1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 12:43:36 +01:00

[Matrix] Add option to use row-major matrix layout as default.

This patch adds a -matrix-default-layout option which can be used to
set the default matrix layout to row-major or column-major (default).

The initial patch updates codegen for loads, stores, binary operators
and matrix multiply.

Reviewers: anemet, Gerolf, andrew.w.kaylor, LuoYuanke

Reviewed By: anemet

Differential Revision: https://reviews.llvm.org/D76325
This commit is contained in:
Florian Hahn 2020-04-06 09:43:41 +01:00
parent 8bc8aea47f
commit 82f4f75f07
5 changed files with 908 additions and 140 deletions

View File

@ -67,6 +67,16 @@ static cl::opt<bool> AllowContractEnabled(
cl::desc("Allow the use of FMAs if available and profitable. This may "
"result in different results, due to less rounding error."));
enum class MatrixLayoutTy { ColumnMajor, RowMajor };
static cl::opt<MatrixLayoutTy> MatrixLayout(
"matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
cl::desc("Sets the default matrix layout"),
cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
"Use column-major layout"),
clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
"Use row-major layout")));
/// Helper function to either return Scope, if it is a subprogram or the
/// attached subprogram for a local scope.
static DISubprogram *getSubprogram(DIScope *Scope) {
@ -77,12 +87,17 @@ static DISubprogram *getSubprogram(DIScope *Scope) {
namespace {
// Given an element poitner \p BasePtr to the start of a (sub) matrix, compute
// the start address of column \p Col with type (\p EltType x \p NumRows)
// assuming \p Stride elements between start two consecutive columns.
// \p Stride must be >= \p NumRows.
// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
// the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
// assuming \p Stride elements between start two consecutive vectors.
// \p Stride must be >= \p NumElements.
// For column-major matrixes, the function computes the address of a column
// vectors and \p NumElements must be set to the number of elements in a column
// (= number of rows of the matrix). For row-major matrixes, the function
// computes the address of a row vector and \p NumElements must be set to the
// number of elements in a column (= number of columns of the matrix).
//
// Consider a 4x4 matrix like below
// Consider a 4x4 matrix in column-mjaor layout like below
//
// 0 1 2 3
// 0 v_0_0 v_0_1 v_0_2 v_0_3
@ -92,14 +107,14 @@ namespace {
// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
// we need a pointer to the first element of the submatrix as base pointer.
// Then we can use computeColumnAddr to compute the addresses for the columns
// Then we can use computeVectorAddr to compute the addresses for the columns
// of the sub-matrix.
//
// Column 0: computeColumnAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
// -> just returns Base
// Column 1: computeColumnAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
// -> returns Base + (1 * 4)
// Column 2: computeColumnAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
// -> returns Base + (2 * 4)
//
// The graphic below illustrates the number of elements in a column (marked
@ -112,30 +127,30 @@ namespace {
// v_2_0 |v_2_1 |v_2_2 |v_2_3
// v_3_0 {v_3_1 {v_3_2 v_3_3
//
Value *computeColumnAddr(Value *BasePtr, Value *Col, Value *Stride,
unsigned NumRows, Type *EltType,
Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
unsigned NumElements, Type *EltType,
IRBuilder<> &Builder) {
assert((!isa<ConstantInt>(Stride) ||
cast<ConstantInt>(Stride)->getZExtValue() >= NumRows) &&
"Stride must be >= the number of rows.");
cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
"Stride must be >= the number of elements in the result vector.");
unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
// Compute the start of the column with index Col as Col * Stride.
Value *ColumnStart = Builder.CreateMul(Col, Stride, "col.start");
// Compute the start of the vector with index VecIdx as VecIdx * Stride.
Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
// Get pointer to the start of the selected column. Skip GEP creation,
// if we select column 0.
if (isa<ConstantInt>(ColumnStart) && cast<ConstantInt>(ColumnStart)->isZero())
ColumnStart = BasePtr;
// Get pointer to the start of the selected vector. Skip GEP creation,
// if we select vector 0.
if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
VecStart = BasePtr;
else
ColumnStart = Builder.CreateGEP(EltType, BasePtr, ColumnStart, "col.gep");
VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
// Cast elementwise column start pointer to a pointer to a column
// (EltType x NumRows)*.
Type *ColumnType = VectorType::get(EltType, NumRows);
Type *ColumnPtrType = PointerType::get(ColumnType, AS);
return Builder.CreatePointerCast(ColumnStart, ColumnPtrType, "col.cast");
// Cast elementwise vector start pointer to a pointer to a vector
// (EltType x NumElements)*.
Type *VecType = VectorType::get(EltType, NumElements);
Type *VecPtrType = PointerType::get(VecType, AS);
return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
}
/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
@ -143,7 +158,8 @@ Value *computeColumnAddr(Value *BasePtr, Value *Col, Value *Stride,
/// Currently, the lowering for each matrix intrinsic is done as follows:
/// 1. Propagate the shape information from intrinsics to connected
/// instructions.
/// 2. Lower instructions with shape information.
/// 2. Lower instructions with shape information (assuming column-major layout).
/// The lowering works similarly using row-major layout.
/// 2.1. Get column vectors for each argument. If we already lowered the
/// definition of an argument, use the produced column vectors directly.
/// If not, split the operand vector containing an embedded matrix into
@ -196,20 +212,41 @@ class LowerMatrixIntrinsics {
bool IsColumnMajor = true;
public:
MatrixTy() : Vectors() {}
MatrixTy()
: Vectors(),
IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(ArrayRef<Value *> Vectors)
: Vectors(Vectors.begin(), Vectors.end()) {}
: Vectors(Vectors.begin(), Vectors.end()),
IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
: IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
unsigned D = isColumnMajor() ? NumColumns : NumRows;
for (unsigned J = 0; J < D; ++J)
addVector(UndefValue::get(
VectorType::get(EltTy, isColumnMajor() ? NumRows : NumColumns)));
}
Value *getVector(unsigned i) const { return Vectors[i]; }
Value *getColumn(unsigned i) const {
assert(isColumnMajor() && "only supported for column-major matrixes");
return Vectors[i];
}
Value *getRow(unsigned i) const {
assert(!isColumnMajor() && "only supported for row-major matrixes");
return Vectors[i];
}
void setColumn(unsigned i, Value *V) { Vectors[i] = V; }
void setVector(unsigned i, Value *V) { Vectors[i] = V; }
Type *getElementType() { return getVectorTy()->getElementType(); }
unsigned getNumVectors() const {
if (isColumnMajor())
return getNumColumns();
return getNumRows();
}
unsigned getNumColumns() const {
if (isColumnMajor())
return Vectors.size();
@ -226,12 +263,7 @@ class LowerMatrixIntrinsics {
return Vectors.size();
}
const SmallVectorImpl<Value *> &getColumnVectors() const { return Vectors; }
SmallVectorImpl<Value *> &getColumnVectors() { return Vectors; }
void addColumn(Value *V) { Vectors.push_back(V); }
void addVector(Value *V) { Vectors.push_back(V); }
VectorType *getColumnTy() {
assert(isColumnMajor() && "only supported for column-major matrixes");
return getVectorTy();
@ -242,10 +274,16 @@ class LowerMatrixIntrinsics {
}
iterator_range<SmallVector<Value *, 8>::iterator> columns() {
assert(isColumnMajor() &&
"columns() only supported for column-major matrixes");
return make_range(Vectors.begin(), Vectors.end());
}
/// Embed the columns of the matrix into a flat vector by concatenating
iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
return make_range(Vectors.begin(), Vectors.end());
}
/// Embed the vectors of the matrix into a flat vector by concatenating
/// them.
Value *embedInVector(IRBuilder<> &Builder) const {
return Vectors.size() == 1 ? Vectors[0]
@ -276,18 +314,39 @@ class LowerMatrixIntrinsics {
const OpInfoTy &getOpInfo() const { return OpInfo; }
bool isColumnMajor() const { return IsColumnMajor; }
unsigned getStride() const {
if (isColumnMajor())
return getNumRows();
return getNumColumns();
}
/// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
/// matrix is column-major, the result vector is extracted from a column
/// vector, otherwise from a row vector.
Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
IRBuilder<> &Builder) const {
Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
Value *Undef = UndefValue::get(Vec->getType());
Constant *Mask =
createSequentialMask(Builder, isColumnMajor() ? I : J, NumElts, 0);
return Builder.CreateShuffleVector(Vec, Undef, Mask, "block");
}
};
struct ShapeInfo {
unsigned NumRows;
unsigned NumColumns;
bool IsColumnMajor;
ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
: NumRows(NumRows), NumColumns(NumColumns) {}
: NumRows(NumRows), NumColumns(NumColumns),
IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
ShapeInfo(Value *NumRows, Value *NumColumns)
: NumRows(cast<ConstantInt>(NumRows)->getZExtValue()),
NumColumns(cast<ConstantInt>(NumColumns)->getZExtValue()) {}
: ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
cast<ConstantInt>(NumColumns)->getZExtValue()) {}
bool operator==(const ShapeInfo &other) {
return NumRows == other.NumRows && NumColumns == other.NumColumns;
@ -300,6 +359,18 @@ class LowerMatrixIntrinsics {
assert(NumRows == 0 || NumColumns != 0);
return NumRows != 0;
}
unsigned getStride() const {
if (IsColumnMajor)
return NumRows;
return NumColumns;
}
unsigned getNumVectors() const {
if (IsColumnMajor)
return NumColumns;
return NumRows;
}
};
/// Maps instructions to their shape information. The shape information
@ -339,11 +410,11 @@ public:
double(TTI.getRegisterBitWidth(true)));
}
/// Return the set of column vectors that a matrix value is lowered to.
/// Return the set of vectors that a matrix value is lowered to.
///
/// If we lowered \p MatrixVal, just return the cache result column matrix.
/// Otherwie split the flat vector \p MatrixVal containing a matrix with
/// shape \p SI into column vectors.
/// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
/// split the flat vector \p MatrixVal containing a matrix with shape \p SI
/// into vectors.
MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
IRBuilder<> &Builder) {
VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
@ -352,7 +423,7 @@ public:
"The vector size must match the number of matrix elements");
// Check if we lowered MatrixVal using shape information. In that case,
// return the existing column matrix, if it matches the requested shape
// return the existing matrix, if it matches the requested shape
// information. If there is a mis-match, embed the result in a flat
// vector and split it later.
auto Found = Inst2ColumnMatrix.find(MatrixVal);
@ -370,8 +441,9 @@ public:
SmallVector<Value *, 16> SplitVecs;
Value *Undef = UndefValue::get(VType);
for (unsigned MaskStart = 0; MaskStart < VType->getNumElements();
MaskStart += SI.NumRows) {
Constant *Mask = createSequentialMask(Builder, MaskStart, SI.NumRows, 0);
MaskStart += SI.getStride()) {
Constant *Mask =
createSequentialMask(Builder, MaskStart, SI.getStride(), 0);
Value *V = Builder.CreateShuffleVector(MatrixVal, Undef, Mask, "split");
SplitVecs.push_back(V);
}
@ -660,19 +732,18 @@ public:
return Changed;
}
LoadInst *createColumnLoad(Value *ColumnPtr, Type *EltType,
LoadInst *createVectorLoad(Value *ColumnPtr, Type *EltType,
IRBuilder<> &Builder) {
return Builder.CreateAlignedLoad(
ColumnPtr, Align(DL.getABITypeAlignment(EltType)), "col.load");
}
StoreInst *createColumnStore(Value *ColumnValue, Value *ColumnPtr,
StoreInst *createVectorStore(Value *ColumnValue, Value *ColumnPtr,
Type *EltType, IRBuilder<> &Builder) {
return Builder.CreateAlignedStore(ColumnValue, ColumnPtr,
DL.getABITypeAlign(EltType));
}
/// Turns \p BasePtr into an elementwise pointer to \p EltType.
Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
@ -705,22 +776,21 @@ public:
}
/// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
/// columns.
/// vectors.
MatrixTy loadMatrix(Type *Ty, Value *Ptr, Value *Stride, ShapeInfo Shape,
IRBuilder<> &Builder) {
auto VType = cast<VectorType>(Ty);
Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
MatrixTy Result;
// Distance between start of one column and the start of the next
for (unsigned C = 0, E = Shape.NumColumns; C < E; ++C) {
Value *GEP =
computeColumnAddr(EltPtr, Builder.getInt32(C), Stride, Shape.NumRows,
VType->getElementType(), Builder);
Value *Column = createColumnLoad(GEP, VType->getElementType(), Builder);
Result.addColumn(Column);
for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
Value *GEP = computeVectorAddr(EltPtr, Builder.getInt32(I), Stride,
Shape.getStride(), VType->getElementType(),
Builder);
Value *Vector = createVectorLoad(GEP, VType->getElementType(), Builder);
Result.addVector(Vector);
}
return Result.addNumLoads(getNumOps(Result.getColumnTy()) *
Result.getNumColumns());
return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
Result.getNumVectors());
}
/// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
@ -731,7 +801,7 @@ public:
Value *Offset = Builder.CreateAdd(
