mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 12:43:36 +01:00
[Matrix] Add option to use row-major matrix layout as default.
This patch adds a -matrix-default-layout option which can be used to set the default matrix layout to row-major or column-major (default). The initial patch updates codegen for loads, stores, binary operators and matrix multiply. Reviewers: anemet, Gerolf, andrew.w.kaylor, LuoYuanke Reviewed By: anemet Differential Revision: https://reviews.llvm.org/D76325
This commit is contained in:
parent
8bc8aea47f
commit
82f4f75f07
@ -67,6 +67,16 @@ static cl::opt<bool> AllowContractEnabled(
|
||||
cl::desc("Allow the use of FMAs if available and profitable. This may "
|
||||
"result in different results, due to less rounding error."));
|
||||
|
||||
enum class MatrixLayoutTy { ColumnMajor, RowMajor };
|
||||
|
||||
static cl::opt<MatrixLayoutTy> MatrixLayout(
|
||||
"matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
|
||||
cl::desc("Sets the default matrix layout"),
|
||||
cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
|
||||
"Use column-major layout"),
|
||||
clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
|
||||
"Use row-major layout")));
|
||||
|
||||
/// Helper function to either return Scope, if it is a subprogram or the
|
||||
/// attached subprogram for a local scope.
|
||||
static DISubprogram *getSubprogram(DIScope *Scope) {
|
||||
@ -77,12 +87,17 @@ static DISubprogram *getSubprogram(DIScope *Scope) {
|
||||
|
||||
namespace {
|
||||
|
||||
// Given an element poitner \p BasePtr to the start of a (sub) matrix, compute
|
||||
// the start address of column \p Col with type (\p EltType x \p NumRows)
|
||||
// assuming \p Stride elements between start two consecutive columns.
|
||||
// \p Stride must be >= \p NumRows.
|
||||
// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
|
||||
// the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
|
||||
// assuming \p Stride elements between start two consecutive vectors.
|
||||
// \p Stride must be >= \p NumElements.
|
||||
// For column-major matrixes, the function computes the address of a column
|
||||
// vectors and \p NumElements must be set to the number of elements in a column
|
||||
// (= number of rows of the matrix). For row-major matrixes, the function
|
||||
// computes the address of a row vector and \p NumElements must be set to the
|
||||
// number of elements in a column (= number of columns of the matrix).
|
||||
//
|
||||
// Consider a 4x4 matrix like below
|
||||
// Consider a 4x4 matrix in column-mjaor layout like below
|
||||
//
|
||||
// 0 1 2 3
|
||||
// 0 v_0_0 v_0_1 v_0_2 v_0_3
|
||||
@ -92,14 +107,14 @@ namespace {
|
||||
|
||||
// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
|
||||
// we need a pointer to the first element of the submatrix as base pointer.
|
||||
// Then we can use computeColumnAddr to compute the addresses for the columns
|
||||
// Then we can use computeVectorAddr to compute the addresses for the columns
|
||||
// of the sub-matrix.
|
||||
//
|
||||
// Column 0: computeColumnAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
|
||||
// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
|
||||
// -> just returns Base
|
||||
// Column 1: computeColumnAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
|
||||
// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
|
||||
// -> returns Base + (1 * 4)
|
||||
// Column 2: computeColumnAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
|
||||
// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
|
||||
// -> returns Base + (2 * 4)
|
||||
//
|
||||
// The graphic below illustrates the number of elements in a column (marked
|
||||
@ -112,30 +127,30 @@ namespace {
|
||||
// v_2_0 |v_2_1 |v_2_2 |v_2_3
|
||||
// v_3_0 {v_3_1 {v_3_2 v_3_3
|
||||
//
|
||||
Value *computeColumnAddr(Value *BasePtr, Value *Col, Value *Stride,
|
||||
unsigned NumRows, Type *EltType,
|
||||
Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
|
||||
unsigned NumElements, Type *EltType,
|
||||
IRBuilder<> &Builder) {
|
||||
|
||||
assert((!isa<ConstantInt>(Stride) ||
|
||||
cast<ConstantInt>(Stride)->getZExtValue() >= NumRows) &&
|
||||
"Stride must be >= the number of rows.");
|
||||
cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
|
||||
"Stride must be >= the number of elements in the result vector.");
|
||||
unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
|
||||
|
||||
// Compute the start of the column with index Col as Col * Stride.
|
||||
Value *ColumnStart = Builder.CreateMul(Col, Stride, "col.start");
|
||||
// Compute the start of the vector with index VecIdx as VecIdx * Stride.
|
||||
Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
|
||||
|
||||
// Get pointer to the start of the selected column. Skip GEP creation,
|
||||
// if we select column 0.
|
||||
if (isa<ConstantInt>(ColumnStart) && cast<ConstantInt>(ColumnStart)->isZero())
|
||||
ColumnStart = BasePtr;
|
||||
// Get pointer to the start of the selected vector. Skip GEP creation,
|
||||
// if we select vector 0.
|
||||
if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
|
||||
VecStart = BasePtr;
|
||||
else
|
||||
ColumnStart = Builder.CreateGEP(EltType, BasePtr, ColumnStart, "col.gep");
|
||||
VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
|
||||
|
||||
// Cast elementwise column start pointer to a pointer to a column
|
||||
// (EltType x NumRows)*.
|
||||
Type *ColumnType = VectorType::get(EltType, NumRows);
|
||||
Type *ColumnPtrType = PointerType::get(ColumnType, AS);
|
||||
return Builder.CreatePointerCast(ColumnStart, ColumnPtrType, "col.cast");
|
||||
// Cast elementwise vector start pointer to a pointer to a vector
|
||||
// (EltType x NumElements)*.
|
||||
Type *VecType = VectorType::get(EltType, NumElements);
|
||||
Type *VecPtrType = PointerType::get(VecType, AS);
|
||||
return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
|
||||
}
|
||||
|
||||
/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
|
||||
@ -143,7 +158,8 @@ Value *computeColumnAddr(Value *BasePtr, Value *Col, Value *Stride,
|
||||
/// Currently, the lowering for each matrix intrinsic is done as follows:
|
||||
/// 1. Propagate the shape information from intrinsics to connected
|
||||
/// instructions.
|
||||
/// 2. Lower instructions with shape information.
|
||||
/// 2. Lower instructions with shape information (assuming column-major layout).
|
||||
/// The lowering works similarly using row-major layout.
|
||||
/// 2.1. Get column vectors for each argument. If we already lowered the
|
||||
/// definition of an argument, use the produced column vectors directly.
