SimpleVT.getScalarType();
unsigned toTypeWidth = ScalarVT.getSizeInBits();
if (SimpleVT.isVector()) {
assert(StoreVT == MVT::v2f16 && "Unexpected vector type");
// v2f16 is stored using st.b32
toTypeWidth = 32;
}
unsigned int toType;
if (ScalarVT.isFloatingPoint())
// f16 uses .b16 as its storage type.
@ -2200,6 +2388,9 @@ bool NVPTXDAGToDAGISel::tryStore(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::ST_f16_avar;
break;
case MVT::v2f16:
Opcode = NVPTX::ST_f16x2_avar;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_avar;
break;
@ -2232,6 +2423,9 @@ bool NVPTXDAGToDAGISel::tryStore(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::ST_f16_asi;
break;
case MVT::v2f16:
Opcode = NVPTX::ST_f16x2_asi;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_asi;
break;
@ -2265,6 +2459,9 @@ bool NVPTXDAGToDAGISel::tryStore(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::ST_f16_ari_64;
break;
case MVT::v2f16:
Opcode = NVPTX::ST_f16x2_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_ari_64;
break;
@ -2291,6 +2488,9 @@ bool NVPTXDAGToDAGISel::tryStore(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::ST_f16_ari;
break;
case MVT::v2f16:
Opcode = NVPTX::ST_f16x2_ari;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_ari;
break;
@ -2324,6 +2524,9 @@ bool NVPTXDAGToDAGISel::tryStore(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::ST_f16_areg_64;
break;
case MVT::v2f16:
Opcode = NVPTX::ST_f16x2_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_areg_64;
break;
@ -2350,6 +2553,9 @@ bool NVPTXDAGToDAGISel::tryStore(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::ST_f16_areg;
break;
case MVT::v2f16:
Opcode = NVPTX::ST_f16x2_areg;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_areg;
break;
@ -2411,7 +2617,8 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
unsigned ToTypeWidth = ScalarVT.getSizeInBits();
unsigned ToType;
if (ScalarVT.isFloatingPoint())
ToType = NVPTX::PTXLdStInstCode::Float;
ToType = ScalarVT.SimpleTy == MVT::f16 ? NVPTX::PTXLdStInstCode::Untyped
: NVPTX::PTXLdStInstCode::Float;
else
ToType = NVPTX::PTXLdStInstCode::Unsigned;
@ -2438,6 +2645,16 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
return false;
}
// v8f16 is a special case. PTX doesn't have st.v8.f16
// instruction. Instead, we split the vector into v2f16 chunks and
// store them with st.v4.b32.
if (EltVT == MVT::v2f16) {
assert(N->getOpcode() == NVPTXISD::StoreV4 && "Unexpected load opcode.");
EltVT = MVT::i32;
ToType = NVPTX::PTXLdStInstCode::Untyped;
ToTypeWidth = 32;
}
StOps.push_back(getI32Imm(IsVolatile, DL));
StOps.push_back(getI32Imm(CodeAddrSpace, DL));
StOps.push_back(getI32Imm(VecType, DL));
@ -2464,6 +2681,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_avar;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v2_avar;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_avar;
break;
@ -2513,6 +2733,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_asi;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v2_asi;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_asi;
break;
@ -2534,6 +2757,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_asi;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v4_asi;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_asi;
break;
@ -2564,6 +2790,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_ari_64;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v2_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_ari_64;
break;
@ -2585,6 +2814,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_ari_64;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v4_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_ari_64;
break;
@ -2611,6 +2843,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_ari;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v2_ari;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_ari;
break;
@ -2632,6 +2867,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_ari;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v4_ari;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_ari;
break;
@ -2662,6 +2900,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_areg_64;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v2_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_areg_64;
break;
@ -2683,6 +2924,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_areg_64;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v4_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_areg_64;
break;
@ -2709,6 +2953,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_areg;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v2_areg;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_areg;
break;
@ -2730,6 +2977,9 @@ bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_areg;
break;
case MVT::f16:
Opcode = NVPTX::STV_f16_v4_areg;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_areg;
break;
@ -2804,6 +3054,9 @@ bool NVPTXDAGToDAGISel::tryLoadParam(SDNode *Node) {
case MVT::f16:
Opc = NVPTX::LoadParamMemF16;
break;
case MVT::v2f16:
Opc = NVPTX::LoadParamMemF16x2;
break;
case MVT::f32:
Opc = NVPTX::LoadParamMemF32;
break;
@ -2831,6 +3084,12 @@ bool NVPTXDAGToDAGISel::tryLoadParam(SDNode *Node) {
case MVT::i64:
Opc = NVPTX::LoadParamMemV2I64;
break;
case MVT::f16:
Opc = NVPTX::LoadParamMemV2F16;
break;
case MVT::v2f16:
Opc = NVPTX::LoadParamMemV2F16x2;
break;
case MVT::f32:
Opc = NVPTX::LoadParamMemV2F32;
break;
@ -2855,6 +3114,12 @@ bool NVPTXDAGToDAGISel::tryLoadParam(SDNode *Node) {
case MVT::i32:
Opc = NVPTX::LoadParamMemV4I32;
break;
case MVT::f16:
Opc = NVPTX::LoadParamMemV4F16;
break;
case MVT::v2f16:
Opc = NVPTX::LoadParamMemV4F16x2;
break;
case MVT::f32:
Opc = NVPTX::LoadParamMemV4F32;
break;
@ -2942,6 +3207,9 @@ bool NVPTXDAGToDAGISel::tryStoreRetval(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::StoreRetvalF16;
break;
case MVT::v2f16:
Opcode = NVPTX::StoreRetvalF16x2;
break;
case MVT::f32:
Opcode = NVPTX::StoreRetvalF32;
break;
@ -2969,6 +3237,12 @@ bool NVPTXDAGToDAGISel::tryStoreRetval(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::StoreRetvalV2I64;
break;
case MVT::f16:
Opcode = NVPTX::StoreRetvalV2F16;
break;
case MVT::v2f16:
Opcode = NVPTX::StoreRetvalV2F16x2;
break;
case MVT::f32:
Opcode = NVPTX::StoreRetvalV2F32;
break;
@ -2993,6 +3267,12 @@ bool NVPTXDAGToDAGISel::tryStoreRetval(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::StoreRetvalV4I32;
break;
case MVT::f16:
Opcode = NVPTX::StoreRetvalV4F16;
break;
case MVT::v2f16:
Opcode = NVPTX::StoreRetvalV4F16x2;
break;
case MVT::f32:
Opcode = NVPTX::StoreRetvalV4F32;
break;
@ -3000,8 +3280,7 @@ bool NVPTXDAGToDAGISel::tryStoreRetval(SDNode *N) {
break;
}
SDNode *Ret =
CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
SDNode *Ret = CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(Ret)->setMemRefs(MemRefs0, MemRefs0 + 1);
@ -3078,6 +3357,9 @@ bool NVPTXDAGToDAGISel::tryStoreParam(SDNode *N) {
case MVT::f16:
Opcode = NVPTX::StoreParamF16;
break;
case MVT::v2f16:
Opcode = NVPTX::StoreParamF16x2;
break;
case MVT::f32:
Opcode = NVPTX::StoreParamF32;
break;
@ -3105,6 +3387,12 @@ bool NVPTXDAGToDAGISel::tryStoreParam(SDNode *N) {
case MVT::i64:
Opcode = NVPTX::StoreParamV2I64;
break;
case MVT::f16:
Opcode = NVPTX::StoreParamV2F16;
break;
case MVT::v2f16:
Opcode = NVPTX::StoreParamV2F16x2;
break;
case MVT::f32:
Opcode = NVPTX::StoreParamV2F32;
break;
@ -3129,6 +3417,12 @@ bool NVPTXDAGToDAGISel::tryStoreParam(SDNode *N) {
case MVT::i32:
Opcode = NVPTX::StoreParamV4I32;
break;
case MVT::f16:
Opcode = NVPTX::StoreParamV4F16;
break;
case MVT::v2f16:
Opcode = NVPTX::StoreParamV4F16x2;
break;
case MVT::f32:
Opcode = NVPTX::StoreParamV4F32;
break;