Builder.CreateMul(Builder.getInt32(J),
Builder.getInt32(MatrixShape.NumRows)),
Builder.getInt32(MatrixShape.getStride())),
Builder.getInt32(I));
unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
@ -744,8 +814,9 @@ public:
Value *TilePtr =
Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
return loadMatrix(TileTy, TilePtr, Builder.getInt32(MatrixShape.NumRows),
ResultShape, Builder);
return loadMatrix(TileTy, TilePtr,
Builder.getInt32(MatrixShape.getStride()), ResultShape,
Builder);
}
/// Lower a load instruction with shape information.
@ -761,6 +832,8 @@ public:
///
/// The intrinsic loads a matrix from memory using a stride between columns.
void LowerColumnwiseLoad(CallInst *Inst) {
assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
"Intrinsic only supports column-major layout!");
Value *Ptr = Inst->getArgOperand(0);
Value *Stride = Inst->getArgOperand(1);
LowerLoad(Inst, Ptr, Stride,
@ -774,7 +847,7 @@ public:
IRBuilder<> &Builder) {
Value *Offset = Builder.CreateAdd(
Builder.CreateMul(Builder.getInt32(J),
Builder.getInt32(MatrixShape.NumRows)),
Builder.getInt32(MatrixShape.getStride())),
Builder.getInt32(I));
unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
@ -788,23 +861,23 @@ public:
Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
storeMatrix(TileTy, StoreVal, TilePtr,
Builder.getInt32(MatrixShape.NumRows), Builder);
Builder.getInt32(MatrixShape.getStride()), Builder);
}
/// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
/// columns.
/// vectors.
MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, Value *Stride,
IRBuilder<> &Builder) {
auto VType = cast<VectorType>(Ty);
Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
for (auto C : enumerate(StoreVal.columns())) {
Value *GEP = computeColumnAddr(EltPtr, Builder.getInt32(C.index()),
Stride, StoreVal.getNumRows(),
for (auto Vec : enumerate(StoreVal.vectors())) {
Value *GEP = computeVectorAddr(EltPtr, Builder.getInt32(Vec.index()),
Stride, StoreVal.getStride(),
VType->getElementType(), Builder);
createColumnStore(C.value(), GEP, VType->getElementType(), Builder);
createVectorStore(Vec.value(), GEP, VType->getElementType(), Builder);
}
return MatrixTy().addNumStores(getNumOps(StoreVal.getColumnTy()) *
StoreVal.getNumColumns());
return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
StoreVal.getNumVectors());
}
/// Lower a store instruction with shape information.
@ -821,6 +894,8 @@ public:
///
/// The intrinsic store a matrix back memory using a stride between columns.
void LowerColumnwiseStore(CallInst *Inst) {
assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
"Intrinsic only supports column-major layout!");
Value *Matrix = Inst->getArgOperand(0);
Value *Ptr = Inst->getArgOperand(1);
Value *Stride = Inst->getArgOperand(2);
@ -828,16 +903,6 @@ public:
{Inst->getArgOperand(3), Inst->getArgOperand(4)});
}
/// Extract a column vector of \p NumElts starting at index (\p I, \p J) from
/// the matrix \p LM represented as a vector of column vectors.
Value *extractVector(const MatrixTy &LM, unsigned I, unsigned J,
unsigned NumElts, IRBuilder<> &Builder) {
Value *Col = LM.getColumn(J);
Value *Undef = UndefValue::get(Col->getType());
Constant *Mask = createSequentialMask(Builder, I, NumElts, 0);
return Builder.CreateShuffleVector(Col, Undef, Mask, "block");
}
// Set elements I..I+NumElts-1 to Block
Value *insertVector(Value *Col, unsigned I, Value *Block,
IRBuilder<> &Builder) {
@ -931,33 +996,65 @@ public:
unsigned C = Result.getNumColumns();
unsigned M = A.getNumColumns();
for (unsigned J = 0; J < C; ++J) {
unsigned BlockSize = VF;
bool IsFP = Result.getElementType()->isFloatingPointTy();
assert(A.isColumnMajor() == B.isColumnMajor() &&
Result.isColumnMajor() == A.isColumnMajor() &&
"operands must agree on matrix layout");
unsigned NumComputeOps = 0;
if (A.isColumnMajor()) {
// Multiply columns from the first operand with scalars from the second
// operand. Then move along the K axes and accumulate the columns. With
// this the adds can be vectorized without reassociation.
for (unsigned J = 0; J < C; ++J) {
unsigned BlockSize = VF;
// If Result is zero, we don't need to accumulate in the K==0 iteration.
bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
// If Result is zero, we don't need to accumulate in the K==0 iteration.
bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
for (unsigned I = 0; I < R; I += BlockSize) {
// Gradually lower the vectorization factor to cover the remainder.
while (I + BlockSize > R)
BlockSize /= 2;
unsigned NumOps = 0;
for (unsigned I = 0; I < R; I += BlockSize) {
// Gradually lower the vectorization factor to cover the remainder.
while (I + BlockSize > R)
BlockSize /= 2;
Value *Sum =
isTiled ? extractVector(Result, I, J, BlockSize, Builder) : nullptr;
for (unsigned K = 0; K < M; ++K) {
Value *L = extractVector(A, I, K, BlockSize, Builder);
Value *RH = Builder.CreateExtractElement(B.getColumn(J), K);
Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
Result.getElementType()->isFloatingPointTy(),
Builder, AllowContraction, NumOps);
Value *Sum = isTiled ? Result.extractVector(I, J, BlockSize, Builder)
: nullptr;
for (unsigned K = 0; K < M; ++K) {
Value *L = A.extractVector(I, K, BlockSize, Builder);
Value *RH = Builder.CreateExtractElement(B.getColumn(J), K);
Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
Result.getElementType()->isFloatingPointTy(),
Builder, AllowContraction, NumComputeOps);
}
Result.setVector(J,
insertVector(Result.getVector(J), I, Sum, Builder));
}
Result.setColumn(J, insertVector(Result.getColumn(J), I, Sum, Builder));
}
} else {
// Multiply rows from the second operand with scalars from the first
// operand. Then move along the K axes and accumulate the rows. With this
// the adds can be vectorized without reassociation.
for (unsigned I = 0; I < R; ++I) {
unsigned BlockSize = VF;
bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
for (unsigned J = 0; J < C; J += BlockSize) {
// Gradually lower the vectorization factor to cover the remainder.
while (J + BlockSize > C)
BlockSize /= 2;
Result.addNumComputeOps(NumOps);
Value *Sum = nullptr;
for (unsigned K = 0; K < M; ++K) {
Value *R = B.extractVector(K, J, BlockSize, Builder);
Value *LH = Builder.CreateExtractElement(A.getVector(I), K);
Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
IsFP, Builder, AllowContraction, NumComputeOps);
}
Result.setVector(I,
insertVector(Result.getVector(I), J, Sum, Builder));
}
}
}
Result.addNumComputeOps(NumComputeOps);
}
/// Ensure that the memory in \p Load does not alias \p Store by potentially
@ -1081,13 +1178,15 @@ public:
MatrixTy Res;
Type *ColumType = VectorType::get(EltType, R);
for (unsigned I = 0; I < C; ++I)
Res.addColumn(ConstantAggregateZero::get(ColumType));
Res.addVector(ConstantAggregateZero::get(ColumType));
return Res;
}
void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
StoreInst *Store,
SmallPtrSetImpl<Instruction *> &FusedInsts) {
assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
"Tiling only supported for column-major matrixes at the moment!");
if (!isFusionProfitable(MatMul))
return;
@ -1147,7 +1246,8 @@ public:
/// are completely eliminated by fusion are added to \p FusedInsts.
void LowerMatrixMultiplyFused(CallInst *MatMul,
SmallPtrSetImpl<Instruction *> &FusedInsts) {
if (!FuseMatrix || !MatMul->hasOneUse())
if (!FuseMatrix || !MatMul->hasOneUse() ||
MatrixLayout != MatrixLayoutTy::ColumnMajor)
return;
auto *LoadOp0 = dyn_cast<LoadInst>(MatMul->getOperand(0));
@ -1181,9 +1281,7 @@ public:
assert(LShape.NumColumns == RShape.NumRows);
// Initialize the output
MatrixTy Result;
for (unsigned J = 0; J < C; ++J)
Result.addColumn(UndefValue::get(VectorType::get(EltType, R)));
MatrixTy Result(R, C, EltType);
bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
MatMul->hasAllowContract());
@ -1199,6 +1297,8 @@ public:
VectorType *VectorTy = cast<VectorType>(InputVal->getType());
ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
assert(InputMatrix.isColumnMajor() &&
"Row-major code-gen not supported yet!");
for (unsigned Row = 0; Row < ArgShape.NumRows; ++Row) {
// Build a single column vector for this row. First initialize it.
@ -1214,7 +1314,7 @@ public:
ResultColumn =
Builder.CreateInsertElement(ResultColumn, Elt, C.index());
}
Result.addColumn(ResultColumn);
Result.addVector(ResultColumn);
}
// TODO: Improve estimate of operations needed for transposes. Currently we
@ -1232,7 +1332,7 @@ public:
if (I == ShapeMap.end())
return false;
LowerLoad(Inst, Ptr, Builder.getInt32(I->second.NumRows), I->second);
LowerLoad(Inst, Ptr, Builder.getInt32(I->second.getStride()), I->second);
return true;
}
@ -1242,7 +1342,8 @@ public:
if (I == ShapeMap.end())
return false;
LowerStore(Inst, StoredVal, Ptr, Builder.getInt32(I->second.NumRows), I->second);
LowerStore(Inst, StoredVal, Ptr, Builder.getInt32(I->second.getStride()),
I->second);
return true;
}
@ -1258,12 +1359,15 @@ public:
IRBuilder<> Builder(Inst);
ShapeInfo &Shape = I->second;
MatrixTy LoweredLhs = getMatrix(Lhs, Shape, Builder);
MatrixTy LoweredRhs = getMatrix(Rhs, Shape, Builder);
// Add each column and store the result back into the opmapping
MatrixTy Result;
auto BuildColumnOp = [&Builder, Inst](Value *LHS, Value *RHS) {
MatrixTy A = getMatrix(Lhs, Shape, Builder);
MatrixTy B = getMatrix(Rhs, Shape, Builder);
assert(A.isColumnMajor() == B.isColumnMajor() &&
Result.isColumnMajor() == A.isColumnMajor() &&
"operands must agree on matrix layout");
// Helper to perform binary op on vectors.
auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
switch (Inst->getOpcode()) {
case Instruction::Add:
return Builder.CreateAdd(LHS, RHS);
@ -1281,13 +1385,13 @@ public:
llvm_unreachable("Unsupported binary operator for matrix");
}
};
for (unsigned C = 0; C < Shape.NumColumns; ++C)
Result.addColumn(
BuildColumnOp(LoweredLhs.getColumn(C), LoweredRhs.getColumn(C)));
for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
finalizeLowering(Inst,
Result.addNumComputeOps(getNumOps(Result.getColumnTy()) *
Result.getNumColumns()),
Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
Result.getNumVectors()),
Builder);
return true;
}
@ -1302,9 +1406,9 @@ public:
unsigned LineLength = 0;
const DataLayout &DL;
/// Mapping from instructions to column matrixes. It is used to identify
/// Mapping from instructions to matrixes. It is used to identify
/// matrix instructions.
const MapVector<Value *, MatrixTy> &Inst2ColumnMatrix;
const MapVector<Value *, MatrixTy> &Inst2Matrix;
/// Mapping from values to the leaves of all expressions that the value is
/// part of.
@ -1321,12 +1425,12 @@ public:
SmallPtrSet<Value *, 8> ReusedExprs;
ExprLinearizer(const DataLayout &DL,
const MapVector<Value *, MatrixTy> &Inst2ColumnMatrix,
const MapVector<Value *, MatrixTy> &Inst2Matrix,
const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
const SmallSetVector<Value *, 32> &ExprsInSubprogram,
Value *Leaf)
: Str(), Stream(Str), DL(DL), Inst2ColumnMatrix(Inst2ColumnMatrix),
Shared(Shared), ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
: Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
void indent(unsigned N) {
LineLength += N;
@ -1366,8 +1470,8 @@ public:
/// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
/// \p SS.
void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
auto M = Inst2ColumnMatrix.find(V);
if (M == Inst2ColumnMatrix.end())
auto M = Inst2Matrix.find(V);
if (M == Inst2Matrix.end())
SS << "unknown";
else {
SS << M->second.getNumRows();
@ -1565,18 +1669,18 @@ public:
/// that multiple leaves can share sub-expressions. Shared subexpressions
/// are explicitly marked as shared().
struct RemarkGenerator {
const MapVector<Value *, MatrixTy> &Inst2ColumnMatrix;
const MapVector<Value *, MatrixTy> &Inst2Matrix;
OptimizationRemarkEmitter &ORE;
Function &Func;
const DataLayout &DL;
RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2ColumnMatrix,
RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
OptimizationRemarkEmitter &ORE, Function &Func)
: Inst2ColumnMatrix(Inst2ColumnMatrix), ORE(ORE), Func(Func),
: Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
DL(Func.getParent()->getDataLayout()) {}
/// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
/// instructions in Inst2ColumnMatrix returning void or without any users in
/// instructions in Inst2Matrix returning void or without any users in
/// \p ExprsInSubprogram. Currently that should only include stores.
SmallVector<Value *, 4>
getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
@ -1626,7 +1730,7 @@ public:
OpInfoTy Count;
auto I = Shared.find(Root);
auto CM = Inst2ColumnMatrix.find(Root);
auto CM = Inst2Matrix.find(Root);
if (I->second.size() == 1)
Count = CM->second.getOpInfo();
else
@ -1648,7 +1752,7 @@ public:
// the inlinedAt chain. If the function does not have a DISubprogram, we
// only map them to the containing function.
MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
for (auto &KV : Inst2ColumnMatrix) {
for (auto &KV : Inst2Matrix) {
if (Func.getSubprogram()) {
auto *I = cast<Instruction>(KV.first);
DILocation *Context = I->getDebugLoc();
@ -1720,7 +1824,7 @@ public:
const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
const SmallSetVector<Value *, 32> &ExprsInSubprogram,
const DataLayout &DL) {
ExprLinearizer Lin(DL, Inst2ColumnMatrix, Shared, ExprsInSubprogram, L);
ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
Lin.linearizeExpr(L, 0, false, false);
return Lin.getResult();
}