|
||||
/// If not, split the operand vector containing an embedded matrix into
|
||||
@ -196,20 +212,41 @@ class LowerMatrixIntrinsics {
|
||||
bool IsColumnMajor = true;
|
||||
|
||||
public:
|
||||
MatrixTy() : Vectors() {}
|
||||
MatrixTy()
|
||||
: Vectors(),
|
||||
IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
|
||||
MatrixTy(ArrayRef<Value *> Vectors)
|
||||
: Vectors(Vectors.begin(), Vectors.end()) {}
|
||||
: Vectors(Vectors.begin(), Vectors.end()),
|
||||
IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
|
||||
MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
|
||||
: IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
|
||||
|
||||
unsigned D = isColumnMajor() ? NumColumns : NumRows;
|
||||
for (unsigned J = 0; J < D; ++J)
|
||||
addVector(UndefValue::get(
|
||||
VectorType::get(EltTy, isColumnMajor() ? NumRows : NumColumns)));
|
||||
}
|
||||
|
||||
Value *getVector(unsigned i) const { return Vectors[i]; }
|
||||
Value *getColumn(unsigned i) const {
|
||||
assert(isColumnMajor() && "only supported for column-major matrixes");
|
||||
return Vectors[i];
|
||||
}
|
||||
Value *getRow(unsigned i) const {
|
||||
assert(!isColumnMajor() && "only supported for row-major matrixes");
|
||||
return Vectors[i];
|
||||
}
|
||||
|
||||
void setColumn(unsigned i, Value *V) { Vectors[i] = V; }
|
||||
void setVector(unsigned i, Value *V) { Vectors[i] = V; }
|
||||
|
||||
Type *getElementType() { return getVectorTy()->getElementType(); }
|
||||
|
||||
unsigned getNumVectors() const {
|
||||
if (isColumnMajor())
|
||||
return getNumColumns();
|
||||
return getNumRows();
|
||||
}
|
||||
|
||||
unsigned getNumColumns() const {
|
||||
if (isColumnMajor())
|
||||
return Vectors.size();
|
||||
@ -226,12 +263,7 @@ class LowerMatrixIntrinsics {
|
||||
return Vectors.size();
|
||||
}
|
||||
|
||||
const SmallVectorImpl<Value *> &getColumnVectors() const { return Vectors; }
|
||||
|
||||
SmallVectorImpl<Value *> &getColumnVectors() { return Vectors; }
|
||||
|
||||
void addColumn(Value *V) { Vectors.push_back(V); }
|
||||
|
||||
void addVector(Value *V) { Vectors.push_back(V); }
|
||||
VectorType *getColumnTy() {
|
||||
assert(isColumnMajor() && "only supported for column-major matrixes");
|
||||
return getVectorTy();
|
||||
@ -242,10 +274,16 @@ class LowerMatrixIntrinsics {
|
||||
}
|
||||
|
||||
iterator_range<SmallVector<Value *, 8>::iterator> columns() {
|
||||
assert(isColumnMajor() &&
|
||||
"columns() only supported for column-major matrixes");
|
||||
return make_range(Vectors.begin(), Vectors.end());
|
||||
}
|
||||
|
||||
/// Embed the columns of the matrix into a flat vector by concatenating
|
||||
iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
|
||||
return make_range(Vectors.begin(), Vectors.end());
|
||||
}
|
||||
|
||||
/// Embed the vectors of the matrix into a flat vector by concatenating
|
||||
/// them.
|
||||
Value *embedInVector(IRBuilder<> &Builder) const {
|
||||
return Vectors.size() == 1 ? Vectors[0]
|
||||
@ -276,18 +314,39 @@ class LowerMatrixIntrinsics {
|
||||
const OpInfoTy &getOpInfo() const { return OpInfo; }
|
||||
|
||||
bool isColumnMajor() const { return IsColumnMajor; }
|
||||
|
||||
unsigned getStride() const {
|
||||
if (isColumnMajor())
|
||||
return getNumRows();
|
||||
return getNumColumns();
|
||||
}
|
||||
|
||||
/// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
|
||||
/// matrix is column-major, the result vector is extracted from a column
|
||||
/// vector, otherwise from a row vector.
|
||||
Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
|
||||
IRBuilder<> &Builder) const {
|
||||
Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
|
||||
Value *Undef = UndefValue::get(Vec->getType());
|
||||
Constant *Mask =
|
||||
createSequentialMask(Builder, isColumnMajor() ? I : J, NumElts, 0);
|
||||
return Builder.CreateShuffleVector(Vec, Undef, Mask, "block");
|
||||
}
|
||||
};
|
||||
|
||||
struct ShapeInfo {
|
||||
unsigned NumRows;
|
||||
unsigned NumColumns;
|
||||
|
||||
bool IsColumnMajor;
|
||||
|
||||
ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
|
||||
: NumRows(NumRows), NumColumns(NumColumns) {}
|
||||
: NumRows(NumRows), NumColumns(NumColumns),
|
||||
IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
|
||||
|
||||
ShapeInfo(Value *NumRows, Value *NumColumns)
|
||||
: NumRows(cast<ConstantInt>(NumRows)->getZExtValue()),
|
||||
NumColumns(cast<ConstantInt>(NumColumns)->getZExtValue()) {}
|
||||
: ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
|
||||
cast<ConstantInt>(NumColumns)->getZExtValue()) {}
|
||||
|
||||
bool operator==(const ShapeInfo &other) {
|
||||
return NumRows == other.NumRows && NumColumns == other.NumColumns;
|
||||
@ -300,6 +359,18 @@ class LowerMatrixIntrinsics {
|
||||
assert(NumRows == 0 || NumColumns != 0);
|
||||
return NumRows != 0;
|
||||
}
|
||||
|
||||
unsigned getStride() const {
|
||||
if (IsColumnMajor)
|
||||
return NumRows;
|
||||
return NumColumns;
|
||||
}
|
||||
|
||||
unsigned getNumVectors() const {
|
||||
if (IsColumnMajor)
|
||||
return NumColumns;
|
||||
return NumRows;
|
||||
}
|
||||
};
|
||||
|
||||
/// Maps instructions to their shape information. The shape information
|
||||
@ -339,11 +410,11 @@ public:
|
||||
double(TTI.getRegisterBitWidth(true)));
|
||||
}
|
||||
|
||||
/// Return the set of column vectors that a matrix value is lowered to.
|
||||
/// Return the set of vectors that a matrix value is lowered to.
|
||||
///
|
||||
/// If we lowered \p MatrixVal, just return the cache result column matrix.
|
||||
/// Otherwie split the flat vector \p MatrixVal containing a matrix with
|
||||
/// shape \p SI into column vectors.
|
||||
/// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
|
||||
/// split the flat vector \p MatrixVal containing a matrix with shape \p SI
|
||||
/// into vectors.
|
||||
MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
|
||||
IRBuilder<> &Builder) {
|
||||
VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
|
||||
@ -352,7 +423,7 @@ public:
|
||||
"The vector size must match the number of matrix elements");
|
||||
|
||||
// Check if we lowered MatrixVal using shape information. In that case,
|
||||
// return the existing column matrix, if it matches the requested shape
|
||||
// return the existing matrix, if it matches the requested shape
|
||||
// information. If there is a mis-match, embed the result in a flat
|
||||
// vector and split it later.
|
||||
auto Found = Inst2ColumnMatrix.find(MatrixVal);
|
||||
@ -370,8 +441,9 @@ public:
|
||||
SmallVector<Value *, 16> SplitVecs;
|
||||
Value *Undef = UndefValue::get(VType);
|
||||
for (unsigned MaskStart = 0; MaskStart < VType->getNumElements();
|
||||
MaskStart += SI.NumRows) {
|
||||
Constant *Mask = createSequentialMask(Builder, MaskStart, SI.NumRows, 0);
|
||||
MaskStart += SI.getStride()) {
|
||||
Constant *Mask =
|
||||
createSequentialMask(Builder, MaskStart, SI.getStride(), 0);
|
||||
Value *V = Builder.CreateShuffleVector(MatrixVal, Undef, Mask, "split");
|
||||
SplitVecs.push_back(V);
|
||||
}
|
||||
@ -660,19 +732,18 @@ public:
|
||||
return Changed;
|
||||
}
|
||||
|
||||
LoadInst *createColumnLoad(Value *ColumnPtr, Type *EltType,
|
||||
LoadInst *createVectorLoad(Value *ColumnPtr, Type *EltType,
|
||||
IRBuilder<> &Builder) {
|
||||
return Builder.CreateAlignedLoad(
|
||||
ColumnPtr, Align(DL.getABITypeAlignment(EltType)), "col.load");
|
||||
}
|
||||
|
||||
StoreInst *createColumnStore(Value *ColumnValue, Value *ColumnPtr,
|
||||
StoreInst *createVectorStore(Value *ColumnValue, Value *ColumnPtr,
|
||||
Type *EltType, IRBuilder<> &Builder) {
|
||||
return Builder.CreateAlignedStore(ColumnValue, ColumnPtr,
|
||||
DL.getABITypeAlign(EltType));
|
||||
}
|
||||
|
||||
|
||||
/// Turns \p BasePtr into an elementwise pointer to \p EltType.