View File

@ -71,6 +71,8 @@ private:
bool trySurfaceIntrinsic(SDNode *N);
bool tryBFE(SDNode *N);
bool tryConstantFP16(SDNode *N);
bool SelectSETP_F16X2(SDNode *N);
bool tryEXTRACT_VECTOR_ELEMENT(SDNode *N);
inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm, DL, MVT::i32);

View File

@ -146,6 +146,9 @@ static bool IsPTXVectorType(MVT VT) {
case MVT::v2i32:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v2f16:
case MVT::v4f16:
case MVT::v8f16: // <4 x f16x2>
case MVT::v2f32:
case MVT::v4f32:
case MVT::v2f64:
@ -170,13 +173,24 @@ static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
EVT VT = TempVTs[i];
uint64_t Off = TempOffsets[i];
if (VT.isVector())
for (unsigned j = 0, je = VT.getVectorNumElements(); j != je; ++j) {
ValueVTs.push_back(VT.getVectorElementType());
if (Offsets)
Offsets->push_back(Off+j*VT.getVectorElementType().getStoreSize());
// Split vectors into individual elements, except for v2f16, which
// we will pass as a single scalar.
if (VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
// Vectors with an even number of f16 elements will be passed to
// us as an array of v2f16 elements. We must match this so we
// stay in sync with Ins/Outs.
if (EltVT == MVT::f16 && NumElts % 2 == 0) {
EltVT = MVT::v2f16;
NumElts /= 2;
}
else {
for (unsigned j = 0; j != NumElts; ++j) {
ValueVTs.push_back(EltVT);
if (Offsets)
Offsets->push_back(Off + j * EltVT.getStoreSize());
}
} else {
ValueVTs.push_back(VT);
if (Offsets)
Offsets->push_back(Off);
@ -331,6 +345,11 @@ NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
else
setSchedulingPreference(Sched::Source);
auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
LegalizeAction NoF16Action) {
setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
};
addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
@ -338,13 +357,20 @@ NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
setOperationAction(ISD::SETCC, MVT::f16,
STI.allowFP16Math() ? Legal : Promote);
// Conversion to/from FP16/FP16x2 is always legal.
setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
// Operations not directly supported by NVPTX.
setOperationAction(ISD::SELECT_CC, MVT::f16,
STI.allowFP16Math() ? Expand : Promote);
setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::v2f16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
@ -352,8 +378,8 @@ NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::BR_CC, MVT::f16,
STI.allowFP16Math() ? Expand : Promote);
setOperationAction(ISD::BR_CC, MVT::f16, Expand);
setOperationAction(ISD::BR_CC, MVT::v2f16, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
@ -493,58 +519,53 @@ NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
setTargetDAGCombine(ISD::SREM);
setTargetDAGCombine(ISD::UREM);
if (!STI.allowFP16Math()) {
// Promote fp16 arithmetic if fp16 hardware isn't available or the
// user passed --nvptx-no-fp16-math. The flag is useful because,
// although sm_53+ GPUs have some sort of FP16 support in
// hardware, only sm_53 and sm_60 have full implementation. Others
// only have token amount of hardware and are likely to run faster
// by using fp32 units instead.
setOperationAction(ISD::FADD, MVT::f16, Promote);
setOperationAction(ISD::FMUL, MVT::f16, Promote);
setOperationAction(ISD::FSUB, MVT::f16, Promote);
setOperationAction(ISD::FMA, MVT::f16, Promote);
}
// There's no neg.f16 instruction.
setOperationAction(ISD::FNEG, MVT::f16, Expand);
// setcc for f16x2 needs special handling to prevent legalizer's
// attempt to scalarize it due to v2i1 not being legal.
if (STI.allowFP16Math())
setTargetDAGCombine(ISD::SETCC);
// Library functions. These default to Expand, but we have instructions
// for them.
setOperationAction(ISD::FCEIL, MVT::f16, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f16, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
setOperationAction(ISD::FROUND, MVT::f16, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
// Promote fp16 arithmetic if fp16 hardware isn't available or the
// user passed --nvptx-no-fp16-math. The flag is useful because,
// although sm_53+ GPUs have some sort of FP16 support in
// hardware, only sm_53 and sm_60 have full implementation. Others
// only have token amount of hardware and are likely to run faster
// by using fp32 units instead.
for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
setFP16OperationAction(Op, MVT::f16, Legal, Promote);
setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
}
// There's no neg.f16 instruction. Expand to (0-x).
setOperationAction(ISD::FNEG, MVT::f16, Expand);
setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
// (would be) Library functions.
// These map to conversion instructions for scalar FP types.
for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
ISD::FROUND, ISD::FTRUNC}) {
setOperationAction(Op, MVT::f16, Legal);
setOperationAction(Op, MVT::f32, Legal);
setOperationAction(Op, MVT::f64, Legal);
setOperationAction(Op, MVT::v2f16, Expand);
}
// 'Expand' implements FCOPYSIGN without calling an external library.
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
// FP16 does not support these nodes in hardware, but we can perform
// these ops using single-precision hardware.
setOperationAction(ISD::FDIV, MVT::f16, Promote);
setOperationAction(ISD::FREM, MVT::f16, Promote);
setOperationAction(ISD::FSQRT, MVT::f16, Promote);
setOperationAction(ISD::FSIN, MVT::f16, Promote);
setOperationAction(ISD::FCOS, MVT::f16, Promote);
setOperationAction(ISD::FABS, MVT::f16, Promote);
// These map to corresponding instructions for f32/f64. f16 must be
// promoted to f32. v2f16 is expanded to f16, which is then promoted
// to f32.
for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
setOperationAction(Op, MVT::f16, Promote);
setOperationAction(Op, MVT::f32, Legal);
setOperationAction(Op, MVT::f64, Legal);
setOperationAction(Op, MVT::v2f16, Expand);
}
setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
@ -660,6 +681,8 @@ const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
return "NVPTXISD::FUN_SHFR_CLAMP";
case NVPTXISD::IMAD:
return "NVPTXISD::IMAD";
case NVPTXISD::SETP_F16X2:
return "NVPTXISD::SETP_F16X2";
case NVPTXISD::Dummy:
return "NVPTXISD::Dummy";
case NVPTXISD::MUL_WIDE_SIGNED:
@ -1158,7 +1181,8 @@ TargetLoweringBase::LegalizeTypeAction
NVPTXTargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
return TypeSplitVector;
if (VT == MVT::v2f16)
return TypeLegal;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
@ -1723,7 +1747,7 @@ SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
bool ExtendIntegerRetVal =
RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
bool needTruncate = false;
EVT TheLoadType = VTs[i];
EVT EltType = Ins[i].VT;
@ -1765,11 +1789,11 @@ SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
llvm_unreachable("Invalid vector info.");
}
SDValue VectorOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(Offsets[VecIdx], dl, MVT::i32),
InFlag};
SDValue LoadOperands[] = {
Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
SDValue RetVal = DAG.getMemIntrinsicNode(
Op, dl, DAG.getVTList(LoadVTs), VectorOps, TheLoadType,
Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
MachinePointerInfo(), EltAlign);
for (unsigned j = 0; j < NumElts; ++j) {
@ -1823,6 +1847,55 @@ NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
}
// We can init constant f16x2 with a single .b32 move. Normally it
// would get lowered as two constant loads and vector-packing move.
// mov.b16 %h1, 0x4000;
// mov.b16 %h2, 0x3C00;
// mov.b32 %hh2, {%h2, %h1};
// Instead we want just a constant move:
// mov.b32 %hh2, 0x40003C00
//
// This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
// generates good SASS in both cases.
SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
//return Op;
if (!(Op->getValueType(0) == MVT::v2f16 &&
isa<ConstantFPSDNode>(Op->getOperand(0)) &&
isa<ConstantFPSDNode>(Op->getOperand(1))))
return Op;
APInt E0 =
cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
APInt E1 =
cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
SDValue Const =
DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