View File

@ -0,0 +1,152 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --verbose
; RUN: opt -lower-matrix-intrinsics -matrix-default-layout=row-major -S < %s | FileCheck --check-prefix=RM %s
; Check row-major code generation for loads, stores, binary operators (fadd/fsub) and multiply.
; %a.ptr is a pointer to a 2x3 matrix, %b.ptr to a 3x2 matrix and %c.ptr to a 2x2 matrix.
; Load, store and binary operators on %a should operate on 3 element vectors and on 2 element vectors for %b.
define void @multiply_sub_add_2x3_3x2(<6 x double>* %a.ptr, <6 x double>* %b.ptr, <4 x double>* %c.ptr) {
; RM-LABEL: @multiply_sub_add_2x3_3x2(
; RM-NEXT: entry:
; RM-NEXT: [[TMP0:%.*]] = bitcast <6 x double>* [[A_PTR:%.*]] to double*
; RM-NEXT: [[VEC_CAST:%.*]] = bitcast double* [[TMP0]] to <3 x double>*
; RM-NEXT: [[COL_LOAD:%.*]] = load <3 x double>, <3 x double>* [[VEC_CAST]], align 8
; RM-NEXT: [[VEC_GEP:%.*]] = getelementptr double, double* [[TMP0]], i32 3
; RM-NEXT: [[VEC_CAST1:%.*]] = bitcast double* [[VEC_GEP]] to <3 x double>*
; RM-NEXT: [[COL_LOAD2:%.*]] = load <3 x double>, <3 x double>* [[VEC_CAST1]], align 8
; RM-NEXT: [[TMP1:%.*]] = bitcast <6 x double>* [[B_PTR:%.*]] to double*
; RM-NEXT: [[VEC_CAST3:%.*]] = bitcast double* [[TMP1]] to <2 x double>*
; RM-NEXT: [[COL_LOAD4:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST3]], align 8
; RM-NEXT: [[VEC_GEP5:%.*]] = getelementptr double, double* [[TMP1]], i32 2
; RM-NEXT: [[VEC_CAST6:%.*]] = bitcast double* [[VEC_GEP5]] to <2 x double>*
; RM-NEXT: [[COL_LOAD7:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST6]], align 8
; RM-NEXT: [[VEC_GEP8:%.*]] = getelementptr double, double* [[TMP1]], i32 4
; RM-NEXT: [[VEC_CAST9:%.*]] = bitcast double* [[VEC_GEP8]] to <2 x double>*
; RM-NEXT: [[COL_LOAD10:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST9]], align 8
; RM-NEXT: [[TMP2:%.*]] = fadd <3 x double> [[COL_LOAD]], [[COL_LOAD]]
; RM-NEXT: [[TMP3:%.*]] = fadd <3 x double> [[COL_LOAD2]], [[COL_LOAD2]]
; RM-NEXT: [[TMP4:%.*]] = bitcast <6 x double>* [[A_PTR]] to double*
; RM-NEXT: [[VEC_CAST11:%.*]] = bitcast double* [[TMP4]] to <3 x double>*
; RM-NEXT: store <3 x double> [[TMP2]], <3 x double>* [[VEC_CAST11]], align 8
; RM-NEXT: [[VEC_GEP12:%.*]] = getelementptr double, double* [[TMP4]], i32 3
; RM-NEXT: [[VEC_CAST13:%.*]] = bitcast double* [[VEC_GEP12]] to <3 x double>*
; RM-NEXT: store <3 x double> [[TMP3]], <3 x double>* [[VEC_CAST13]], align 8
; RM-NEXT: [[TMP5:%.*]] = fsub <2 x double> [[COL_LOAD4]], <double 1.000000e+00, double 1.000000e+00>
; RM-NEXT: [[TMP6:%.*]] = fsub <2 x double> [[COL_LOAD7]], <double 1.000000e+00, double 1.000000e+00>
; RM-NEXT: [[TMP7:%.*]] = fsub <2 x double> [[COL_LOAD10]], <double 1.000000e+00, double 1.000000e+00>
; RM-NEXT: [[TMP8:%.*]] = bitcast <6 x double>* [[B_PTR]] to double*
; RM-NEXT: [[VEC_CAST14:%.*]] = bitcast double* [[TMP8]] to <2 x double>*
; RM-NEXT: store <2 x double> [[TMP5]], <2 x double>* [[VEC_CAST14]], align 8
; RM-NEXT: [[VEC_GEP15:%.*]] = getelementptr double, double* [[TMP8]], i32 2
; RM-NEXT: [[VEC_CAST16:%.*]] = bitcast double* [[VEC_GEP15]] to <2 x double>*
; RM-NEXT: store <2 x double> [[TMP6]], <2 x double>* [[VEC_CAST16]], align 8
; RM-NEXT: [[VEC_GEP17:%.*]] = getelementptr double, double* [[TMP8]], i32 4
; RM-NEXT: [[VEC_CAST18:%.*]] = bitcast double* [[VEC_GEP17]] to <2 x double>*
; RM-NEXT: store <2 x double> [[TMP7]], <2 x double>* [[VEC_CAST18]], align 8
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x double> [[TMP5]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP9:%.*]] = extractelement <3 x double> [[TMP2]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x double> undef, double [[TMP9]], i32 0
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP10:%.*]] = fmul <1 x double> [[SPLAT_SPLAT]], [[BLOCK]]
; RM-NEXT: [[BLOCK19:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP11:%.*]] = extractelement <3 x double> [[TMP2]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT20:%.*]] = insertelement <1 x double> undef, double [[TMP11]], i32 0
; RM-NEXT: [[SPLAT_SPLAT21:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT20]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP12:%.*]] = fmul <1 x double> [[SPLAT_SPLAT21]], [[BLOCK19]]
; RM-NEXT: [[TMP13:%.*]] = fadd <1 x double> [[TMP10]], [[TMP12]]
; RM-NEXT: [[BLOCK22:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP14:%.*]] = extractelement <3 x double> [[TMP2]], i64 2
; RM-NEXT: [[SPLAT_SPLATINSERT23:%.*]] = insertelement <1 x double> undef, double [[TMP14]], i32 0
; RM-NEXT: [[SPLAT_SPLAT24:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT23]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP15:%.*]] = fmul <1 x double> [[SPLAT_SPLAT24]], [[BLOCK22]]
; RM-NEXT: [[TMP16:%.*]] = fadd <1 x double> [[TMP13]], [[TMP15]]
; RM-NEXT: [[TMP17:%.*]] = shufflevector <1 x double> [[TMP16]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP18:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP17]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK25:%.*]] = shufflevector <2 x double> [[TMP5]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP19:%.*]] = extractelement <3 x double> [[TMP2]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT26:%.*]] = insertelement <1 x double> undef, double [[TMP19]], i32 0
; RM-NEXT: [[SPLAT_SPLAT27:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT26]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP20:%.*]] = fmul <1 x double> [[SPLAT_SPLAT27]], [[BLOCK25]]
; RM-NEXT: [[BLOCK28:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP21:%.*]] = extractelement <3 x double> [[TMP2]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT29:%.*]] = insertelement <1 x double> undef, double [[TMP21]], i32 0
; RM-NEXT: [[SPLAT_SPLAT30:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT29]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP22:%.*]] = fmul <1 x double> [[SPLAT_SPLAT30]], [[BLOCK28]]
; RM-NEXT: [[TMP23:%.*]] = fadd <1 x double> [[TMP20]], [[TMP22]]
; RM-NEXT: [[BLOCK31:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP24:%.*]] = extractelement <3 x double> [[TMP2]], i64 2
; RM-NEXT: [[SPLAT_SPLATINSERT32:%.*]] = insertelement <1 x double> undef, double [[TMP24]], i32 0
; RM-NEXT: [[SPLAT_SPLAT33:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT32]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP25:%.*]] = fmul <1 x double> [[SPLAT_SPLAT33]], [[BLOCK31]]
; RM-NEXT: [[TMP26:%.*]] = fadd <1 x double> [[TMP23]], [[TMP25]]
; RM-NEXT: [[TMP27:%.*]] = shufflevector <1 x double> [[TMP26]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP28:%.*]] = shufflevector <2 x double> [[TMP18]], <2 x double> [[TMP27]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[BLOCK34:%.*]] = shufflevector <2 x double> [[TMP5]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP29:%.*]] = extractelement <3 x double> [[TMP3]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT35:%.*]] = insertelement <1 x double> undef, double [[TMP29]], i32 0
; RM-NEXT: [[SPLAT_SPLAT36:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT35]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP30:%.*]] = fmul <1 x double> [[SPLAT_SPLAT36]], [[BLOCK34]]
; RM-NEXT: [[BLOCK37:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP31:%.*]] = extractelement <3 x double> [[TMP3]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT38:%.*]] = insertelement <1 x double> undef, double [[TMP31]], i32 0
; RM-NEXT: [[SPLAT_SPLAT39:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT38]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP32:%.*]] = fmul <1 x double> [[SPLAT_SPLAT39]], [[BLOCK37]]
; RM-NEXT: [[TMP33:%.*]] = fadd <1 x double> [[TMP30]], [[TMP32]]
; RM-NEXT: [[BLOCK40:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP34:%.*]] = extractelement <3 x double> [[TMP3]], i64 2
; RM-NEXT: [[SPLAT_SPLATINSERT41:%.*]] = insertelement <1 x double> undef, double [[TMP34]], i32 0
; RM-NEXT: [[SPLAT_SPLAT42:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT41]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP35:%.*]] = fmul <1 x double> [[SPLAT_SPLAT42]], [[BLOCK40]]
; RM-NEXT: [[TMP36:%.*]] = fadd <1 x double> [[TMP33]], [[TMP35]]
; RM-NEXT: [[TMP37:%.*]] = shufflevector <1 x double> [[TMP36]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP38:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP37]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK43:%.*]] = shufflevector <2 x double> [[TMP5]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP39:%.*]] = extractelement <3 x double> [[TMP3]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT44:%.*]] = insertelement <1 x double> undef, double [[TMP39]], i32 0
; RM-NEXT: [[SPLAT_SPLAT45:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT44]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP40:%.*]] = fmul <1 x double> [[SPLAT_SPLAT45]], [[BLOCK43]]
; RM-NEXT: [[BLOCK46:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP41:%.*]] = extractelement <3 x double> [[TMP3]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT47:%.*]] = insertelement <1 x double> undef, double [[TMP41]], i32 0
; RM-NEXT: [[SPLAT_SPLAT48:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT47]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP42:%.*]] = fmul <1 x double> [[SPLAT_SPLAT48]], [[BLOCK46]]
; RM-NEXT: [[TMP43:%.*]] = fadd <1 x double> [[TMP40]], [[TMP42]]
; RM-NEXT: [[BLOCK49:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP44:%.*]] = extractelement <3 x double> [[TMP3]], i64 2
; RM-NEXT: [[SPLAT_SPLATINSERT50:%.*]] = insertelement <1 x double> undef, double [[TMP44]], i32 0
; RM-NEXT: [[SPLAT_SPLAT51:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT50]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP45:%.*]] = fmul <1 x double> [[SPLAT_SPLAT51]], [[BLOCK49]]
; RM-NEXT: [[TMP46:%.*]] = fadd <1 x double> [[TMP43]], [[TMP45]]
; RM-NEXT: [[TMP47:%.*]] = shufflevector <1 x double> [[TMP46]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP48:%.*]] = shufflevector <2 x double> [[TMP38]], <2 x double> [[TMP47]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[TMP49:%.*]] = bitcast <4 x double>* [[C_PTR:%.*]] to double*
; RM-NEXT: [[VEC_CAST52:%.*]] = bitcast double* [[TMP49]] to <2 x double>*
; RM-NEXT: [[COL_LOAD53:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST52]], align 8
; RM-NEXT: [[VEC_GEP54:%.*]] = getelementptr double, double* [[TMP49]], i32 2
; RM-NEXT: [[VEC_CAST55:%.*]] = bitcast double* [[VEC_GEP54]] to <2 x double>*
; RM-NEXT: [[COL_LOAD56:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST55]], align 8
; RM-NEXT: [[TMP50:%.*]] = fsub <2 x double> [[COL_LOAD53]], [[TMP28]]
; RM-NEXT: [[TMP51:%.*]] = fsub <2 x double> [[COL_LOAD56]], [[TMP48]]
; RM-NEXT: [[TMP52:%.*]] = bitcast <4 x double>* [[C_PTR]] to double*
; RM-NEXT: [[VEC_CAST57:%.*]] = bitcast double* [[TMP52]] to <2 x double>*
; RM-NEXT: store <2 x double> [[TMP50]], <2 x double>* [[VEC_CAST57]], align 8
; RM-NEXT: [[VEC_GEP58:%.*]] = getelementptr double, double* [[TMP52]], i32 2
; RM-NEXT: [[VEC_CAST59:%.*]] = bitcast double* [[VEC_GEP58]] to <2 x double>*
; RM-NEXT: store <2 x double> [[TMP51]], <2 x double>* [[VEC_CAST59]], align 8
; RM-NEXT: ret void
;
entry:
%a = load <6 x double>, <6 x double>* %a.ptr
%b = load <6 x double>, <6 x double>* %b.ptr
%add = fadd <6 x double> %a, %a
store <6 x double> %add, <6 x double>* %a.ptr
%sub = fsub <6 x double> %b, <double 1.0, double 1.0, double 1.0, double 1.0, double 1.0, double 1.0>
store <6 x double> %sub, <6 x double>* %b.ptr
%mul = call <4 x double> @llvm.matrix.multiply.v4f64.v6f64.v6f64(<6 x double> %add, <6 x double> %sub, i32 2, i32 3, i32 2)
%c = load <4 x double>, <4 x double>* %c.ptr
%res = fsub <4 x double> %c, %mul
store <4 x double> %res, <4 x double>* %c.ptr
ret void
}
declare <4 x double> @llvm.matrix.multiply.v4f64.v6f64.v6f64(<6 x double>, <6 x double>, i32, i32, i32)