|
||||
Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
|
||||
unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
|
||||
@ -705,22 +776,21 @@ public:
|
||||
}
|
||||
|
||||
/// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
|
||||
/// columns.
|
||||
/// vectors.
|
||||
MatrixTy loadMatrix(Type *Ty, Value *Ptr, Value *Stride, ShapeInfo Shape,
|
||||
IRBuilder<> &Builder) {
|
||||
auto VType = cast<VectorType>(Ty);
|
||||
Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
|
||||
MatrixTy Result;
|
||||
// Distance between start of one column and the start of the next
|
||||
for (unsigned C = 0, E = Shape.NumColumns; C < E; ++C) {
|
||||
Value *GEP =
|
||||
computeColumnAddr(EltPtr, Builder.getInt32(C), Stride, Shape.NumRows,
|
||||
VType->getElementType(), Builder);
|
||||
Value *Column = createColumnLoad(GEP, VType->getElementType(), Builder);
|
||||
Result.addColumn(Column);
|
||||
for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
|
||||
Value *GEP = computeVectorAddr(EltPtr, Builder.getInt32(I), Stride,
|
||||
Shape.getStride(), VType->getElementType(),
|
||||
Builder);
|
||||
Value *Vector = createVectorLoad(GEP, VType->getElementType(), Builder);
|
||||
Result.addVector(Vector);
|
||||
}
|
||||
return Result.addNumLoads(getNumOps(Result.getColumnTy()) *
|
||||
Result.getNumColumns());
|
||||
return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
|
||||
Result.getNumVectors());
|
||||
}
|
||||
|
||||
/// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
|
||||
@ -731,7 +801,7 @@ public:
|
||||
|
||||
Value *Offset = Builder.CreateAdd(
|
||||
Builder.CreateMul(Builder.getInt32(J),
|
||||
Builder.getInt32(MatrixShape.NumRows)),
|
||||
Builder.getInt32(MatrixShape.getStride())),
|
||||
Builder.getInt32(I));
|
||||
|
||||
unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
|
||||
@ -744,8 +814,9 @@ public:
|
||||
Value *TilePtr =
|
||||
Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
|
||||
|
||||
return loadMatrix(TileTy, TilePtr, Builder.getInt32(MatrixShape.NumRows),
|
||||
ResultShape, Builder);
|
||||
return loadMatrix(TileTy, TilePtr,
|
||||
Builder.getInt32(MatrixShape.getStride()), ResultShape,
|
||||
Builder);
|
||||
}
|
||||
|
||||
/// Lower a load instruction with shape information.
|
||||
@ -761,6 +832,8 @@ public:
|
||||
///
|
||||
/// The intrinsic loads a matrix from memory using a stride between columns.
|
||||
void LowerColumnwiseLoad(CallInst *Inst) {
|
||||
assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
|
||||
"Intrinsic only supports column-major layout!");
|
||||
Value *Ptr = Inst->getArgOperand(0);
|
||||
Value *Stride = Inst->getArgOperand(1);
|
||||
LowerLoad(Inst, Ptr, Stride,
|
||||
@ -774,7 +847,7 @@ public:
|
||||
IRBuilder<> &Builder) {
|
||||
Value *Offset = Builder.CreateAdd(
|
||||
Builder.CreateMul(Builder.getInt32(J),
|
||||
Builder.getInt32(MatrixShape.NumRows)),
|
||||
Builder.getInt32(MatrixShape.getStride())),
|
||||
Builder.getInt32(I));
|
||||
|
||||
unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
|
||||
@ -788,23 +861,23 @@ public:
|
||||
Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
|
||||
|
||||
storeMatrix(TileTy, StoreVal, TilePtr,
|
||||
Builder.getInt32(MatrixShape.NumRows), Builder);
|
||||
Builder.getInt32(MatrixShape.getStride()), Builder);
|
||||
}
|
||||
|
||||
/// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
|
||||
/// columns.
|
||||
/// vectors.
|
||||
MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, Value *Stride,
|
||||
IRBuilder<> &Builder) {
|
||||
auto VType = cast<VectorType>(Ty);
|
||||
Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
|
||||
for (auto C : enumerate(StoreVal.columns())) {
|
||||
Value *GEP = computeColumnAddr(EltPtr, Builder.getInt32(C.index()),
|
||||
Stride, StoreVal.getNumRows(),
|
||||
for (auto Vec : enumerate(StoreVal.vectors())) {
|
||||
Value *GEP = computeVectorAddr(EltPtr, Builder.getInt32(Vec.index()),
|
||||
Stride, StoreVal.getStride(),
|
||||
VType->getElementType(), Builder);
|
||||
createColumnStore(C.value(), GEP, VType->getElementType(), Builder);
|
||||
createVectorStore(Vec.value(), GEP, VType->getElementType(), Builder);
|
||||
}
|
||||
return MatrixTy().addNumStores(getNumOps(StoreVal.getColumnTy()) *
|
||||
StoreVal.getNumColumns());
|
||||
return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
|
||||
StoreVal.getNumVectors());
|
||||
}
|
||||
|
||||
/// Lower a store instruction with shape information.
|
||||
@ -821,6 +894,8 @@ public:
|
||||
///
|
||||
/// The intrinsic store a matrix back memory using a stride between columns.
|
||||
void LowerColumnwiseStore(CallInst *Inst) {
|
||||
assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
|
||||
"Intrinsic only supports column-major layout!");
|
||||
Value *Matrix = Inst->getArgOperand(0);
|
||||
Value *Ptr = Inst->getArgOperand(1);
|
||||
Value *Stride = Inst->getArgOperand(2);
|
||||
@ -828,16 +903,6 @@ public:
|
||||
{Inst->getArgOperand(3), Inst->getArgOperand(4)});
|
||||
}
|
||||
|
||||
/// Extract a column vector of \p NumElts starting at index (\p I, \p J) from
|
||||
/// the matrix \p LM represented as a vector of column vectors.
|
||||
Value *extractVector(const MatrixTy &LM, unsigned I, unsigned J,
|
||||
unsigned NumElts, IRBuilder<> &Builder) {
|
||||
Value *Col = LM.getColumn(J);
|
||||
Value *Undef = UndefValue::get(Col->getType());
|
||||
Constant *Mask = createSequentialMask(Builder, I, NumElts, 0);
|
||||
return Builder.CreateShuffleVector(Col, Undef, Mask, "block");
|
||||
}
|
||||
|
||||
// Set elements I..I+NumElts-1 to Block
|
||||
Value *insertVector(Value *Col, unsigned I, Value *Block,
|
||||
IRBuilder<> &Builder) {
|
||||
@ -931,33 +996,65 @@ public:
|
||||
unsigned C = Result.getNumColumns();
|
||||
unsigned M = A.getNumColumns();
|
||||
|
||||
for (unsigned J = 0; J < C; ++J) {
|
||||
unsigned BlockSize = VF;
|
||||
bool IsFP = Result.getElementType()->isFloatingPointTy();
|
||||
assert(A.isColumnMajor() == B.isColumnMajor() &&
|
||||
Result.isColumnMajor() == A.isColumnMajor() &&
|
||||
"operands must agree on matrix layout");
|
||||
unsigned NumComputeOps = 0;
|
||||
if (A.isColumnMajor()) {
|
||||
// Multiply columns from the first operand with scalars from the second
|
||||
// operand. Then move along the K axes and accumulate the columns. With
|
||||
// this the adds can be vectorized without reassociation.
|
||||
for (unsigned J = 0; J < C; ++J) {
|
||||
unsigned BlockSize = VF;
|
||||
// If Result is zero, we don't need to accumulate in the K==0 iteration.