}
SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Index = Op->getOperand(1);
// Constant index will be matched by tablegen.
if (isa<ConstantSDNode>(Index.getNode()))
return Op;
// Extract individual elements and select one of them.
SDValue Vector = Op->getOperand(0);
EVT VectorVT = Vector.getValueType();
assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
EVT EltVT = VectorVT.getVectorElementType();
SDLoc dl(Op.getNode());
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
DAG.getIntPtrConstant(0, dl));
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
DAG.getIntPtrConstant(1, dl));
return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
ISD::CondCode::SETEQ);
}
/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
/// amount, or
@ -1956,8 +2029,11 @@ NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::INTRINSIC_W_CHAIN:
return Op;
case ISD::BUILD_VECTOR:
return LowerBUILD_VECTOR(Op, DAG);
case ISD::EXTRACT_SUBVECTOR:
return Op;
case ISD::EXTRACT_VECTOR_ELT:
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::CONCAT_VECTORS:
return LowerCONCAT_VECTORS(Op, DAG);
case ISD::STORE:
@ -2054,12 +2130,15 @@ NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f16:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f16:
case MVT::v4f32:
case MVT::v8f16: // <4 x f16x2>
// This is a "native" vector type
break;
}
@ -2090,6 +2169,7 @@ NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
if (EltVT.getSizeInBits() < 16)
NeedExt = true;
bool StoreF16x2 = false;
switch (NumElts) {
default:
return SDValue();
@ -2099,6 +2179,14 @@ NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
case 4:
Opcode = NVPTXISD::StoreV4;
break;
case 8:
// v8f16 is a special case. PTX doesn't have st.v8.f16
// instruction. Instead, we split the vector into v2f16 chunks and
// store them with st.v4.b32.
assert(EltVT == MVT::f16 && "Wrong type for the vector.");
Opcode = NVPTXISD::StoreV4;
StoreF16x2 = true;
break;
}
SmallVector<SDValue, 8> Ops;
@ -2106,23 +2194,36 @@ NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
// First is the chain
Ops.push_back(N->getOperand(0));
// Then the split values
for (unsigned i = 0; i < NumElts; ++i) {
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
DAG.getIntPtrConstant(i, DL));
if (NeedExt)
ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
Ops.push_back(ExtVal);
if (StoreF16x2) {
// Combine f16,f16 -> v2f16
NumElts /= 2;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
DAG.getIntPtrConstant(i * 2, DL));
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
DAG.getIntPtrConstant(i * 2 + 1, DL));
SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
Ops.push_back(V2);
}
} else {
// Then the split values
for (unsigned i = 0; i < NumElts; ++i) {
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
DAG.getIntPtrConstant(i, DL));
if (NeedExt)
ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
Ops.push_back(ExtVal);
}
}
// Then any remaining arguments
Ops.append(N->op_begin() + 2, N->op_end());
SDValue NewSt = DAG.getMemIntrinsicNode(
Opcode, DL, DAG.getVTList(MVT::Other), Ops,
MemSD->getMemoryVT(), MemSD->getMemOperand());
SDValue NewSt =
DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
MemSD->getMemoryVT(), MemSD->getMemOperand());
//return DCI.CombineTo(N, NewSt, true);
// return DCI.CombineTo(N, NewSt, true);
return NewSt;
}
@ -2282,7 +2383,7 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
assert(VTs.size() > 0 && "empty aggregate type not expected");
assert(VTs.size() > 0 && "Unexpected empty type.");
auto VectorInfo =
VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlignment(Ty));
@ -2299,7 +2400,15 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
unsigned NumElts = parti - VecIdx + 1;
EVT EltVT = VTs[parti];
// i1 is loaded/stored as i8.
EVT LoadVT = EltVT == MVT::i1 ? MVT::i8 : EltVT;
EVT LoadVT = EltVT;
if (EltVT == MVT::i1)
LoadVT = MVT::i8;
else if (EltVT == MVT::v2f16)
// getLoad needs a vector type, but it can't handle
// vectors which contain v2f16 elements. So we must load
// using i32 here and then bitcast back.
LoadVT = MVT::i32;
EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
SDValue VecAddr =
DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
@ -2319,15 +2428,20 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
// We've loaded i1 as an i8 and now must truncate it back to i1
if (EltVT == MVT::i1)
Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
// Extend the element if necesary (e.g an i8 is loaded
// v2f16 was loaded as an i32. Now we must bitcast it back.
else if (EltVT == MVT::v2f16)
Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
// Extend the element if necesary (e.g. an i8 is loaded
// into an i16 register)
if (Ins[InsIdx].VT.getSizeInBits() > LoadVT.getSizeInBits()) {
if (Ins[InsIdx].VT.isInteger() &&
Ins[InsIdx].VT.getSizeInBits() > LoadVT.getSizeInBits()) {
unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND;
Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
}
InVals.push_back(Elt);
}
// Reset vector tracking state.
VecIdx = -1;
}
@ -2399,7 +2513,7 @@ NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
SmallVector<SDValue, 6> StoreOperands;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
// New load/store. Record chain and offset operands.
if (VectorInfo[i] & PVF_FIRST) {
assert(StoreOperands.empty() && "Orphaned operand list.");
@ -4168,6 +4282,27 @@ static SDValue PerformSHLCombine(SDNode *N,
return SDValue();
}
static SDValue PerformSETCCCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
EVT CCType = N->getValueType(0);
SDValue A = N->getOperand(0);
SDValue B = N->getOperand(1);
if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
return SDValue();
SDLoc DL(N);
// setp.f16x2 returns two scalar predicates, which we need to
// convert back to v2i1. The returned result will be scalarized by
// the legalizer, but the comparison will remain a single vector
// instruction.
SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
DCI.DAG.getVTList(MVT::i1, MVT::i1),
{A, B, N->getOperand(2)});
return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
CCNode.getValue(1));
}
SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
@ -4185,6 +4320,8 @@ SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
case ISD::UREM:
case ISD::SREM:
return PerformREMCombine(N, DCI, OptLevel);
case ISD::SETCC:
return PerformSETCCCombine(N, DCI);
}
return SDValue();
}
@ -4208,12 +4345,15 @@ static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f16:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f16:
case MVT::v4f32:
case MVT::v8f16: // <4 x f16x2>
// This is a "native" vector type
break;
}
@ -4247,6 +4387,7 @@ static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
unsigned Opcode = 0;
SDVTList LdResVTs;
bool LoadF16x2 = false;
switch (NumElts) {
default:
@ -4261,6 +4402,18 @@ static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
LdResVTs = DAG.getVTList(ListVTs);
break;
}
case 8: {
// v8f16 is a special case. PTX doesn't have ld.v8.f16
// instruction. Instead, we split the vector into v2f16 chunks and
// load them with ld.v4.b32.
assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
LoadF16x2 = true;
Opcode = NVPTXISD::LoadV4;
EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
MVT::Other};
LdResVTs = DAG.getVTList(ListVTs);
break;
}
}
// Copy regular operands
@ -4274,13 +4427,26 @@ static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
LD->getMemoryVT(),
LD->getMemOperand());
SmallVector<SDValue, 4> ScalarRes;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
SmallVector<SDValue, 8> ScalarRes;
if (LoadF16x2) {
// Split v2f16 subvectors back into individual elements.
NumElts /= 2;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue SubVector = NewLD.getValue(i);
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
DAG.getIntPtrConstant(0, DL));
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
DAG.getIntPtrConstant(1, DL));
ScalarRes.push_back(E0);
ScalarRes.push_back(E1);
}
} else {
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
}
}
SDValue LoadChain = NewLD.getValue(NumElts);