View File

@ -0,0 +1,256 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --verbose
; RUN: opt -lower-matrix-intrinsics -matrix-default-layout=row-major -S < %s | FileCheck --check-prefix=RM %s
define <4 x double> @multiply_2x2(<4 x double> %a, <4 x double> %b) {
; RM-LABEL: @multiply_2x2(
; RM-NEXT: entry:
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <4 x double> [[A:%.*]], <4 x double> undef, <2 x i32> <i32 0, i32 1>
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <4 x double> [[A]], <4 x double> undef, <2 x i32> <i32 2, i32 3>
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <4 x double> [[B:%.*]], <4 x double> undef, <2 x i32> <i32 0, i32 1>
; RM-NEXT: [[SPLIT3:%.*]] = shufflevector <4 x double> [[B]], <4 x double> undef, <2 x i32> <i32 2, i32 3>
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP0:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x double> undef, double [[TMP0]], i32 0
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP1:%.*]] = fmul <1 x double> [[SPLAT_SPLAT]], [[BLOCK]]
; RM-NEXT: [[BLOCK4:%.*]] = shufflevector <2 x double> [[SPLIT3]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP2:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT5:%.*]] = insertelement <1 x double> undef, double [[TMP2]], i32 0
; RM-NEXT: [[SPLAT_SPLAT6:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT5]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP3:%.*]] = fmul <1 x double> [[SPLAT_SPLAT6]], [[BLOCK4]]
; RM-NEXT: [[TMP4:%.*]] = fadd <1 x double> [[TMP1]], [[TMP3]]
; RM-NEXT: [[TMP5:%.*]] = shufflevector <1 x double> [[TMP4]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP6:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP5]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK7:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP7:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT8:%.*]] = insertelement <1 x double> undef, double [[TMP7]], i32 0
; RM-NEXT: [[SPLAT_SPLAT9:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT8]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP8:%.*]] = fmul <1 x double> [[SPLAT_SPLAT9]], [[BLOCK7]]
; RM-NEXT: [[BLOCK10:%.*]] = shufflevector <2 x double> [[SPLIT3]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP9:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT11:%.*]] = insertelement <1 x double> undef, double [[TMP9]], i32 0
; RM-NEXT: [[SPLAT_SPLAT12:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT11]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP10:%.*]] = fmul <1 x double> [[SPLAT_SPLAT12]], [[BLOCK10]]
; RM-NEXT: [[TMP11:%.*]] = fadd <1 x double> [[TMP8]], [[TMP10]]
; RM-NEXT: [[TMP12:%.*]] = shufflevector <1 x double> [[TMP11]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP13:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> [[TMP12]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[BLOCK13:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP14:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT14:%.*]] = insertelement <1 x double> undef, double [[TMP14]], i32 0
; RM-NEXT: [[SPLAT_SPLAT15:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT14]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP15:%.*]] = fmul <1 x double> [[SPLAT_SPLAT15]], [[BLOCK13]]
; RM-NEXT: [[BLOCK16:%.*]] = shufflevector <2 x double> [[SPLIT3]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP16:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT17:%.*]] = insertelement <1 x double> undef, double [[TMP16]], i32 0
; RM-NEXT: [[SPLAT_SPLAT18:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT17]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP17:%.*]] = fmul <1 x double> [[SPLAT_SPLAT18]], [[BLOCK16]]
; RM-NEXT: [[TMP18:%.*]] = fadd <1 x double> [[TMP15]], [[TMP17]]
; RM-NEXT: [[TMP19:%.*]] = shufflevector <1 x double> [[TMP18]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP20:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP19]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK19:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP21:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT20:%.*]] = insertelement <1 x double> undef, double [[TMP21]], i32 0
; RM-NEXT: [[SPLAT_SPLAT21:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT20]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP22:%.*]] = fmul <1 x double> [[SPLAT_SPLAT21]], [[BLOCK19]]
; RM-NEXT: [[BLOCK22:%.*]] = shufflevector <2 x double> [[SPLIT3]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP23:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT23:%.*]] = insertelement <1 x double> undef, double [[TMP23]], i32 0
; RM-NEXT: [[SPLAT_SPLAT24:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT23]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP24:%.*]] = fmul <1 x double> [[SPLAT_SPLAT24]], [[BLOCK22]]
; RM-NEXT: [[TMP25:%.*]] = fadd <1 x double> [[TMP22]], [[TMP24]]
; RM-NEXT: [[TMP26:%.*]] = shufflevector <1 x double> [[TMP25]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP27:%.*]] = shufflevector <2 x double> [[TMP20]], <2 x double> [[TMP26]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[TMP28:%.*]] = shufflevector <2 x double> [[TMP13]], <2 x double> [[TMP27]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
; RM-NEXT: ret <4 x double> [[TMP28]]
;
entry:
%c = call <4 x double> @llvm.matrix.multiply.v4f64.v4f64.v4f64(<4 x double> %a, <4 x double> %b, i32 2, i32 2, i32 2)
ret <4 x double> %c
}
declare <4 x double> @llvm.matrix.multiply.v4f64.v4f64.v4f64(<4 x double>, <4 x double>, i32, i32, i32)
define <4 x double> @multiply_1x2(<2 x double> %a, <2 x double> %b) {
; RM-LABEL: @multiply_1x2(
; RM-NEXT: entry:
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <2 x double> [[A:%.*]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <2 x double> [[A]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <2 x double> [[B:%.*]], <2 x double> undef, <2 x i32> <i32 0, i32 1>
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP0:%.*]] = extractelement <1 x double> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x double> undef, double [[TMP0]], i32 0
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP1:%.*]] = fmul <1 x double> [[SPLAT_SPLAT]], [[BLOCK]]
; RM-NEXT: [[TMP2:%.*]] = shufflevector <1 x double> [[TMP1]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP3:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP2]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK3:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP4:%.*]] = extractelement <1 x double> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT4:%.*]] = insertelement <1 x double> undef, double [[TMP4]], i32 0
; RM-NEXT: [[SPLAT_SPLAT5:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT4]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP5:%.*]] = fmul <1 x double> [[SPLAT_SPLAT5]], [[BLOCK3]]
; RM-NEXT: [[TMP6:%.*]] = shufflevector <1 x double> [[TMP5]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP7:%.*]] = shufflevector <2 x double> [[TMP3]], <2 x double> [[TMP6]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[BLOCK6:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP8:%.*]] = extractelement <1 x double> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT7:%.*]] = insertelement <1 x double> undef, double [[TMP8]], i32 0
; RM-NEXT: [[SPLAT_SPLAT8:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT7]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP9:%.*]] = fmul <1 x double> [[SPLAT_SPLAT8]], [[BLOCK6]]
; RM-NEXT: [[TMP10:%.*]] = shufflevector <1 x double> [[TMP9]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP11:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP10]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK9:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP12:%.*]] = extractelement <1 x double> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT10:%.*]] = insertelement <1 x double> undef, double [[TMP12]], i32 0
; RM-NEXT: [[SPLAT_SPLAT11:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT10]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP13:%.*]] = fmul <1 x double> [[SPLAT_SPLAT11]], [[BLOCK9]]
; RM-NEXT: [[TMP14:%.*]] = shufflevector <1 x double> [[TMP13]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP15:%.*]] = shufflevector <2 x double> [[TMP11]], <2 x double> [[TMP14]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[TMP16:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> [[TMP15]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
; RM-NEXT: ret <4 x double> [[TMP16]]
;
entry:
%c = call <4 x double> @llvm.matrix.multiply.v4f64.v2f64.v2f64(<2 x double> %a, <2 x double> %b, i32 2, i32 1, i32 2)
ret <4 x double> %c
}
declare <4 x double> @llvm.matrix.multiply.v4f64.v2f64.v2f64(<2 x double>, <2 x double>, i32, i32, i32)
define <9 x double> @multiply_2x3(<6 x double> %a, <6 x double> %b) {
; RM-LABEL: @multiply_2x3(
; RM-NEXT: entry:
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <6 x double> [[A:%.*]], <6 x double> undef, <2 x i32> <i32 0, i32 1>
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <6 x double> [[A]], <6 x double> undef, <2 x i32> <i32 2, i32 3>
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <6 x double> [[A]], <6 x double> undef, <2 x i32> <i32 4, i32 5>
; RM-NEXT: [[SPLIT3:%.*]] = shufflevector <6 x double> [[B:%.*]], <6 x double> undef, <3 x i32> <i32 0, i32 1, i32 2>
; RM-NEXT: [[SPLIT4:%.*]] = shufflevector <6 x double> [[B]], <6 x double> undef, <3 x i32> <i32 3, i32 4, i32 5>
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP0:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x double> undef, double [[TMP0]], i32 0
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP1:%.*]] = fmul <1 x double> [[SPLAT_SPLAT]], [[BLOCK]]
; RM-NEXT: [[BLOCK5:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP2:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT6:%.*]] = insertelement <1 x double> undef, double [[TMP2]], i32 0