|
||||
bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
|
||||
|
||||
// If Result is zero, we don't need to accumulate in the K==0 iteration.
|
||||
bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
|
||||
for (unsigned I = 0; I < R; I += BlockSize) {
|
||||
// Gradually lower the vectorization factor to cover the remainder.
|
||||
while (I + BlockSize > R)
|
||||
BlockSize /= 2;
|
||||
|
||||
unsigned NumOps = 0;
|
||||
for (unsigned I = 0; I < R; I += BlockSize) {
|
||||
// Gradually lower the vectorization factor to cover the remainder.
|
||||
while (I + BlockSize > R)
|
||||
BlockSize /= 2;
|
||||
|
||||
Value *Sum =
|
||||
isTiled ? extractVector(Result, I, J, BlockSize, Builder) : nullptr;
|
||||
for (unsigned K = 0; K < M; ++K) {
|
||||
Value *L = extractVector(A, I, K, BlockSize, Builder);
|
||||
Value *RH = Builder.CreateExtractElement(B.getColumn(J), K);
|
||||
Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
|
||||
Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
|
||||
Result.getElementType()->isFloatingPointTy(),
|
||||
Builder, AllowContraction, NumOps);
|
||||
Value *Sum = isTiled ? Result.extractVector(I, J, BlockSize, Builder)
|
||||
: nullptr;
|
||||
for (unsigned K = 0; K < M; ++K) {
|
||||
Value *L = A.extractVector(I, K, BlockSize, Builder);
|
||||
Value *RH = Builder.CreateExtractElement(B.getColumn(J), K);
|
||||
Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
|
||||
Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
|
||||
Result.getElementType()->isFloatingPointTy(),
|
||||
Builder, AllowContraction, NumComputeOps);
|
||||
}
|
||||
Result.setVector(J,
|
||||
insertVector(Result.getVector(J), I, Sum, Builder));
|
||||
}
|
||||
Result.setColumn(J, insertVector(Result.getColumn(J), I, Sum, Builder));
|
||||
}
|
||||
} else {
|
||||
// Multiply rows from the second operand with scalars from the first
|
||||
// operand. Then move along the K axes and accumulate the rows. With this
|
||||
// the adds can be vectorized without reassociation.
|
||||
for (unsigned I = 0; I < R; ++I) {
|
||||
unsigned BlockSize = VF;
|
||||
bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
|
||||
for (unsigned J = 0; J < C; J += BlockSize) {
|
||||
// Gradually lower the vectorization factor to cover the remainder.
|
||||
while (J + BlockSize > C)
|
||||
BlockSize /= 2;
|
||||
|
||||
Result.addNumComputeOps(NumOps);
|
||||
Value *Sum = nullptr;
|
||||
for (unsigned K = 0; K < M; ++K) {
|
||||
Value *R = B.extractVector(K, J, BlockSize, Builder);
|
||||
Value *LH = Builder.CreateExtractElement(A.getVector(I), K);
|
||||
Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
|
||||
Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
|
||||
IsFP, Builder, AllowContraction, NumComputeOps);
|
||||
}
|
||||
Result.setVector(I,
|
||||
insertVector(Result.getVector(I), J, Sum, Builder));
|
||||
}
|
||||
}
|
||||
}
|
||||
Result.addNumComputeOps(NumComputeOps);
|
||||
}
|
||||
|
||||
/// Ensure that the memory in \p Load does not alias \p Store by potentially
|
||||
@ -1081,13 +1178,15 @@ public:
|
||||
MatrixTy Res;
|
||||
Type *ColumType = VectorType::get(EltType, R);
|
||||
for (unsigned I = 0; I < C; ++I)
|
||||
Res.addColumn(ConstantAggregateZero::get(ColumType));
|
||||
Res.addVector(ConstantAggregateZero::get(ColumType));
|
||||
return Res;
|
||||
}
|
||||
|
||||
void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
|
||||
StoreInst *Store,
|
||||
SmallPtrSetImpl<Instruction *> &FusedInsts) {
|
||||
assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
|
||||
"Tiling only supported for column-major matrixes at the moment!");
|
||||
if (!isFusionProfitable(MatMul))
|
||||
return;
|
||||
|
||||
@ -1147,7 +1246,8 @@ public:
|
||||
/// are completely eliminated by fusion are added to \p FusedInsts.
|
||||
void LowerMatrixMultiplyFused(CallInst *MatMul,
|
||||
SmallPtrSetImpl<Instruction *> &FusedInsts) {
|
||||
if (!FuseMatrix || !MatMul->hasOneUse())
|
||||
if (!FuseMatrix || !MatMul->hasOneUse() ||
|
||||
MatrixLayout != MatrixLayoutTy::ColumnMajor)
|
||||
return;
|
||||
|
||||
auto *LoadOp0 = dyn_cast<LoadInst>(MatMul->getOperand(0));
|
||||
@ -1181,9 +1281,7 @@ public:
|
||||
assert(LShape.NumColumns == RShape.NumRows);
|
||||
|
||||
// Initialize the output
|
||||
MatrixTy Result;
|
||||
for (unsigned J = 0; J < C; ++J)
|
||||
Result.addColumn(UndefValue::get(VectorType::get(EltType, R)));
|
||||
MatrixTy Result(R, C, EltType);
|
||||
|
||||
bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
|
||||
MatMul->hasAllowContract());
|
||||
@ -1199,6 +1297,8 @@ public:
|
||||
VectorType *VectorTy = cast<VectorType>(InputVal->getType());
|
||||
ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
|
||||
MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
|
||||
assert(InputMatrix.isColumnMajor() &&
|
||||
"Row-major code-gen not supported yet!");
|
||||
|
||||
for (unsigned Row = 0; Row < ArgShape.NumRows; ++Row) {
|
||||
// Build a single column vector for this row. First initialize it.
|
||||
@ -1214,7 +1314,7 @@ public:
|
||||
ResultColumn =
|
||||
Builder.CreateInsertElement(ResultColumn, Elt, C.index());
|
||||
}
|
||||
Result.addColumn(ResultColumn);
|
||||
Result.addVector(ResultColumn);
|
||||
}
|
||||
|
||||
// TODO: Improve estimate of operations needed for transposes. Currently we
|
||||
@ -1232,7 +1332,7 @@ public:
|
||||
if (I == ShapeMap.end())
|
||||
return false;
|
||||
|
||||
LowerLoad(Inst, Ptr, Builder.getInt32(I->second.NumRows), I->second);
|
||||
LowerLoad(Inst, Ptr, Builder.getInt32(I->second.getStride()), I->second);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1242,7 +1342,8 @@ public:
|
||||
if (I == ShapeMap.end())
|
||||
return false;
|
||||
|
||||
LowerStore(Inst, StoredVal, Ptr, Builder.getInt32(I->second.NumRows), I->second);
|
||||
LowerStore(Inst, StoredVal, Ptr, Builder.getInt32(I->second.getStride()),
|
||||
I->second);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1258,12 +1359,15 @@ public:
|
||||
IRBuilder<> Builder(Inst);
|
||||
ShapeInfo &Shape = I->second;
|
||||
|
||||
MatrixTy LoweredLhs = getMatrix(Lhs, Shape, Builder);
|
||||
MatrixTy LoweredRhs = getMatrix(Rhs, Shape, Builder);
|
||||
|
||||
// Add each column and store the result back into the opmapping
|
||||
MatrixTy Result;
|
||||
auto BuildColumnOp = [&Builder, Inst](Value *LHS, Value *RHS) {
|
||||
MatrixTy A = getMatrix(Lhs, Shape, Builder);
|
||||
MatrixTy B = getMatrix(Rhs, Shape, Builder);
|
||||
assert(A.isColumnMajor() == B.isColumnMajor() &&
|
||||
Result.isColumnMajor() == A.isColumnMajor() &&
|
||||
"operands must agree on matrix layout");
|
||||
|
||||
// Helper to perform binary op on vectors.