View File

@ -56,6 +56,7 @@ enum NodeType : unsigned {
MUL_WIDE_SIGNED,
MUL_WIDE_UNSIGNED,
IMAD,
SETP_F16X2,
Dummy,
LoadV2 = ISD::FIRST_TARGET_MEMORY_OPCODE,
@ -549,14 +550,15 @@ private:
const NVPTXSubtarget &STI; // cache the subtarget here
SDValue getParamSymbol(SelectionDAG &DAG, int idx, EVT) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerLOADi1(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTOREf16(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;

View File

@ -55,6 +55,8 @@ void NVPTXInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
} else if (DestRC == &NVPTX::Float16RegsRegClass) {
Op = (SrcRC == &NVPTX::Float16RegsRegClass ? NVPTX::FMOV16rr
: NVPTX::BITCONVERT_16_I2F);
} else if (DestRC == &NVPTX::Float16x2RegsRegClass) {
Op = NVPTX::IMOV32rr;
} else if (DestRC == &NVPTX::Float32RegsRegClass) {
Op = (SrcRC == &NVPTX::Float32RegsRegClass ? NVPTX::FMOV32rr
: NVPTX::BITCONVERT_32_I2F);

View File

@ -102,6 +102,9 @@ def CmpNAN_FTZ : PatLeaf<(i32 0x111)>;
def CmpMode : Operand<i32> {
let PrintMethod = "printCmpMode";
}
def VecElement : Operand<i32> {
let PrintMethod = "printVecElement";
}
//===----------------------------------------------------------------------===//
// NVPTX Instruction Predicate Definitions
@ -305,6 +308,19 @@ multiclass F3_fma_component<string OpcStr, SDNode OpNode> {
[(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
Requires<[useFP16Math, allowFMA]>;
def f16x2rr_ftz :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b),
!strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"),
[(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
Requires<[useFP16Math, allowFMA, doF32FTZ]>;
def f16x2rr :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b),
!strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"),
[(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
Requires<[useFP16Math, allowFMA]>;
// These have strange names so we don't perturb existing mir tests.
def _rnf64rr :
NVPTXInst<(outs Float64Regs:$dst),
@ -354,6 +370,18 @@ multiclass F3_fma_component<string OpcStr, SDNode OpNode> {
!strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"),
[(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
Requires<[useFP16Math, noFMA]>;
def _rnf16x2rr_ftz :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b),
!strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"),
[(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
Requires<[useFP16Math, noFMA, doF32FTZ]>;
def _rnf16x2rr :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b),
!strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"),
[(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
Requires<[useFP16Math, noFMA]>;
}
// Template for operations which take two f32 or f64 operands. Provides three
@ -991,15 +1019,17 @@ multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred>
Requires<[Pred]>;
}
multiclass FMA_F16<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> {
multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> {
def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
Requires<[useFP16Math, Pred]>;
}
defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, f16imm, doF32FTZ>;
defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, f16imm, true>;
defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>;
defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, true>;
defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>;
defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, true>;
defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>;
defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, true>;
defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>;
@ -1390,9 +1420,17 @@ defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>;
def SETP_f16rr :
NVPTXInst<(outs Int1Regs:$dst),
(ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp),
"setp${cmp:base}${cmp:ftz}.f16 $dst, $a, $b;",
"setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;",
[]>, Requires<[useFP16Math]>;
def SETP_f16x2rr :
NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q),
(ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp),
"setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;",
[]>,
Requires<[useFP16Math]>;
// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form
// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination
// reg, either u32, s32, or f32. Anyway these aren't used at the moment.
@ -1488,6 +1526,13 @@ defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>;
defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>;
defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>;
def SELP_f16x2rr :
NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p),
"selp.b32 \t$dst, $a, $b, $p;",
[(set Float16x2Regs:$dst,
(select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>;
//-----------------------------------
// Data Movement (Load / Store, Move)
//-----------------------------------
@ -2061,10 +2106,15 @@ def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">;
def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">;
def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">;
def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">;
def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">;
def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">;
def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">;
def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">;
def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">;
def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">;
def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">;
def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">;
def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">;
def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">;
def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">;
@ -2082,10 +2132,15 @@ def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">;
def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">;
def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">;
def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">;
def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">;
def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">;
def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">;
def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">;
def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">;
def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">;
def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">;
def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">;
def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">;
def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">;
@ -2103,9 +2158,14 @@ def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">;