; RM-NEXT: [[SPLAT_SPLAT7:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT6]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP3:%.*]] = fmul <1 x double> [[SPLAT_SPLAT7]], [[BLOCK5]]
; RM-NEXT: [[TMP4:%.*]] = fadd <1 x double> [[TMP1]], [[TMP3]]
; RM-NEXT: [[TMP5:%.*]] = shufflevector <1 x double> [[TMP4]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP6:%.*]] = shufflevector <3 x double> undef, <3 x double> [[TMP5]], <3 x i32> <i32 3, i32 1, i32 2>
; RM-NEXT: [[BLOCK8:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP7:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT9:%.*]] = insertelement <1 x double> undef, double [[TMP7]], i32 0
; RM-NEXT: [[SPLAT_SPLAT10:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT9]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP8:%.*]] = fmul <1 x double> [[SPLAT_SPLAT10]], [[BLOCK8]]
; RM-NEXT: [[BLOCK11:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP9:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT12:%.*]] = insertelement <1 x double> undef, double [[TMP9]], i32 0
; RM-NEXT: [[SPLAT_SPLAT13:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT12]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP10:%.*]] = fmul <1 x double> [[SPLAT_SPLAT13]], [[BLOCK11]]
; RM-NEXT: [[TMP11:%.*]] = fadd <1 x double> [[TMP8]], [[TMP10]]
; RM-NEXT: [[TMP12:%.*]] = shufflevector <1 x double> [[TMP11]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP13:%.*]] = shufflevector <3 x double> [[TMP6]], <3 x double> [[TMP12]], <3 x i32> <i32 0, i32 3, i32 2>
; RM-NEXT: [[BLOCK14:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP14:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT15:%.*]] = insertelement <1 x double> undef, double [[TMP14]], i32 0
; RM-NEXT: [[SPLAT_SPLAT16:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT15]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP15:%.*]] = fmul <1 x double> [[SPLAT_SPLAT16]], [[BLOCK14]]
; RM-NEXT: [[BLOCK17:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP16:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT18:%.*]] = insertelement <1 x double> undef, double [[TMP16]], i32 0
; RM-NEXT: [[SPLAT_SPLAT19:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT18]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP17:%.*]] = fmul <1 x double> [[SPLAT_SPLAT19]], [[BLOCK17]]
; RM-NEXT: [[TMP18:%.*]] = fadd <1 x double> [[TMP15]], [[TMP17]]
; RM-NEXT: [[TMP19:%.*]] = shufflevector <1 x double> [[TMP18]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP20:%.*]] = shufflevector <3 x double> [[TMP13]], <3 x double> [[TMP19]], <3 x i32> <i32 0, i32 1, i32 3>
; RM-NEXT: [[BLOCK20:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP21:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT21:%.*]] = insertelement <1 x double> undef, double [[TMP21]], i32 0
; RM-NEXT: [[SPLAT_SPLAT22:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT21]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP22:%.*]] = fmul <1 x double> [[SPLAT_SPLAT22]], [[BLOCK20]]
; RM-NEXT: [[BLOCK23:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP23:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT24:%.*]] = insertelement <1 x double> undef, double [[TMP23]], i32 0
; RM-NEXT: [[SPLAT_SPLAT25:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT24]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP24:%.*]] = fmul <1 x double> [[SPLAT_SPLAT25]], [[BLOCK23]]
; RM-NEXT: [[TMP25:%.*]] = fadd <1 x double> [[TMP22]], [[TMP24]]
; RM-NEXT: [[TMP26:%.*]] = shufflevector <1 x double> [[TMP25]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP27:%.*]] = shufflevector <3 x double> undef, <3 x double> [[TMP26]], <3 x i32> <i32 3, i32 1, i32 2>
; RM-NEXT: [[BLOCK26:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP28:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT27:%.*]] = insertelement <1 x double> undef, double [[TMP28]], i32 0
; RM-NEXT: [[SPLAT_SPLAT28:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT27]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP29:%.*]] = fmul <1 x double> [[SPLAT_SPLAT28]], [[BLOCK26]]
; RM-NEXT: [[BLOCK29:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP30:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT30:%.*]] = insertelement <1 x double> undef, double [[TMP30]], i32 0
; RM-NEXT: [[SPLAT_SPLAT31:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT30]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP31:%.*]] = fmul <1 x double> [[SPLAT_SPLAT31]], [[BLOCK29]]
; RM-NEXT: [[TMP32:%.*]] = fadd <1 x double> [[TMP29]], [[TMP31]]
; RM-NEXT: [[TMP33:%.*]] = shufflevector <1 x double> [[TMP32]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP34:%.*]] = shufflevector <3 x double> [[TMP27]], <3 x double> [[TMP33]], <3 x i32> <i32 0, i32 3, i32 2>
; RM-NEXT: [[BLOCK32:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP35:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT33:%.*]] = insertelement <1 x double> undef, double [[TMP35]], i32 0
; RM-NEXT: [[SPLAT_SPLAT34:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT33]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP36:%.*]] = fmul <1 x double> [[SPLAT_SPLAT34]], [[BLOCK32]]
; RM-NEXT: [[BLOCK35:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP37:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT36:%.*]] = insertelement <1 x double> undef, double [[TMP37]], i32 0
; RM-NEXT: [[SPLAT_SPLAT37:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT36]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP38:%.*]] = fmul <1 x double> [[SPLAT_SPLAT37]], [[BLOCK35]]
; RM-NEXT: [[TMP39:%.*]] = fadd <1 x double> [[TMP36]], [[TMP38]]
; RM-NEXT: [[TMP40:%.*]] = shufflevector <1 x double> [[TMP39]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP41:%.*]] = shufflevector <3 x double> [[TMP34]], <3 x double> [[TMP40]], <3 x i32> <i32 0, i32 1, i32 3>
; RM-NEXT: [[BLOCK38:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP42:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT39:%.*]] = insertelement <1 x double> undef, double [[TMP42]], i32 0
; RM-NEXT: [[SPLAT_SPLAT40:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT39]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP43:%.*]] = fmul <1 x double> [[SPLAT_SPLAT40]], [[BLOCK38]]
; RM-NEXT: [[BLOCK41:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP44:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT42:%.*]] = insertelement <1 x double> undef, double [[TMP44]], i32 0
; RM-NEXT: [[SPLAT_SPLAT43:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT42]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP45:%.*]] = fmul <1 x double> [[SPLAT_SPLAT43]], [[BLOCK41]]
; RM-NEXT: [[TMP46:%.*]] = fadd <1 x double> [[TMP43]], [[TMP45]]
; RM-NEXT: [[TMP47:%.*]] = shufflevector <1 x double> [[TMP46]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP48:%.*]] = shufflevector <3 x double> undef, <3 x double> [[TMP47]], <3 x i32> <i32 3, i32 1, i32 2>
; RM-NEXT: [[BLOCK44:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP49:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT45:%.*]] = insertelement <1 x double> undef, double [[TMP49]], i32 0
; RM-NEXT: [[SPLAT_SPLAT46:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT45]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP50:%.*]] = fmul <1 x double> [[SPLAT_SPLAT46]], [[BLOCK44]]
; RM-NEXT: [[BLOCK47:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP51:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT48:%.*]] = insertelement <1 x double> undef, double [[TMP51]], i32 0
; RM-NEXT: [[SPLAT_SPLAT49:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT48]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP52:%.*]] = fmul <1 x double> [[SPLAT_SPLAT49]], [[BLOCK47]]
; RM-NEXT: [[TMP53:%.*]] = fadd <1 x double> [[TMP50]], [[TMP52]]
; RM-NEXT: [[TMP54:%.*]] = shufflevector <1 x double> [[TMP53]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP55:%.*]] = shufflevector <3 x double> [[TMP48]], <3 x double> [[TMP54]], <3 x i32> <i32 0, i32 3, i32 2>
; RM-NEXT: [[BLOCK50:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP56:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT51:%.*]] = insertelement <1 x double> undef, double [[TMP56]], i32 0
; RM-NEXT: [[SPLAT_SPLAT52:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT51]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP57:%.*]] = fmul <1 x double> [[SPLAT_SPLAT52]], [[BLOCK50]]
; RM-NEXT: [[BLOCK53:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP58:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT54:%.*]] = insertelement <1 x double> undef, double [[TMP58]], i32 0
; RM-NEXT: [[SPLAT_SPLAT55:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT54]], <1 x double> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP59:%.*]] = fmul <1 x double> [[SPLAT_SPLAT55]], [[BLOCK53]]
; RM-NEXT: [[TMP60:%.*]] = fadd <1 x double> [[TMP57]], [[TMP59]]
; RM-NEXT: [[TMP61:%.*]] = shufflevector <1 x double> [[TMP60]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP62:%.*]] = shufflevector <3 x double> [[TMP55]], <3 x double> [[TMP61]], <3 x i32> <i32 0, i32 1, i32 3>
; RM-NEXT: [[TMP63:%.*]] = shufflevector <3 x double> [[TMP20]], <3 x double> [[TMP41]], <6 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5>
; RM-NEXT: [[TMP64:%.*]] = shufflevector <3 x double> [[TMP62]], <3 x double> undef, <6 x i32> <i32 0, i32 1, i32 2, i32 undef, i32 undef, i32 undef>
; RM-NEXT: [[TMP65:%.*]] = shufflevector <6 x double> [[TMP63]], <6 x double> [[TMP64]], <9 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7, i32 8>
; RM-NEXT: ret <9 x double> [[TMP65]]
;
entry:
%c = call <9 x double> @llvm.matrix.multiply.v6f64.v6f64.v6f64(<6 x double> %a, <6 x double> %b, i32 3, i32 2, i32 3)
ret <9 x double> %c
}
declare <9 x double> @llvm.matrix.multiply.v6f64.v6f64.v6f64(<6 x double>, <6 x double>, i32, i32, i32)