|
||||
auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
|
||||
switch (Inst->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
return Builder.CreateAdd(LHS, RHS);
|
||||
@ -1281,13 +1385,13 @@ public:
|
||||
llvm_unreachable("Unsupported binary operator for matrix");
|
||||
}
|
||||
};
|
||||
for (unsigned C = 0; C < Shape.NumColumns; ++C)
|
||||
Result.addColumn(
|
||||
BuildColumnOp(LoweredLhs.getColumn(C), LoweredRhs.getColumn(C)));
|
||||
|
||||
for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
|
||||
Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
|
||||
|
||||
finalizeLowering(Inst,
|
||||
Result.addNumComputeOps(getNumOps(Result.getColumnTy()) *
|
||||
Result.getNumColumns()),
|
||||
Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
|
||||
Result.getNumVectors()),
|
||||
Builder);
|
||||
return true;
|
||||
}
|
||||
@ -1302,9 +1406,9 @@ public:
|
||||
unsigned LineLength = 0;
|
||||
const DataLayout &DL;
|
||||
|
||||
/// Mapping from instructions to column matrixes. It is used to identify
|
||||
/// Mapping from instructions to matrixes. It is used to identify
|
||||
/// matrix instructions.
|
||||
const MapVector<Value *, MatrixTy> &Inst2ColumnMatrix;
|
||||
const MapVector<Value *, MatrixTy> &Inst2Matrix;
|
||||
|
||||
/// Mapping from values to the leaves of all expressions that the value is
|
||||
/// part of.
|
||||
@ -1321,12 +1425,12 @@ public:
|
||||
SmallPtrSet<Value *, 8> ReusedExprs;
|
||||
|
||||
ExprLinearizer(const DataLayout &DL,
|
||||
const MapVector<Value *, MatrixTy> &Inst2ColumnMatrix,
|
||||
const MapVector<Value *, MatrixTy> &Inst2Matrix,
|
||||
const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
|
||||
const SmallSetVector<Value *, 32> &ExprsInSubprogram,
|
||||
Value *Leaf)
|
||||
: Str(), Stream(Str), DL(DL), Inst2ColumnMatrix(Inst2ColumnMatrix),
|
||||
Shared(Shared), ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
|
||||
: Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
|
||||
ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
|
||||
|
||||
void indent(unsigned N) {
|
||||
LineLength += N;
|
||||
@ -1366,8 +1470,8 @@ public:
|
||||
/// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
|
||||
/// \p SS.
|
||||
void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
|
||||
auto M = Inst2ColumnMatrix.find(V);
|
||||
if (M == Inst2ColumnMatrix.end())
|
||||
auto M = Inst2Matrix.find(V);
|
||||
if (M == Inst2Matrix.end())
|
||||
SS << "unknown";
|
||||
else {
|
||||
SS << M->second.getNumRows();
|
||||
@ -1565,18 +1669,18 @@ public:
|
||||
/// that multiple leaves can share sub-expressions. Shared subexpressions
|
||||
/// are explicitly marked as shared().
|
||||
struct RemarkGenerator {
|
||||
const MapVector<Value *, MatrixTy> &Inst2ColumnMatrix;
|
||||
const MapVector<Value *, MatrixTy> &Inst2Matrix;
|
||||
OptimizationRemarkEmitter &ORE;
|
||||
Function &Func;
|
||||
const DataLayout &DL;
|
||||
|
||||
RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2ColumnMatrix,
|
||||
RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
|
||||
OptimizationRemarkEmitter &ORE, Function &Func)
|
||||
: Inst2ColumnMatrix(Inst2ColumnMatrix), ORE(ORE), Func(Func),
|
||||
: Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
|
||||
DL(Func.getParent()->getDataLayout()) {}
|
||||
|
||||
/// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
|
||||
/// instructions in Inst2ColumnMatrix returning void or without any users in
|
||||
/// instructions in Inst2Matrix returning void or without any users in
|
||||
/// \p ExprsInSubprogram. Currently that should only include stores.
|
||||
SmallVector<Value *, 4>
|
||||
getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
|
||||
@ -1626,7 +1730,7 @@ public:
|
||||
OpInfoTy Count;
|
||||
|
||||
auto I = Shared.find(Root);
|
||||
auto CM = Inst2ColumnMatrix.find(Root);
|
||||
auto CM = Inst2Matrix.find(Root);
|
||||
if (I->second.size() == 1)
|
||||
Count = CM->second.getOpInfo();
|
||||
else
|
||||
@ -1648,7 +1752,7 @@ public:
|
||||
// the inlinedAt chain. If the function does not have a DISubprogram, we
|
||||
// only map them to the containing function.
|
||||
MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
|
||||
for (auto &KV : Inst2ColumnMatrix) {
|
||||
for (auto &KV : Inst2Matrix) {
|
||||
if (Func.getSubprogram()) {
|
||||
auto *I = cast<Instruction>(KV.first);
|
||||
DILocation *Context = I->getDebugLoc();
|
||||
@ -1720,7 +1824,7 @@ public:
|
||||
const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
|
||||
const SmallSetVector<Value *, 32> &ExprsInSubprogram,
|
||||
const DataLayout &DL) {
|
||||
ExprLinearizer Lin(DL, Inst2ColumnMatrix, Shared, ExprsInSubprogram, L);
|
||||
ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
|
||||
Lin.linearizeExpr(L, 0, false, false);
|
||||
return Lin.getResult();
|
||||
}
|
||||
|
@ -0,0 +1,152 @@
|
||||
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --verbose
|
||||
|
||||
; RUN: opt -lower-matrix-intrinsics -matrix-default-layout=row-major -S < %s | FileCheck --check-prefix=RM %s
|
||||
|
||||
; Check row-major code generation for loads, stores, binary operators (fadd/fsub) and multiply.
|
||||
; %a.ptr is a pointer to a 2x3 matrix, %b.ptr to a 3x2 matrix and %c.ptr to a 2x2 matrix.
|
||||
; Load, store and binary operators on %a should operate on 3 element vectors and on 2 element vectors for %b.