def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">;
def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">;
def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">;
def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">;
def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">;
def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">;
def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">;
def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">;
def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">;
def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">;
def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">;
def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>;
def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>;
@ -2252,6 +2312,7 @@ let mayLoad=1, hasSideEffects=0 in {
defm LD_i32 : LD<Int32Regs>;
defm LD_i64 : LD<Int64Regs>;
defm LD_f16 : LD<Float16Regs>;
defm LD_f16x2 : LD<Float16x2Regs>;
defm LD_f32 : LD<Float32Regs>;
defm LD_f64 : LD<Float64Regs>;
}
@ -2301,6 +2362,7 @@ let mayStore=1, hasSideEffects=0 in {
defm ST_i32 : ST<Int32Regs>;
defm ST_i64 : ST<Int64Regs>;
defm ST_f16 : ST<Float16Regs>;
defm ST_f16x2 : ST<Float16x2Regs>;
defm ST_f32 : ST<Float32Regs>;
defm ST_f64 : ST<Float64Regs>;
}
@ -2387,6 +2449,7 @@ let mayLoad=1, hasSideEffects=0 in {
defm LDV_i16 : LD_VEC<Int16Regs>;
defm LDV_i32 : LD_VEC<Int32Regs>;
defm LDV_i64 : LD_VEC<Int64Regs>;
defm LDV_f16 : LD_VEC<Float16Regs>;
defm LDV_f32 : LD_VEC<Float32Regs>;
defm LDV_f64 : LD_VEC<Float64Regs>;
}
@ -2480,17 +2543,18 @@ let mayStore=1, hasSideEffects=0 in {
defm STV_i16 : ST_VEC<Int16Regs>;
defm STV_i32 : ST_VEC<Int32Regs>;
defm STV_i64 : ST_VEC<Int64Regs>;
defm STV_f16 : ST_VEC<Float16Regs>;
defm STV_f16x2 : ST_VEC<Float16x2Regs>;
defm STV_f32 : ST_VEC<Float32Regs>;
defm STV_f64 : ST_VEC<Float64Regs>;
}
//---- Conversion ----
class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn,
NVPTXRegClass regclassOut> :
NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a),
!strconcat("mov.b", !strconcat(SzStr, " \t $d, $a;")),
!strconcat("mov.b", !strconcat(SzStr, " \t$d, $a;")),
[(set regclassOut:$d, (bitconvert regclassIn:$a))]>;
def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>;
@ -2499,6 +2563,8 @@ def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>;
def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>;
def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>;
def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>;
def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>;
def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>;
// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where
// we cannot specify floating-point literals in isel patterns. Therefore, we
@ -2741,6 +2807,9 @@ def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b),
def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b),
(SELP_b64rr Int64Regs:$a, Int64Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b),
(SELP_f16rr Float16Regs:$a, Float16Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b),
(SELP_f32rr Float32Regs:$a, Float32Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
@ -2779,6 +2848,49 @@ let hasSideEffects = 0 in {
def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2),
(ins Float64Regs:$s),
"mov.b64 \t{{$d1, $d2}}, $s;", []>;
}
let hasSideEffects = 0 in {
// Extract element of f16x2 register. PTX does not provide any way
// to access elements of f16x2 vector directly, so we need to
// extract it using a temporary register.
def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst),
(ins Float16x2Regs:$src),
"{{ .reg .b16 \t%tmp_hi;\n\t"
" mov.b32 \t{$dst, %tmp_hi}, $src; }}",
[(set Float16Regs:$dst,
(extractelt (v2f16 Float16x2Regs:$src), 0))]>;
def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst),
(ins Float16x2Regs:$src),
"{{ .reg .b16 \t%tmp_lo;\n\t"
" mov.b32 \t{%tmp_lo, $dst}, $src; }}",
[(set Float16Regs:$dst,
(extractelt (v2f16 Float16x2Regs:$src), 1))]>;
// Coalesce two f16 registers into f16x2
def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst),
(ins Float16Regs:$a, Float16Regs:$b),
"mov.b32 \t$dst, {{$a, $b}};",
[(set Float16x2Regs:$dst,
(build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>;
// Directly initializing underlying the b32 register is one less SASS
// instruction than than vector-packing move.
def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src),
"mov.b32 \t$dst, $src;",
[]>;
// Split f16x2 into two f16 registers.
def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi),
(ins Float16x2Regs:$src),
"mov.b32 \t{{$lo, $hi}}, $src;",
[]>;
// Split an i32 into two f16
def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi),
(ins Int32Regs:$src),
"mov.b32 \t{{$lo, $hi}}, $src;",
[]>;
}
// Count leading zeros

View File

@ -1606,6 +1606,10 @@ defm INT_PTX_LDG_GLOBAL_i32
: LDG_G<"u32 \t$result, [$src];", Int32Regs>;
defm INT_PTX_LDG_GLOBAL_i64
: LDG_G<"u64 \t$result, [$src];", Int64Regs>;
defm INT_PTX_LDG_GLOBAL_f16
: LDG_G<"b16 \t$result, [$src];", Float16Regs>;
defm INT_PTX_LDG_GLOBAL_f16x2
: LDG_G<"b32 \t$result, [$src];", Float16x2Regs>;
defm INT_PTX_LDG_GLOBAL_f32
: LDG_G<"f32 \t$result, [$src];", Float32Regs>;
defm INT_PTX_LDG_GLOBAL_f64
@ -1661,6 +1665,8 @@ defm INT_PTX_LDG_G_v2i16_ELE
: VLDG_G_ELE_V2<"v2.u16 \t{{$dst1, $dst2}}, [$src];", Int16Regs>;
defm INT_PTX_LDG_G_v2i32_ELE
: VLDG_G_ELE_V2<"v2.u32 \t{{$dst1, $dst2}}, [$src];", Int32Regs>;
defm INT_PTX_LDG_G_v4f16_ELE
: VLDG_G_ELE_V2<"v2.b32 \t{{$dst1, $dst2}}, [$src];", Float16x2Regs>;
defm INT_PTX_LDG_G_v2f32_ELE
: VLDG_G_ELE_V2<"v2.f32 \t{{$dst1, $dst2}}, [$src];", Float32Regs>;
defm INT_PTX_LDG_G_v2i64_ELE
@ -1673,6 +1679,8 @@ defm INT_PTX_LDG_G_v4i16_ELE
: VLDG_G_ELE_V4<"v4.u16 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int16Regs>;
defm INT_PTX_LDG_G_v4i32_ELE
: VLDG_G_ELE_V4<"v4.u32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int32Regs>;
defm INT_PTX_LDG_G_v8f16_ELE
: VLDG_G_ELE_V4<"v4.b32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Float16x2Regs>;
defm INT_PTX_LDG_G_v4f32_ELE
: VLDG_G_ELE_V4<"v4.f32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Float32Regs>;

View File

@ -35,6 +35,8 @@ std::string getNVPTXRegClassName(TargetRegisterClass const *RC) {
// accepted for all supported fp16 instructions on all GPU
// variants, so we can use them instead.
return ".b16";
if (RC == &NVPTX::Float16x2RegsRegClass)
return ".b32";
if (RC == &NVPTX::Float64RegsRegClass)
return ".f64";
if (RC == &NVPTX::Int64RegsRegClass)
@ -73,6 +75,8 @@ std::string getNVPTXRegClassStr(TargetRegisterClass const *RC) {
return "%f";
if (RC == &NVPTX::Float16RegsRegClass)
return "%h";
if (RC == &NVPTX::Float16x2RegsRegClass)
return "%hh";
if (RC == &NVPTX::Float64RegsRegClass)
return "%fd";
if (RC == &NVPTX::Int64RegsRegClass)