View File

@ -164,34 +164,34 @@ define void @test(<6 x double> * %A, <6 x double> * %B, <9 x double>* %C, i1 %co
; CHECK-NEXT: [[LD_B97:%.*]] = ptrtoint <6 x double>* [[A]] to i64
; CHECK-NEXT: [[TMP36:%.*]] = icmp ugt i64 [[ST_E93]], [[LD_B97]]
; CHECK-NEXT: br i1 [[TMP36]], label [[ALIAS_CONT94:%.*]], label [[NO_ALIAS96:%.*]]
; CHECK: alias_cont92:
; CHECK: alias_cont91:
; CHECK-NEXT: [[LD_E98:%.*]] = add nuw nsw i64 [[LD_B97]], 48
; CHECK-NEXT: [[TMP37:%.*]] = icmp ugt i64 [[LD_E98]], [[ST_B92]]
; CHECK-NEXT: br i1 [[TMP37]], label [[COPY95:%.*]], label [[NO_ALIAS96]]
; CHECK: copy93:
; CHECK: copy92:
; CHECK-NEXT: [[TMP38:%.*]] = alloca <6 x double>, align 64
; CHECK-NEXT: [[TMP39:%.*]] = bitcast <6 x double>* [[TMP38]] to i8*
; CHECK-NEXT: [[TMP40:%.*]] = bitcast <6 x double>* [[A]] to i8*
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* nonnull align 64 dereferenceable(48) [[TMP39]], i8* nonnull align 16 dereferenceable(48) [[TMP40]], i64 48, i1 false)
; CHECK-NEXT: br label [[NO_ALIAS96]]
; CHECK: no_alias94:
; CHECK: no_alias93:
; CHECK-NEXT: [[TMP41:%.*]] = phi <6 x double>* [ [[A]], [[END]] ], [ [[A]], [[ALIAS_CONT94]] ], [ [[TMP38]], [[COPY95]] ]
; CHECK-NEXT: [[ST_B99:%.*]] = ptrtoint <9 x double>* [[C]] to i64
; CHECK-NEXT: [[ST_E100:%.*]] = add nuw nsw i64 [[ST_B99]], 72
; CHECK-NEXT: [[LD_B104:%.*]] = ptrtoint <6 x double>* [[B]] to i64
; CHECK-NEXT: [[TMP42:%.*]] = icmp ugt i64 [[ST_E100]], [[LD_B104]]
; CHECK-NEXT: br i1 [[TMP42]], label [[ALIAS_CONT101:%.*]], label [[NO_ALIAS103:%.*]]
; CHECK: alias_cont99:
; CHECK: alias_cont98:
; CHECK-NEXT: [[LD_E105:%.*]] = add nuw nsw i64 [[LD_B104]], 48
; CHECK-NEXT: [[TMP43:%.*]] = icmp ugt i64 [[LD_E105]], [[ST_B99]]
; CHECK-NEXT: br i1 [[TMP43]], label [[COPY102:%.*]], label [[NO_ALIAS103]]
; CHECK: copy100:
; CHECK: copy99:
; CHECK-NEXT: [[TMP44:%.*]] = alloca <6 x double>, align 64
; CHECK-NEXT: [[TMP45:%.*]] = bitcast <6 x double>* [[TMP44]] to i8*
; CHECK-NEXT: [[TMP46:%.*]] = bitcast <6 x double>* [[B]] to i8*
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* nonnull align 64 dereferenceable(48) [[TMP45]], i8* nonnull align 16 dereferenceable(48) [[TMP46]], i64 48, i1 false)
; CHECK-NEXT: br label [[NO_ALIAS103]]
; CHECK: no_alias101:
; CHECK: no_alias100:
; CHECK-NEXT: [[TMP47:%.*]] = phi <6 x double>* [ [[B]], [[NO_ALIAS96]] ], [ [[B]], [[ALIAS_CONT101]] ], [ [[TMP44]], [[COPY102]] ]
; CHECK-NEXT: [[COL_CAST107:%.*]] = bitcast <6 x double>* [[TMP41]] to <2 x double>*
; CHECK-NEXT: [[COL_LOAD108:%.*]] = load <2 x double>, <2 x double>* [[COL_CAST107]], align 8