|
||||
define void @multiply_sub_add_2x3_3x2(<6 x double>* %a.ptr, <6 x double>* %b.ptr, <4 x double>* %c.ptr) {
|
||||
; RM-LABEL: @multiply_sub_add_2x3_3x2(
|
||||
; RM-NEXT: entry:
|
||||
; RM-NEXT: [[TMP0:%.*]] = bitcast <6 x double>* [[A_PTR:%.*]] to double*
|
||||
; RM-NEXT: [[VEC_CAST:%.*]] = bitcast double* [[TMP0]] to <3 x double>*
|
||||
; RM-NEXT: [[COL_LOAD:%.*]] = load <3 x double>, <3 x double>* [[VEC_CAST]], align 8
|
||||
; RM-NEXT: [[VEC_GEP:%.*]] = getelementptr double, double* [[TMP0]], i32 3
|
||||
; RM-NEXT: [[VEC_CAST1:%.*]] = bitcast double* [[VEC_GEP]] to <3 x double>*
|
||||
; RM-NEXT: [[COL_LOAD2:%.*]] = load <3 x double>, <3 x double>* [[VEC_CAST1]], align 8
|
||||
; RM-NEXT: [[TMP1:%.*]] = bitcast <6 x double>* [[B_PTR:%.*]] to double*
|
||||
; RM-NEXT: [[VEC_CAST3:%.*]] = bitcast double* [[TMP1]] to <2 x double>*
|
||||
; RM-NEXT: [[COL_LOAD4:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST3]], align 8
|
||||
; RM-NEXT: [[VEC_GEP5:%.*]] = getelementptr double, double* [[TMP1]], i32 2
|
||||
; RM-NEXT: [[VEC_CAST6:%.*]] = bitcast double* [[VEC_GEP5]] to <2 x double>*
|
||||
; RM-NEXT: [[COL_LOAD7:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST6]], align 8
|
||||
; RM-NEXT: [[VEC_GEP8:%.*]] = getelementptr double, double* [[TMP1]], i32 4
|
||||
; RM-NEXT: [[VEC_CAST9:%.*]] = bitcast double* [[VEC_GEP8]] to <2 x double>*
|
||||
; RM-NEXT: [[COL_LOAD10:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST9]], align 8
|
||||
; RM-NEXT: [[TMP2:%.*]] = fadd <3 x double> [[COL_LOAD]], [[COL_LOAD]]
|
||||
; RM-NEXT: [[TMP3:%.*]] = fadd <3 x double> [[COL_LOAD2]], [[COL_LOAD2]]
|
||||
; RM-NEXT: [[TMP4:%.*]] = bitcast <6 x double>* [[A_PTR]] to double*
|
||||
; RM-NEXT: [[VEC_CAST11:%.*]] = bitcast double* [[TMP4]] to <3 x double>*
|
||||
; RM-NEXT: store <3 x double> [[TMP2]], <3 x double>* [[VEC_CAST11]], align 8
|
||||
; RM-NEXT: [[VEC_GEP12:%.*]] = getelementptr double, double* [[TMP4]], i32 3
|
||||
; RM-NEXT: [[VEC_CAST13:%.*]] = bitcast double* [[VEC_GEP12]] to <3 x double>*
|
||||
; RM-NEXT: store <3 x double> [[TMP3]], <3 x double>* [[VEC_CAST13]], align 8
|
||||
; RM-NEXT: [[TMP5:%.*]] = fsub <2 x double> [[COL_LOAD4]], <double 1.000000e+00, double 1.000000e+00>
|
||||
; RM-NEXT: [[TMP6:%.*]] = fsub <2 x double> [[COL_LOAD7]], <double 1.000000e+00, double 1.000000e+00>
|
||||
; RM-NEXT: [[TMP7:%.*]] = fsub <2 x double> [[COL_LOAD10]], <double 1.000000e+00, double 1.000000e+00>
|
||||
; RM-NEXT: [[TMP8:%.*]] = bitcast <6 x double>* [[B_PTR]] to double*
|
||||
; RM-NEXT: [[VEC_CAST14:%.*]] = bitcast double* [[TMP8]] to <2 x double>*
|
||||
; RM-NEXT: store <2 x double> [[TMP5]], <2 x double>* [[VEC_CAST14]], align 8
|
||||
; RM-NEXT: [[VEC_GEP15:%.*]] = getelementptr double, double* [[TMP8]], i32 2
|
||||
; RM-NEXT: [[VEC_CAST16:%.*]] = bitcast double* [[VEC_GEP15]] to <2 x double>*
|
||||
; RM-NEXT: store <2 x double> [[TMP6]], <2 x double>* [[VEC_CAST16]], align 8
|
||||
; RM-NEXT: [[VEC_GEP17:%.*]] = getelementptr double, double* [[TMP8]], i32 4
|
||||
; RM-NEXT: [[VEC_CAST18:%.*]] = bitcast double* [[VEC_GEP17]] to <2 x double>*
|
||||
; RM-NEXT: store <2 x double> [[TMP7]], <2 x double>* [[VEC_CAST18]], align 8
|
||||
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x double> [[TMP5]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP9:%.*]] = extractelement <3 x double> [[TMP2]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x double> undef, double [[TMP9]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP10:%.*]] = fmul <1 x double> [[SPLAT_SPLAT]], [[BLOCK]]
|
||||
; RM-NEXT: [[BLOCK19:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP11:%.*]] = extractelement <3 x double> [[TMP2]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT20:%.*]] = insertelement <1 x double> undef, double [[TMP11]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT21:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT20]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP12:%.*]] = fmul <1 x double> [[SPLAT_SPLAT21]], [[BLOCK19]]
|
||||
; RM-NEXT: [[TMP13:%.*]] = fadd <1 x double> [[TMP10]], [[TMP12]]
|
||||
; RM-NEXT: [[BLOCK22:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP14:%.*]] = extractelement <3 x double> [[TMP2]], i64 2
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT23:%.*]] = insertelement <1 x double> undef, double [[TMP14]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT24:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT23]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP15:%.*]] = fmul <1 x double> [[SPLAT_SPLAT24]], [[BLOCK22]]
|
||||
; RM-NEXT: [[TMP16:%.*]] = fadd <1 x double> [[TMP13]], [[TMP15]]
|
||||
; RM-NEXT: [[TMP17:%.*]] = shufflevector <1 x double> [[TMP16]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP18:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP17]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK25:%.*]] = shufflevector <2 x double> [[TMP5]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP19:%.*]] = extractelement <3 x double> [[TMP2]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT26:%.*]] = insertelement <1 x double> undef, double [[TMP19]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT27:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT26]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP20:%.*]] = fmul <1 x double> [[SPLAT_SPLAT27]], [[BLOCK25]]
|
||||
; RM-NEXT: [[BLOCK28:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP21:%.*]] = extractelement <3 x double> [[TMP2]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT29:%.*]] = insertelement <1 x double> undef, double [[TMP21]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT30:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT29]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP22:%.*]] = fmul <1 x double> [[SPLAT_SPLAT30]], [[BLOCK28]]
|
||||
; RM-NEXT: [[TMP23:%.*]] = fadd <1 x double> [[TMP20]], [[TMP22]]
|
||||
; RM-NEXT: [[BLOCK31:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP24:%.*]] = extractelement <3 x double> [[TMP2]], i64 2
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT32:%.*]] = insertelement <1 x double> undef, double [[TMP24]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT33:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT32]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP25:%.*]] = fmul <1 x double> [[SPLAT_SPLAT33]], [[BLOCK31]]
|
||||
; RM-NEXT: [[TMP26:%.*]] = fadd <1 x double> [[TMP23]], [[TMP25]]
|
||||
; RM-NEXT: [[TMP27:%.*]] = shufflevector <1 x double> [[TMP26]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP28:%.*]] = shufflevector <2 x double> [[TMP18]], <2 x double> [[TMP27]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[BLOCK34:%.*]] = shufflevector <2 x double> [[TMP5]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP29:%.*]] = extractelement <3 x double> [[TMP3]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT35:%.*]] = insertelement <1 x double> undef, double [[TMP29]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT36:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT35]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP30:%.*]] = fmul <1 x double> [[SPLAT_SPLAT36]], [[BLOCK34]]
|
||||
; RM-NEXT: [[BLOCK37:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP31:%.*]] = extractelement <3 x double> [[TMP3]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT38:%.*]] = insertelement <1 x double> undef, double [[TMP31]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT39:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT38]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP32:%.*]] = fmul <1 x double> [[SPLAT_SPLAT39]], [[BLOCK37]]
|
||||
; RM-NEXT: [[TMP33:%.*]] = fadd <1 x double> [[TMP30]], [[TMP32]]
|
||||
; RM-NEXT: [[BLOCK40:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP34:%.*]] = extractelement <3 x double> [[TMP3]], i64 2
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT41:%.*]] = insertelement <1 x double> undef, double [[TMP34]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT42:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT41]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP35:%.*]] = fmul <1 x double> [[SPLAT_SPLAT42]], [[BLOCK40]]
|
||||