View File

@ -37,6 +37,7 @@ foreach i = 0-4 in {
def R#i : NVPTXReg<"%r"#i>; // 32-bit
def RL#i : NVPTXReg<"%rd"#i>; // 64-bit
def H#i : NVPTXReg<"%h"#i>; // 16-bit float
def HH#i : NVPTXReg<"%hh"#i>; // 2x16-bit float
def F#i : NVPTXReg<"%f"#i>; // 32-bit float
def FL#i : NVPTXReg<"%fd"#i>; // 64-bit float
@ -59,6 +60,7 @@ def Int16Regs : NVPTXRegClass<[i16], 16, (add (sequence "RS%u", 0, 4))>;
def Int32Regs : NVPTXRegClass<[i32], 32, (add (sequence "R%u", 0, 4))>;
def Int64Regs : NVPTXRegClass<[i64], 64, (add (sequence "RL%u", 0, 4))>;
def Float16Regs : NVPTXRegClass<[f16], 16, (add (sequence "H%u", 0, 4))>;
def Float16x2Regs : NVPTXRegClass<[v2f16], 32, (add (sequence "HH%u", 0, 4))>;
def Float32Regs : NVPTXRegClass<[f32], 32, (add (sequence "F%u", 0, 4))>;
def Float64Regs : NVPTXRegClass<[f64], 64, (add (sequence "FL%u", 0, 4))>;
def Int32ArgRegs : NVPTXRegClass<[i32], 32, (add (sequence "ia%u", 0, 4))>;

View File

@ -15,3 +15,37 @@ define i32 @f(i32* %p) {
%sum = add i32 %v0, %v1
ret i32 %sum
}
define half @fh(half* %p) {
%p.1 = getelementptr half, half* %p, i32 1
%p.2 = getelementptr half, half* %p, i32 2
%p.3 = getelementptr half, half* %p, i32 3
%p.4 = getelementptr half, half* %p, i32 4
%v0 = load half, half* %p, align 64
%v1 = load half, half* %p.1, align 4
%v2 = load half, half* %p.2, align 4
%v3 = load half, half* %p.3, align 4
%v4 = load half, half* %p.4, align 4
%sum1 = fadd half %v0, %v1
%sum2 = fadd half %v2, %v3
%sum3 = fadd half %sum1, %sum2
%sum = fadd half %sum3, %v4
ret half %sum
}
define float @ff(float* %p) {
%p.1 = getelementptr float, float* %p, i32 1
%p.2 = getelementptr float, float* %p, i32 2
%p.3 = getelementptr float, float* %p, i32 3
%p.4 = getelementptr float, float* %p, i32 4
%v0 = load float, float* %p, align 64
%v1 = load float, float* %p.1, align 4
%v2 = load float, float* %p.2, align 4
%v3 = load float, float* %p.3, align 4
%v4 = load float, float* %p.4, align 4
%sum1 = fadd float %v0, %v1
%sum2 = fadd float %v2, %v3
%sum3 = fadd float %sum1, %sum2
%sum = fadd float %sum3, %v4
ret float %sum
}

View File

@ -127,13 +127,13 @@ define half @test_fdiv(half %a, half %b) #0 {
; CHECK-LABEL: test_frem(
; CHECK-DAG: ld.param.b16 [[A:%h[0-9]+]], [test_frem_param_0];
; CHECK-DAG: ld.param.b16 [[B:%h[0-9]+]], [test_frem_param_1];
; CHECK-DAG: cvt.f32.f16 [[F0:%f[0-9]+]], [[A]];
; CHECK-DAG: cvt.f32.f16 [[F1:%f[0-9]+]], [[B]];
; CHECK-NEXT: div.rn.f32 [[F2:%f[0-9]+]], [[F0]], [[F1]];
; CHECK-NEXT: cvt.rmi.f32.f32 [[F3:%f[0-9]+]], [[F2]];
; CHECK-NEXT: mul.f32 [[F4:%f[0-9]+]], [[F3]], [[F1]];
; CHECK-NEXT: sub.f32 [[F5:%f[0-9]+]], [[F0]], [[F4]];
; CHECK-NEXT: cvt.rn.f16.f32 [[R:%h[0-9]+]], [[F5]];
; CHECK-DAG: cvt.f32.f16 [[FA:%f[0-9]+]], [[A]];
; CHECK-DAG: cvt.f32.f16 [[FB:%f[0-9]+]], [[B]];
; CHECK-NEXT: div.rn.f32 [[D:%f[0-9]+]], [[FA]], [[FB]];
; CHECK-NEXT: cvt.rmi.f32.f32 [[DI:%f[0-9]+]], [[D]];
; CHECK-NEXT: mul.f32 [[RI:%f[0-9]+]], [[DI]], [[FB]];
; CHECK-NEXT: sub.f32 [[RF:%f[0-9]+]], [[FA]], [[RI]];
; CHECK-NEXT: cvt.rn.f16.f32 [[R:%h[0-9]+]], [[RF]];
; CHECK-NEXT: st.param.b16 [func_retval0+0], [[R]];
; CHECK-NEXT: ret;
define half @test_frem(half %a, half %b) #0 {
@ -509,7 +509,7 @@ define i1 @test_fcmp_ord(half %a, half %b) #0 {
; CHECK-NOF16-DAG: cvt.f32.f16 [[AF:%f[0-9]+]], [[A]];
; CHECK-NOF16-DAG: cvt.f32.f16 [[BF:%f[0-9]+]], [[B]];
; CHECK-NOF16: setp.lt.f32 [[PRED:%p[0-9]+]], [[AF]], [[BF]]
; CHECK-NEXT: @%p1 bra [[LABEL:LBB.*]];
; CHECK-NEXT: @[[PRED]] bra [[LABEL:LBB.*]];
; CHECK: st.u32 [%[[C]]],
; CHECK: [[LABEL]]:
; CHECK: st.u32 [%[[D]]],