View File

@ -0,0 +1,256 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --verbose
; RUN: opt -lower-matrix-intrinsics -matrix-default-layout=row-major -S < %s | FileCheck --check-prefix=RM %s
define <4 x i32> @multiply_2x2(<4 x i32> %a, <4 x i32> %b) {
; RM-LABEL: @multiply_2x2(
; RM-NEXT: entry:
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <4 x i32> [[A:%.*]], <4 x i32> undef, <2 x i32> <i32 0, i32 1>
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <4 x i32> [[A]], <4 x i32> undef, <2 x i32> <i32 2, i32 3>
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <4 x i32> [[B:%.*]], <4 x i32> undef, <2 x i32> <i32 0, i32 1>
; RM-NEXT: [[SPLIT3:%.*]] = shufflevector <4 x i32> [[B]], <4 x i32> undef, <2 x i32> <i32 2, i32 3>
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP0:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x i32> undef, i32 [[TMP0]], i32 0
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP1:%.*]] = mul <1 x i32> [[SPLAT_SPLAT]], [[BLOCK]]
; RM-NEXT: [[BLOCK4:%.*]] = shufflevector <2 x i32> [[SPLIT3]], <2 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP2:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT5:%.*]] = insertelement <1 x i32> undef, i32 [[TMP2]], i32 0
; RM-NEXT: [[SPLAT_SPLAT6:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT5]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP3:%.*]] = mul <1 x i32> [[SPLAT_SPLAT6]], [[BLOCK4]]
; RM-NEXT: [[TMP4:%.*]] = add <1 x i32> [[TMP1]], [[TMP3]]
; RM-NEXT: [[TMP5:%.*]] = shufflevector <1 x i32> [[TMP4]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP6:%.*]] = shufflevector <2 x i32> undef, <2 x i32> [[TMP5]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK7:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP7:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT8:%.*]] = insertelement <1 x i32> undef, i32 [[TMP7]], i32 0
; RM-NEXT: [[SPLAT_SPLAT9:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT8]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP8:%.*]] = mul <1 x i32> [[SPLAT_SPLAT9]], [[BLOCK7]]
; RM-NEXT: [[BLOCK10:%.*]] = shufflevector <2 x i32> [[SPLIT3]], <2 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP9:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT11:%.*]] = insertelement <1 x i32> undef, i32 [[TMP9]], i32 0
; RM-NEXT: [[SPLAT_SPLAT12:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT11]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP10:%.*]] = mul <1 x i32> [[SPLAT_SPLAT12]], [[BLOCK10]]
; RM-NEXT: [[TMP11:%.*]] = add <1 x i32> [[TMP8]], [[TMP10]]
; RM-NEXT: [[TMP12:%.*]] = shufflevector <1 x i32> [[TMP11]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP13:%.*]] = shufflevector <2 x i32> [[TMP6]], <2 x i32> [[TMP12]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[BLOCK13:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP14:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT14:%.*]] = insertelement <1 x i32> undef, i32 [[TMP14]], i32 0
; RM-NEXT: [[SPLAT_SPLAT15:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT14]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP15:%.*]] = mul <1 x i32> [[SPLAT_SPLAT15]], [[BLOCK13]]
; RM-NEXT: [[BLOCK16:%.*]] = shufflevector <2 x i32> [[SPLIT3]], <2 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP16:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT17:%.*]] = insertelement <1 x i32> undef, i32 [[TMP16]], i32 0
; RM-NEXT: [[SPLAT_SPLAT18:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT17]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP17:%.*]] = mul <1 x i32> [[SPLAT_SPLAT18]], [[BLOCK16]]
; RM-NEXT: [[TMP18:%.*]] = add <1 x i32> [[TMP15]], [[TMP17]]
; RM-NEXT: [[TMP19:%.*]] = shufflevector <1 x i32> [[TMP18]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP20:%.*]] = shufflevector <2 x i32> undef, <2 x i32> [[TMP19]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK19:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP21:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT20:%.*]] = insertelement <1 x i32> undef, i32 [[TMP21]], i32 0
; RM-NEXT: [[SPLAT_SPLAT21:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT20]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP22:%.*]] = mul <1 x i32> [[SPLAT_SPLAT21]], [[BLOCK19]]
; RM-NEXT: [[BLOCK22:%.*]] = shufflevector <2 x i32> [[SPLIT3]], <2 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP23:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT23:%.*]] = insertelement <1 x i32> undef, i32 [[TMP23]], i32 0
; RM-NEXT: [[SPLAT_SPLAT24:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT23]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP24:%.*]] = mul <1 x i32> [[SPLAT_SPLAT24]], [[BLOCK22]]
; RM-NEXT: [[TMP25:%.*]] = add <1 x i32> [[TMP22]], [[TMP24]]
; RM-NEXT: [[TMP26:%.*]] = shufflevector <1 x i32> [[TMP25]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP27:%.*]] = shufflevector <2 x i32> [[TMP20]], <2 x i32> [[TMP26]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[TMP28:%.*]] = shufflevector <2 x i32> [[TMP13]], <2 x i32> [[TMP27]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
; RM-NEXT: ret <4 x i32> [[TMP28]]
;
entry:
%c = call <4 x i32> @llvm.matrix.multiply.v4f64.v4f64.v4f64(<4 x i32> %a, <4 x i32> %b, i32 2, i32 2, i32 2)
ret <4 x i32> %c
}
declare <4 x i32> @llvm.matrix.multiply.v4f64.v4f64.v4f64(<4 x i32>, <4 x i32>, i32, i32, i32)
define <4 x i32> @multiply_1x2(<2 x i32> %a, <2 x i32> %b) {
; RM-LABEL: @multiply_1x2(
; RM-NEXT: entry:
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <2 x i32> [[A:%.*]], <2 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <2 x i32> [[A]], <2 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <2 x i32> [[B:%.*]], <2 x i32> undef, <2 x i32> <i32 0, i32 1>
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP0:%.*]] = extractelement <1 x i32> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x i32> undef, i32 [[TMP0]], i32 0
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP1:%.*]] = mul <1 x i32> [[SPLAT_SPLAT]], [[BLOCK]]
; RM-NEXT: [[TMP2:%.*]] = shufflevector <1 x i32> [[TMP1]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP3:%.*]] = shufflevector <2 x i32> undef, <2 x i32> [[TMP2]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK3:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP4:%.*]] = extractelement <1 x i32> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT4:%.*]] = insertelement <1 x i32> undef, i32 [[TMP4]], i32 0
; RM-NEXT: [[SPLAT_SPLAT5:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT4]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP5:%.*]] = mul <1 x i32> [[SPLAT_SPLAT5]], [[BLOCK3]]
; RM-NEXT: [[TMP6:%.*]] = shufflevector <1 x i32> [[TMP5]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP7:%.*]] = shufflevector <2 x i32> [[TMP3]], <2 x i32> [[TMP6]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[BLOCK6:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP8:%.*]] = extractelement <1 x i32> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT7:%.*]] = insertelement <1 x i32> undef, i32 [[TMP8]], i32 0
; RM-NEXT: [[SPLAT_SPLAT8:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT7]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP9:%.*]] = mul <1 x i32> [[SPLAT_SPLAT8]], [[BLOCK6]]
; RM-NEXT: [[TMP10:%.*]] = shufflevector <1 x i32> [[TMP9]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP11:%.*]] = shufflevector <2 x i32> undef, <2 x i32> [[TMP10]], <2 x i32> <i32 2, i32 1>
; RM-NEXT: [[BLOCK9:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP12:%.*]] = extractelement <1 x i32> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT10:%.*]] = insertelement <1 x i32> undef, i32 [[TMP12]], i32 0
; RM-NEXT: [[SPLAT_SPLAT11:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT10]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP13:%.*]] = mul <1 x i32> [[SPLAT_SPLAT11]], [[BLOCK9]]
; RM-NEXT: [[TMP14:%.*]] = shufflevector <1 x i32> [[TMP13]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
; RM-NEXT: [[TMP15:%.*]] = shufflevector <2 x i32> [[TMP11]], <2 x i32> [[TMP14]], <2 x i32> <i32 0, i32 2>
; RM-NEXT: [[TMP16:%.*]] = shufflevector <2 x i32> [[TMP7]], <2 x i32> [[TMP15]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
; RM-NEXT: ret <4 x i32> [[TMP16]]
;
entry:
%c = call <4 x i32> @llvm.matrix.multiply.v4f64.v2f64.v2f64(<2 x i32> %a, <2 x i32> %b, i32 2, i32 1, i32 2)
ret <4 x i32> %c
}
declare <4 x i32> @llvm.matrix.multiply.v4f64.v2f64.v2f64(<2 x i32>, <2 x i32>, i32, i32, i32)
define <9 x i32> @multiply_2x3(<6 x i32> %a, <6 x i32> %b) {
; RM-LABEL: @multiply_2x3(
; RM-NEXT: entry:
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <6 x i32> [[A:%.*]], <6 x i32> undef, <2 x i32> <i32 0, i32 1>
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <6 x i32> [[A]], <6 x i32> undef, <2 x i32> <i32 2, i32 3>
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <6 x i32> [[A]], <6 x i32> undef, <2 x i32> <i32 4, i32 5>
; RM-NEXT: [[SPLIT3:%.*]] = shufflevector <6 x i32> [[B:%.*]], <6 x i32> undef, <3 x i32> <i32 0, i32 1, i32 2>
; RM-NEXT: [[SPLIT4:%.*]] = shufflevector <6 x i32> [[B]], <6 x i32> undef, <3 x i32> <i32 3, i32 4, i32 5>
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP0:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x i32> undef, i32 [[TMP0]], i32 0
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP1:%.*]] = mul <1 x i32> [[SPLAT_SPLAT]], [[BLOCK]]
; RM-NEXT: [[BLOCK5:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP2:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT6:%.*]] = insertelement <1 x i32> undef, i32 [[TMP2]], i32 0