; RM-NEXT: [[TMP36:%.*]] = fadd <1 x double> [[TMP33]], [[TMP35]]
|
||||
; RM-NEXT: [[TMP37:%.*]] = shufflevector <1 x double> [[TMP36]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP38:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP37]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK43:%.*]] = shufflevector <2 x double> [[TMP5]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP39:%.*]] = extractelement <3 x double> [[TMP3]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT44:%.*]] = insertelement <1 x double> undef, double [[TMP39]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT45:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT44]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP40:%.*]] = fmul <1 x double> [[SPLAT_SPLAT45]], [[BLOCK43]]
|
||||
; RM-NEXT: [[BLOCK46:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP41:%.*]] = extractelement <3 x double> [[TMP3]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT47:%.*]] = insertelement <1 x double> undef, double [[TMP41]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT48:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT47]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP42:%.*]] = fmul <1 x double> [[SPLAT_SPLAT48]], [[BLOCK46]]
|
||||
; RM-NEXT: [[TMP43:%.*]] = fadd <1 x double> [[TMP40]], [[TMP42]]
|
||||
; RM-NEXT: [[BLOCK49:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP44:%.*]] = extractelement <3 x double> [[TMP3]], i64 2
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT50:%.*]] = insertelement <1 x double> undef, double [[TMP44]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT51:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT50]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP45:%.*]] = fmul <1 x double> [[SPLAT_SPLAT51]], [[BLOCK49]]
|
||||
; RM-NEXT: [[TMP46:%.*]] = fadd <1 x double> [[TMP43]], [[TMP45]]
|
||||
; RM-NEXT: [[TMP47:%.*]] = shufflevector <1 x double> [[TMP46]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP48:%.*]] = shufflevector <2 x double> [[TMP38]], <2 x double> [[TMP47]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[TMP49:%.*]] = bitcast <4 x double>* [[C_PTR:%.*]] to double*
|
||||
; RM-NEXT: [[VEC_CAST52:%.*]] = bitcast double* [[TMP49]] to <2 x double>*
|
||||
; RM-NEXT: [[COL_LOAD53:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST52]], align 8
|
||||
; RM-NEXT: [[VEC_GEP54:%.*]] = getelementptr double, double* [[TMP49]], i32 2
|
||||
; RM-NEXT: [[VEC_CAST55:%.*]] = bitcast double* [[VEC_GEP54]] to <2 x double>*
|
||||
; RM-NEXT: [[COL_LOAD56:%.*]] = load <2 x double>, <2 x double>* [[VEC_CAST55]], align 8
|
||||
; RM-NEXT: [[TMP50:%.*]] = fsub <2 x double> [[COL_LOAD53]], [[TMP28]]
|
||||
; RM-NEXT: [[TMP51:%.*]] = fsub <2 x double> [[COL_LOAD56]], [[TMP48]]
|
||||
; RM-NEXT: [[TMP52:%.*]] = bitcast <4 x double>* [[C_PTR]] to double*
|
||||
; RM-NEXT: [[VEC_CAST57:%.*]] = bitcast double* [[TMP52]] to <2 x double>*
|
||||
; RM-NEXT: store <2 x double> [[TMP50]], <2 x double>* [[VEC_CAST57]], align 8
|
||||
; RM-NEXT: [[VEC_GEP58:%.*]] = getelementptr double, double* [[TMP52]], i32 2
|
||||
; RM-NEXT: [[VEC_CAST59:%.*]] = bitcast double* [[VEC_GEP58]] to <2 x double>*
|
||||
; RM-NEXT: store <2 x double> [[TMP51]], <2 x double>* [[VEC_CAST59]], align 8
|
||||
; RM-NEXT: ret void
|
||||
;
|
||||
entry:
|
||||
%a = load <6 x double>, <6 x double>* %a.ptr
|
||||
%b = load <6 x double>, <6 x double>* %b.ptr
|
||||
%add = fadd <6 x double> %a, %a
|
||||
store <6 x double> %add, <6 x double>* %a.ptr
|
||||
%sub = fsub <6 x double> %b, <double 1.0, double 1.0, double 1.0, double 1.0, double 1.0, double 1.0>
|
||||
store <6 x double> %sub, <6 x double>* %b.ptr
|
||||
%mul = call <4 x double> @llvm.matrix.multiply.v4f64.v6f64.v6f64(<6 x double> %add, <6 x double> %sub, i32 2, i32 3, i32 2)
|
||||
%c = load <4 x double>, <4 x double>* %c.ptr
|
||||
%res = fsub <4 x double> %c, %mul
|
||||
store <4 x double> %res, <4 x double>* %c.ptr
|
||||
ret void
|
||||
}
|
||||
|
||||
declare <4 x double> @llvm.matrix.multiply.v4f64.v6f64.v6f64(<6 x double>, <6 x double>, i32, i32, i32)
|
@ -0,0 +1,256 @@
|
||||
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --verbose
|
||||
|
||||
; RUN: opt -lower-matrix-intrinsics -matrix-default-layout=row-major -S < %s | FileCheck --check-prefix=RM %s
|
||||
|
||||
|
||||
|
||||
define <4 x double> @multiply_2x2(<4 x double> %a, <4 x double> %b) {
|
||||
; RM-LABEL: @multiply_2x2(
|
||||
; RM-NEXT: entry:
|
||||
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <4 x double> [[A:%.*]], <4 x double> undef, <2 x i32> <i32 0, i32 1>
|
||||
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <4 x double> [[A]], <4 x double> undef, <2 x i32> <i32 2, i32 3>
|
||||
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <4 x double> [[B:%.*]], <4 x double> undef, <2 x i32> <i32 0, i32 1>
|
||||
; RM-NEXT: [[SPLIT3:%.*]] = shufflevector <4 x double> [[B]], <4 x double> undef, <2 x i32> <i32 2, i32 3>
|
||||
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP0:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x double> undef, double [[TMP0]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP1:%.*]] = fmul <1 x double> [[SPLAT_SPLAT]], [[BLOCK]]
|
||||
; RM-NEXT: [[BLOCK4:%.*]] = shufflevector <2 x double> [[SPLIT3]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP2:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT5:%.*]] = insertelement <1 x double> undef, double [[TMP2]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT6:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT5]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP3:%.*]] = fmul <1 x double> [[SPLAT_SPLAT6]], [[BLOCK4]]
|
||||
; RM-NEXT: [[TMP4:%.*]] = fadd <1 x double> [[TMP1]], [[TMP3]]
|
||||
; RM-NEXT: [[TMP5:%.*]] = shufflevector <1 x double> [[TMP4]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP6:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP5]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK7:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP7:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT8:%.*]] = insertelement <1 x double> undef, double [[TMP7]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT9:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT8]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP8:%.*]] = fmul <1 x double> [[SPLAT_SPLAT9]], [[BLOCK7]]
|
||||
; RM-NEXT: [[BLOCK10:%.*]] = shufflevector <2 x double> [[SPLIT3]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP9:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT11:%.*]] = insertelement <1 x double> undef, double [[TMP9]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT12:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT11]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP10:%.*]] = fmul <1 x double> [[SPLAT_SPLAT12]], [[BLOCK10]]
|
||||
; RM-NEXT: [[TMP11:%.*]] = fadd <1 x double> [[TMP8]], [[TMP10]]
|
||||
; RM-NEXT: [[TMP12:%.*]] = shufflevector <1 x double> [[TMP11]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP13:%.*]] = shufflevector <2 x double> [[TMP6]], <2 x double> [[TMP12]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[BLOCK13:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP14:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT14:%.*]] = insertelement <1 x double> undef, double [[TMP14]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT15:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT14]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP15:%.*]] = fmul <1 x double> [[SPLAT_SPLAT15]], [[BLOCK13]]
|
||||
; RM-NEXT: [[BLOCK16:%.*]] = shufflevector <2 x double> [[SPLIT3]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP16:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT17:%.*]] = insertelement <1 x double> undef, double [[TMP16]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT18:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT17]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP17:%.*]] = fmul <1 x double> [[SPLAT_SPLAT18]], [[BLOCK16]]
|
||||
; RM-NEXT: [[TMP18:%.*]] = fadd <1 x double> [[TMP15]], [[TMP17]]
|
||||