File diff suppressed because it is too large Load Diff

View File

@ -4,9 +4,9 @@
%s_i1 = type { i1 }
%s_i8 = type { i8 }
%s_i16 = type { i16 }
%s_half = type { half }
%s_f16 = type { half }
%s_i32 = type { i32 }
%s_float = type { float }
%s_f32 = type { float }
%s_i64 = type { i64 }
%s_f64 = type { double }
@ -322,22 +322,148 @@ define <5 x i16> @test_v5i16(<5 x i16> %a) {
}
; CHECK: .func (.param .b32 func_retval0)
; CHECK-LABEL: test_half(
; CHECK-NEXT: .param .b32 test_half_param_0
; CHECK: ld.param.b16 [[E:%h[0-9]+]], [test_half_param_0];
; CHECK-LABEL: test_f16(
; CHECK-NEXT: .param .b32 test_f16_param_0
; CHECK: ld.param.b16 [[E:%h[0-9]+]], [test_f16_param_0];
; CHECK: .param .b32 param0;
; CHECK: st.param.b16 [param0+0], [[E]];
; CHECK: .param .b32 retval0;
; CHECK: call.uni (retval0),
; CHECK-NEXT: test_half,
; CHECK-NEXT: test_f16,
; CHECK: ld.param.b16 [[R:%h[0-9]+]], [retval0+0];
; CHECK: st.param.b16 [func_retval0+0], [[R]]
; CHECK-NEXT: ret;
define half @test_half(half %a) {
%r = tail call half @test_half(half %a);
define half @test_f16(half %a) {
%r = tail call half @test_f16(half %a);
ret half %r;
}
; CHECK: .func (.param .align 4 .b8 func_retval0[4])
; CHECK-LABEL: test_v2f16(
; CHECK-NEXT: .param .align 4 .b8 test_v2f16_param_0[4]
; CHECK: ld.param.b32 [[E:%hh[0-9]+]], [test_v2f16_param_0];
; CHECK: .param .align 4 .b8 param0[4];
; CHECK: st.param.b32 [param0+0], [[E]];
; CHECK: .param .align 4 .b8 retval0[4];
; CHECK: call.uni (retval0),
; CHECK-NEXT: test_v2f16,
; CHECK: ld.param.b32 [[R:%hh[0-9]+]], [retval0+0];
; CHECK: st.param.b32 [func_retval0+0], [[R]]
; CHECK-NEXT: ret;
define <2 x half> @test_v2f16(<2 x half> %a) {
%r = tail call <2 x half> @test_v2f16(<2 x half> %a);
ret <2 x half> %r;
}
; CHECK:.func (.param .align 8 .b8 func_retval0[8])
; CHECK-LABEL: test_v3f16(
; CHECK: .param .align 8 .b8 test_v3f16_param_0[8]
; CHECK-DAG: ld.param.b32 [[HH01:%hh[0-9]+]], [test_v3f16_param_0];
; CHECK-DAG: mov.b32 {[[E0:%h[0-9]+]], [[E1:%h[0-9]+]]}, [[HH01]];
; CHECK-DAG: ld.param.b16 [[E2:%h[0-9]+]], [test_v3f16_param_0+4];
; CHECK: .param .align 8 .b8 param0[8];
; CHECK-DAG: st.param.v2.b16 [param0+0], {[[E0]], [[E1]]};
; CHECK-DAG: st.param.b16 [param0+4], [[E2]];
; CHECK: .param .align 8 .b8 retval0[8];
; CHECK: call.uni (retval0),
; CHECK: test_v3f16,
; CHECK-DAG: ld.param.v2.b16 {[[R0:%h[0-9]+]], [[R1:%h[0-9]+]]}, [retval0+0];
; CHECK-DAG: ld.param.b16 [[R2:%h[0-9]+]], [retval0+4];
; CHECK-DAG: st.param.v2.b16 [func_retval0+0], {[[R0]], [[R1]]};
; CHECK-DAG: st.param.b16 [func_retval0+4], [[R2]];
; CHECK: ret;
define <3 x half> @test_v3f16(<3 x half> %a) {
%r = tail call <3 x half> @test_v3f16(<3 x half> %a);
ret <3 x half> %r;
}
; CHECK:.func (.param .align 8 .b8 func_retval0[8])
; CHECK-LABEL: test_v4f16(
; CHECK: .param .align 8 .b8 test_v4f16_param_0[8]
; CHECK: ld.param.v2.u32 {[[R01:%r[0-9]+]], [[R23:%r[0-9]+]]}, [test_v4f16_param_0];
; CHECK-DAG: mov.b32 [[HH01:%hh[0-9]+]], [[R01]];
; CHECK-DAG: mov.b32 [[HH23:%hh[0-9]+]], [[R23]];
; CHECK: .param .align 8 .b8 param0[8];
; CHECK: st.param.v2.b32 [param0+0], {[[HH01]], [[HH23]]};
; CHECK: .param .align 8 .b8 retval0[8];
; CHECK: call.uni (retval0),
; CHECK: test_v4f16,
; CHECK: ld.param.v2.b32 {[[RH01:%hh[0-9]+]], [[RH23:%hh[0-9]+]]}, [retval0+0];
; CHECK: st.param.v2.b32 [func_retval0+0], {[[RH01]], [[RH23]]};
; CHECK: ret;
define <4 x half> @test_v4f16(<4 x half> %a) {
%r = tail call <4 x half> @test_v4f16(<4 x half> %a);
ret <4 x half> %r;
}
; CHECK:.func (.param .align 16 .b8 func_retval0[16])
; CHECK-LABEL: test_v5f16(
; CHECK: .param .align 16 .b8 test_v5f16_param_0[16]
; CHECK-DAG: ld.param.v4.b16 {[[E0:%h[0-9]+]], [[E1:%h[0-9]+]], [[E2:%h[0-9]+]], [[E3:%h[0-9]+]]}, [test_v5f16_param_0];
; CHECK-DAG: mov.b32 {[[E0:%h[0-9]+]], [[E1:%h[0-9]+]]}, [[HH01]];
; CHECK-DAG: ld.param.b16 [[E4:%h[0-9]+]], [test_v5f16_param_0+8];
; CHECK: .param .align 16 .b8 param0[16];
; CHECK-DAG: st.param.v4.b16 [param0+0],
; CHECK-DAG: st.param.b16 [param0+8], [[E4]];
; CHECK: .param .align 16 .b8 retval0[16];
; CHECK: call.uni (retval0),
; CHECK: test_v5f16,
; CHECK-DAG: ld.param.v4.b16 {[[R0:%h[0-9]+]], [[R1:%h[0-9]+]], [[R2:%h[0-9]+]], [[R3:%h[0-9]+]]}, [retval0+0];
; CHECK-DAG: ld.param.b16 [[R4:%h[0-9]+]], [retval0+8];
; CHECK-DAG: st.param.v4.b16 [func_retval0+0], {[[R0]], [[R1]], [[R2]], [[R3]]};
; CHECK-DAG: st.param.b16 [func_retval0+8], [[R4]];
; CHECK: ret;
define <5 x half> @test_v5f16(<5 x half> %a) {
%r = tail call <5 x half> @test_v5f16(<5 x half> %a);
ret <5 x half> %r;
}
; CHECK:.func (.param .align 16 .b8 func_retval0[16])
; CHECK-LABEL: test_v8f16(
; CHECK: .param .align 16 .b8 test_v8f16_param_0[16]
; CHECK: ld.param.v4.u32 {[[R01:%r[0-9]+]], [[R23:%r[0-9]+]], [[R45:%r[0-9]+]], [[R67:%r[0-9]+]]}, [test_v8f16_param_0];
; CHECK-DAG: mov.b32 [[HH01:%hh[0-9]+]], [[R01]];
; CHECK-DAG: mov.b32 [[HH23:%hh[0-9]+]], [[R23]];