; RM-NEXT: [[SPLAT_SPLAT7:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT6]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP3:%.*]] = mul <1 x i32> [[SPLAT_SPLAT7]], [[BLOCK5]]
; RM-NEXT: [[TMP4:%.*]] = add <1 x i32> [[TMP1]], [[TMP3]]
; RM-NEXT: [[TMP5:%.*]] = shufflevector <1 x i32> [[TMP4]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP6:%.*]] = shufflevector <3 x i32> undef, <3 x i32> [[TMP5]], <3 x i32> <i32 3, i32 1, i32 2>
; RM-NEXT: [[BLOCK8:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP7:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT9:%.*]] = insertelement <1 x i32> undef, i32 [[TMP7]], i32 0
; RM-NEXT: [[SPLAT_SPLAT10:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT9]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP8:%.*]] = mul <1 x i32> [[SPLAT_SPLAT10]], [[BLOCK8]]
; RM-NEXT: [[BLOCK11:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP9:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT12:%.*]] = insertelement <1 x i32> undef, i32 [[TMP9]], i32 0
; RM-NEXT: [[SPLAT_SPLAT13:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT12]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP10:%.*]] = mul <1 x i32> [[SPLAT_SPLAT13]], [[BLOCK11]]
; RM-NEXT: [[TMP11:%.*]] = add <1 x i32> [[TMP8]], [[TMP10]]
; RM-NEXT: [[TMP12:%.*]] = shufflevector <1 x i32> [[TMP11]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP13:%.*]] = shufflevector <3 x i32> [[TMP6]], <3 x i32> [[TMP12]], <3 x i32> <i32 0, i32 3, i32 2>
; RM-NEXT: [[BLOCK14:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP14:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT15:%.*]] = insertelement <1 x i32> undef, i32 [[TMP14]], i32 0
; RM-NEXT: [[SPLAT_SPLAT16:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT15]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP15:%.*]] = mul <1 x i32> [[SPLAT_SPLAT16]], [[BLOCK14]]
; RM-NEXT: [[BLOCK17:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP16:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT18:%.*]] = insertelement <1 x i32> undef, i32 [[TMP16]], i32 0
; RM-NEXT: [[SPLAT_SPLAT19:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT18]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP17:%.*]] = mul <1 x i32> [[SPLAT_SPLAT19]], [[BLOCK17]]
; RM-NEXT: [[TMP18:%.*]] = add <1 x i32> [[TMP15]], [[TMP17]]
; RM-NEXT: [[TMP19:%.*]] = shufflevector <1 x i32> [[TMP18]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP20:%.*]] = shufflevector <3 x i32> [[TMP13]], <3 x i32> [[TMP19]], <3 x i32> <i32 0, i32 1, i32 3>
; RM-NEXT: [[BLOCK20:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP21:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT21:%.*]] = insertelement <1 x i32> undef, i32 [[TMP21]], i32 0
; RM-NEXT: [[SPLAT_SPLAT22:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT21]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP22:%.*]] = mul <1 x i32> [[SPLAT_SPLAT22]], [[BLOCK20]]
; RM-NEXT: [[BLOCK23:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP23:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT24:%.*]] = insertelement <1 x i32> undef, i32 [[TMP23]], i32 0
; RM-NEXT: [[SPLAT_SPLAT25:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT24]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP24:%.*]] = mul <1 x i32> [[SPLAT_SPLAT25]], [[BLOCK23]]
; RM-NEXT: [[TMP25:%.*]] = add <1 x i32> [[TMP22]], [[TMP24]]
; RM-NEXT: [[TMP26:%.*]] = shufflevector <1 x i32> [[TMP25]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP27:%.*]] = shufflevector <3 x i32> undef, <3 x i32> [[TMP26]], <3 x i32> <i32 3, i32 1, i32 2>
; RM-NEXT: [[BLOCK26:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP28:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT27:%.*]] = insertelement <1 x i32> undef, i32 [[TMP28]], i32 0
; RM-NEXT: [[SPLAT_SPLAT28:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT27]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP29:%.*]] = mul <1 x i32> [[SPLAT_SPLAT28]], [[BLOCK26]]
; RM-NEXT: [[BLOCK29:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP30:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT30:%.*]] = insertelement <1 x i32> undef, i32 [[TMP30]], i32 0
; RM-NEXT: [[SPLAT_SPLAT31:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT30]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP31:%.*]] = mul <1 x i32> [[SPLAT_SPLAT31]], [[BLOCK29]]
; RM-NEXT: [[TMP32:%.*]] = add <1 x i32> [[TMP29]], [[TMP31]]
; RM-NEXT: [[TMP33:%.*]] = shufflevector <1 x i32> [[TMP32]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP34:%.*]] = shufflevector <3 x i32> [[TMP27]], <3 x i32> [[TMP33]], <3 x i32> <i32 0, i32 3, i32 2>
; RM-NEXT: [[BLOCK32:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP35:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT33:%.*]] = insertelement <1 x i32> undef, i32 [[TMP35]], i32 0
; RM-NEXT: [[SPLAT_SPLAT34:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT33]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP36:%.*]] = mul <1 x i32> [[SPLAT_SPLAT34]], [[BLOCK32]]
; RM-NEXT: [[BLOCK35:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP37:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT36:%.*]] = insertelement <1 x i32> undef, i32 [[TMP37]], i32 0
; RM-NEXT: [[SPLAT_SPLAT37:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT36]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP38:%.*]] = mul <1 x i32> [[SPLAT_SPLAT37]], [[BLOCK35]]
; RM-NEXT: [[TMP39:%.*]] = add <1 x i32> [[TMP36]], [[TMP38]]
; RM-NEXT: [[TMP40:%.*]] = shufflevector <1 x i32> [[TMP39]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP41:%.*]] = shufflevector <3 x i32> [[TMP34]], <3 x i32> [[TMP40]], <3 x i32> <i32 0, i32 1, i32 3>
; RM-NEXT: [[BLOCK38:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP42:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT39:%.*]] = insertelement <1 x i32> undef, i32 [[TMP42]], i32 0
; RM-NEXT: [[SPLAT_SPLAT40:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT39]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP43:%.*]] = mul <1 x i32> [[SPLAT_SPLAT40]], [[BLOCK38]]
; RM-NEXT: [[BLOCK41:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP44:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT42:%.*]] = insertelement <1 x i32> undef, i32 [[TMP44]], i32 0
; RM-NEXT: [[SPLAT_SPLAT43:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT42]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP45:%.*]] = mul <1 x i32> [[SPLAT_SPLAT43]], [[BLOCK41]]
; RM-NEXT: [[TMP46:%.*]] = add <1 x i32> [[TMP43]], [[TMP45]]
; RM-NEXT: [[TMP47:%.*]] = shufflevector <1 x i32> [[TMP46]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP48:%.*]] = shufflevector <3 x i32> undef, <3 x i32> [[TMP47]], <3 x i32> <i32 3, i32 1, i32 2>
; RM-NEXT: [[BLOCK44:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP49:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT45:%.*]] = insertelement <1 x i32> undef, i32 [[TMP49]], i32 0
; RM-NEXT: [[SPLAT_SPLAT46:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT45]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP50:%.*]] = mul <1 x i32> [[SPLAT_SPLAT46]], [[BLOCK44]]
; RM-NEXT: [[BLOCK47:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 1>
; RM-NEXT: [[TMP51:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT48:%.*]] = insertelement <1 x i32> undef, i32 [[TMP51]], i32 0
; RM-NEXT: [[SPLAT_SPLAT49:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT48]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP52:%.*]] = mul <1 x i32> [[SPLAT_SPLAT49]], [[BLOCK47]]
; RM-NEXT: [[TMP53:%.*]] = add <1 x i32> [[TMP50]], [[TMP52]]
; RM-NEXT: [[TMP54:%.*]] = shufflevector <1 x i32> [[TMP53]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP55:%.*]] = shufflevector <3 x i32> [[TMP48]], <3 x i32> [[TMP54]], <3 x i32> <i32 0, i32 3, i32 2>
; RM-NEXT: [[BLOCK50:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP56:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 0
; RM-NEXT: [[SPLAT_SPLATINSERT51:%.*]] = insertelement <1 x i32> undef, i32 [[TMP56]], i32 0
; RM-NEXT: [[SPLAT_SPLAT52:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT51]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP57:%.*]] = mul <1 x i32> [[SPLAT_SPLAT52]], [[BLOCK50]]
; RM-NEXT: [[BLOCK53:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 2>
; RM-NEXT: [[TMP58:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 1
; RM-NEXT: [[SPLAT_SPLATINSERT54:%.*]] = insertelement <1 x i32> undef, i32 [[TMP58]], i32 0
; RM-NEXT: [[SPLAT_SPLAT55:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT54]], <1 x i32> undef, <1 x i32> zeroinitializer
; RM-NEXT: [[TMP59:%.*]] = mul <1 x i32> [[SPLAT_SPLAT55]], [[BLOCK53]]
; RM-NEXT: [[TMP60:%.*]] = add <1 x i32> [[TMP57]], [[TMP59]]
; RM-NEXT: [[TMP61:%.*]] = shufflevector <1 x i32> [[TMP60]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
; RM-NEXT: [[TMP62:%.*]] = shufflevector <3 x i32> [[TMP55]], <3 x i32> [[TMP61]], <3 x i32> <i32 0, i32 1, i32 3>
; RM-NEXT: [[TMP63:%.*]] = shufflevector <3 x i32> [[TMP20]], <3 x i32> [[TMP41]], <6 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5>
; RM-NEXT: [[TMP64:%.*]] = shufflevector <3 x i32> [[TMP62]], <3 x i32> undef, <6 x i32> <i32 0, i32 1, i32 2, i32 undef, i32 undef, i32 undef>
; RM-NEXT: [[TMP65:%.*]] = shufflevector <6 x i32> [[TMP63]], <6 x i32> [[TMP64]], <9 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7, i32 8>
; RM-NEXT: ret <9 x i32> [[TMP65]]
;
entry:
%c = call <9 x i32> @llvm.matrix.multiply.v6f64.v6f64.v6f64(<6 x i32> %a, <6 x i32> %b, i32 3, i32 2, i32 3)
ret <9 x i32> %c
}
declare <9 x i32> @llvm.matrix.multiply.v6f64.v6f64.v6f64(<6 x i32>, <6 x i32>, i32, i32, i32)