; CHECK-DAG: mov.b32 [[HH45:%hh[0-9]+]], [[R45]];
; CHECK-DAG: mov.b32 [[HH67:%hh[0-9]+]], [[R67]];
; CHECK: .param .align 16 .b8 param0[16];
; CHECK: st.param.v4.b32 [param0+0], {[[HH01]], [[HH23]], [[HH45]], [[HH67]]};
; CHECK: .param .align 16 .b8 retval0[16];
; CHECK: call.uni (retval0),
; CHECK: test_v8f16,
; CHECK: ld.param.v4.b32 {[[RH01:%hh[0-9]+]], [[RH23:%hh[0-9]+]], [[RH45:%hh[0-9]+]], [[RH67:%hh[0-9]+]]}, [retval0+0];
; CHECK: st.param.v4.b32 [func_retval0+0], {[[RH01]], [[RH23]], [[RH45]], [[RH67]]};
; CHECK: ret;
define <8 x half> @test_v8f16(<8 x half> %a) {
%r = tail call <8 x half> @test_v8f16(<8 x half> %a);
ret <8 x half> %r;
}
; CHECK:.func (.param .align 32 .b8 func_retval0[32])
; CHECK-LABEL: test_v9f16(
; CHECK: .param .align 32 .b8 test_v9f16_param_0[32]
; CHECK-DAG: ld.param.v4.b16 {[[E0:%h[0-9]+]], [[E1:%h[0-9]+]], [[E2:%h[0-9]+]], [[E3:%h[0-9]+]]}, [test_v9f16_param_0];
; CHECK-DAG: ld.param.v4.b16 {[[E4:%h[0-9]+]], [[E5:%h[0-9]+]], [[E6:%h[0-9]+]], [[E7:%h[0-9]+]]}, [test_v9f16_param_0+8];
; CHECK-DAG: ld.param.b16 [[E8:%h[0-9]+]], [test_v9f16_param_0+16];
; CHECK: .param .align 32 .b8 param0[32];
; CHECK-DAG: st.param.v4.b16 [param0+0],
; CHECK-DAG: st.param.v4.b16 [param0+8],
; CHECK-DAG: st.param.b16 [param0+16], [[E8]];
; CHECK: .param .align 32 .b8 retval0[32];
; CHECK: call.uni (retval0),
; CHECK: test_v9f16,
; CHECK-DAG: ld.param.v4.b16 {[[R0:%h[0-9]+]], [[R1:%h[0-9]+]], [[R2:%h[0-9]+]], [[R3:%h[0-9]+]]}, [retval0+0];
; CHECK-DAG: ld.param.v4.b16 {[[R4:%h[0-9]+]], [[R5:%h[0-9]+]], [[R6:%h[0-9]+]], [[R7:%h[0-9]+]]}, [retval0+8];
; CHECK-DAG: ld.param.b16 [[R8:%h[0-9]+]], [retval0+16];
; CHECK-DAG: st.param.v4.b16 [func_retval0+0], {[[R0]], [[R1]], [[R2]], [[R3]]};
; CHECK-DAG: st.param.v4.b16 [func_retval0+8], {[[R4]], [[R5]], [[R6]], [[R7]]};
; CHECK-DAG: st.param.b16 [func_retval0+16], [[R8]];
; CHECK: ret;
define <9 x half> @test_v9f16(<9 x half> %a) {
%r = tail call <9 x half> @test_v9f16(<9 x half> %a);
ret <9 x half> %r;
}
; CHECK: .func (.param .b32 func_retval0)
; CHECK-LABEL: test_i32(
; CHECK-NEXT: .param .b32 test_i32_param_0
@ -415,19 +541,19 @@ define <5 x i32> @test_v5i32(<5 x i32> %a) {
}
; CHECK: .func (.param .b32 func_retval0)
; CHECK-LABEL: test_float(
; CHECK-NEXT: .param .b32 test_float_param_0
; CHECK: ld.param.f32 [[E:%f[0-9]+]], [test_float_param_0];
; CHECK-LABEL: test_f32(
; CHECK-NEXT: .param .b32 test_f32_param_0
; CHECK: ld.param.f32 [[E:%f[0-9]+]], [test_f32_param_0];
; CHECK: .param .b32 param0;
; CHECK: st.param.f32 [param0+0], [[E]];
; CHECK: .param .b32 retval0;
; CHECK: call.uni (retval0),
; CHECK-NEXT: test_float,
; CHECK-NEXT: test_f32,
; CHECK: ld.param.f32 [[R:%f[0-9]+]], [retval0+0];
; CHECK: st.param.f32 [func_retval0+0], [[R]];
; CHECK-NEXT: ret;
define float @test_float(float %a) {
%r = tail call float @test_float(float %a);
define float @test_f32(float %a) {
%r = tail call float @test_f32(float %a);
ret float %r;
}
@ -547,20 +673,20 @@ define %s_i16 @test_s_i16(%s_i16 %a) {
}
; CHECK: .func (.param .align 2 .b8 func_retval0[2])
; CHECK-LABEL: test_s_half(
; CHECK-NEXT: .param .align 2 .b8 test_s_half_param_0[2]
; CHECK: ld.param.b16 [[A:%h[0-9]+]], [test_s_half_param_0];
; CHECK-LABEL: test_s_f16(
; CHECK-NEXT: .param .align 2 .b8 test_s_f16_param_0[2]
; CHECK: ld.param.b16 [[A:%h[0-9]+]], [test_s_f16_param_0];
; CHECK: .param .align 2 .b8 param0[2];
; CHECK: st.param.b16 [param0+0], [[A]]
; CHECK: .param .align 2 .b8 retval0[2];
; CHECK: call.uni
; CHECK-NEXT: test_s_half,
; CHECK-NEXT: test_s_f16,
; CHECK: ld.param.b16 [[R:%h[0-9]+]], [retval0+0];
; CHECK: st.param.b16 [func_retval0+0], [[R]];
; CHECK-NEXT: ret;
define %s_half @test_s_half(%s_half %a) {
%r = tail call %s_half @test_s_half(%s_half %a);
ret %s_half %r;
define %s_f16 @test_s_f16(%s_f16 %a) {
%r = tail call %s_f16 @test_s_f16(%s_f16 %a);
ret %s_f16 %r;
}
; CHECK: .func (.param .align 4 .b8 func_retval0[4])
@ -581,20 +707,20 @@ define %s_i32 @test_s_i32(%s_i32 %a) {
}
; CHECK: .func (.param .align 4 .b8 func_retval0[4])
; CHECK-LABEL: test_s_float(
; CHECK-NEXT: .param .align 4 .b8 test_s_float_param_0[4]
; CHECK: ld.param.f32 [[E:%f[0-9]+]], [test_s_float_param_0];
; CHECK-LABEL: test_s_f32(
; CHECK-NEXT: .param .align 4 .b8 test_s_f32_param_0[4]
; CHECK: ld.param.f32 [[E:%f[0-9]+]], [test_s_f32_param_0];
; CHECK: .param .align 4 .b8 param0[4]
; CHECK: st.param.f32 [param0+0], [[E]];
; CHECK: .param .align 4 .b8 retval0[4];
; CHECK: call.uni (retval0),
; CHECK-NEXT: test_s_float,
; CHECK-NEXT: test_s_f32,
; CHECK: ld.param.f32 [[R:%f[0-9]+]], [retval0+0];
; CHECK: st.param.f32 [func_retval0+0], [[R]];
; CHECK-NEXT: ret;
define %s_float @test_s_float(%s_float %a) {
%r = tail call %s_float @test_s_float(%s_float %a);
ret %s_float %r;
define %s_f32 @test_s_f32(%s_f32 %a) {
%r = tail call %s_f32 @test_s_f32(%s_f32 %a);
ret %s_f32 %r;
}
; CHECK: .func (.param .align 8 .b8 func_retval0[8])