; RM-NEXT: [[TMP19:%.*]] = shufflevector <1 x double> [[TMP18]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP20:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP19]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK19:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP21:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT20:%.*]] = insertelement <1 x double> undef, double [[TMP21]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT21:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT20]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP22:%.*]] = fmul <1 x double> [[SPLAT_SPLAT21]], [[BLOCK19]]
|
||||
; RM-NEXT: [[BLOCK22:%.*]] = shufflevector <2 x double> [[SPLIT3]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP23:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT23:%.*]] = insertelement <1 x double> undef, double [[TMP23]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT24:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT23]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP24:%.*]] = fmul <1 x double> [[SPLAT_SPLAT24]], [[BLOCK22]]
|
||||
; RM-NEXT: [[TMP25:%.*]] = fadd <1 x double> [[TMP22]], [[TMP24]]
|
||||
; RM-NEXT: [[TMP26:%.*]] = shufflevector <1 x double> [[TMP25]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP27:%.*]] = shufflevector <2 x double> [[TMP20]], <2 x double> [[TMP26]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[TMP28:%.*]] = shufflevector <2 x double> [[TMP13]], <2 x double> [[TMP27]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
||||
; RM-NEXT: ret <4 x double> [[TMP28]]
|
||||
;
|
||||
entry:
|
||||
%c = call <4 x double> @llvm.matrix.multiply.v4f64.v4f64.v4f64(<4 x double> %a, <4 x double> %b, i32 2, i32 2, i32 2)
|
||||
ret <4 x double> %c
|
||||
}
|
||||
|
||||
declare <4 x double> @llvm.matrix.multiply.v4f64.v4f64.v4f64(<4 x double>, <4 x double>, i32, i32, i32)
|
||||
|
||||
define <4 x double> @multiply_1x2(<2 x double> %a, <2 x double> %b) {
|
||||
|
||||
; RM-LABEL: @multiply_1x2(
|
||||
; RM-NEXT: entry:
|
||||
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <2 x double> [[A:%.*]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <2 x double> [[A]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <2 x double> [[B:%.*]], <2 x double> undef, <2 x i32> <i32 0, i32 1>
|
||||
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP0:%.*]] = extractelement <1 x double> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x double> undef, double [[TMP0]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP1:%.*]] = fmul <1 x double> [[SPLAT_SPLAT]], [[BLOCK]]
|
||||
; RM-NEXT: [[TMP2:%.*]] = shufflevector <1 x double> [[TMP1]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP3:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP2]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK3:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP4:%.*]] = extractelement <1 x double> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT4:%.*]] = insertelement <1 x double> undef, double [[TMP4]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT5:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT4]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP5:%.*]] = fmul <1 x double> [[SPLAT_SPLAT5]], [[BLOCK3]]
|
||||
; RM-NEXT: [[TMP6:%.*]] = shufflevector <1 x double> [[TMP5]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP7:%.*]] = shufflevector <2 x double> [[TMP3]], <2 x double> [[TMP6]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[BLOCK6:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP8:%.*]] = extractelement <1 x double> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT7:%.*]] = insertelement <1 x double> undef, double [[TMP8]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT8:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT7]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP9:%.*]] = fmul <1 x double> [[SPLAT_SPLAT8]], [[BLOCK6]]
|
||||
; RM-NEXT: [[TMP10:%.*]] = shufflevector <1 x double> [[TMP9]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP11:%.*]] = shufflevector <2 x double> undef, <2 x double> [[TMP10]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK9:%.*]] = shufflevector <2 x double> [[SPLIT2]], <2 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP12:%.*]] = extractelement <1 x double> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT10:%.*]] = insertelement <1 x double> undef, double [[TMP12]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT11:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT10]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP13:%.*]] = fmul <1 x double> [[SPLAT_SPLAT11]], [[BLOCK9]]
|
||||
; RM-NEXT: [[TMP14:%.*]] = shufflevector <1 x double> [[TMP13]], <1 x double> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP15:%.*]] = shufflevector <2 x double> [[TMP11]], <2 x double> [[TMP14]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[TMP16:%.*]] = shufflevector <2 x double> [[TMP7]], <2 x double> [[TMP15]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
||||
; RM-NEXT: ret <4 x double> [[TMP16]]
|
||||
;
|
||||
entry:
|
||||
%c = call <4 x double> @llvm.matrix.multiply.v4f64.v2f64.v2f64(<2 x double> %a, <2 x double> %b, i32 2, i32 1, i32 2)
|
||||
ret <4 x double> %c
|
||||
}
|
||||
|
||||
declare <4 x double> @llvm.matrix.multiply.v4f64.v2f64.v2f64(<2 x double>, <2 x double>, i32, i32, i32)
|
||||
|
||||
define <9 x double> @multiply_2x3(<6 x double> %a, <6 x double> %b) {
|
||||
; RM-LABEL: @multiply_2x3(
|
||||
; RM-NEXT: entry:
|
||||
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <6 x double> [[A:%.*]], <6 x double> undef, <2 x i32> <i32 0, i32 1>
|
||||
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <6 x double> [[A]], <6 x double> undef, <2 x i32> <i32 2, i32 3>
|
||||
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <6 x double> [[A]], <6 x double> undef, <2 x i32> <i32 4, i32 5>
|
||||
; RM-NEXT: [[SPLIT3:%.*]] = shufflevector <6 x double> [[B:%.*]], <6 x double> undef, <3 x i32> <i32 0, i32 1, i32 2>
|
||||
; RM-NEXT: [[SPLIT4:%.*]] = shufflevector <6 x double> [[B]], <6 x double> undef, <3 x i32> <i32 3, i32 4, i32 5>
|
||||
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP0:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x double> undef, double [[TMP0]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP1:%.*]] = fmul <1 x double> [[SPLAT_SPLAT]], [[BLOCK]]
|
||||
; RM-NEXT: [[BLOCK5:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP2:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT6:%.*]] = insertelement <1 x double> undef, double [[TMP2]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT7:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT6]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP3:%.*]] = fmul <1 x double> [[SPLAT_SPLAT7]], [[BLOCK5]]
|
||||
; RM-NEXT: [[TMP4:%.*]] = fadd <1 x double> [[TMP1]], [[TMP3]]
|
||||
; RM-NEXT: [[TMP5:%.*]] = shufflevector <1 x double> [[TMP4]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP6:%.*]] = shufflevector <3 x double> undef, <3 x double> [[TMP5]], <3 x i32> <i32 3, i32 1, i32 2>
|
||||
; RM-NEXT: [[BLOCK8:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP7:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT9:%.*]] = insertelement <1 x double> undef, double [[TMP7]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT10:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT9]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP8:%.*]] = fmul <1 x double> [[SPLAT_SPLAT10]], [[BLOCK8]]
|
||||
; RM-NEXT: [[BLOCK11:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP9:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT12:%.*]] = insertelement <1 x double> undef, double [[TMP9]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT13:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT12]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP10:%.*]] = fmul <1 x double> [[SPLAT_SPLAT13]], [[BLOCK11]]
|
||||
; RM-NEXT: [[TMP11:%.*]] = fadd <1 x double> [[TMP8]], [[TMP10]]
|
||||
; RM-NEXT: [[TMP12:%.*]] = shufflevector <1 x double> [[TMP11]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP13:%.*]] = shufflevector <3 x double> [[TMP6]], <3 x double> [[TMP12]], <3 x i32> <i32 0, i32 3, i32 2>
|
||||
; RM-NEXT: [[BLOCK14:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP14:%.*]] = extractelement <2 x double> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT15:%.*]] = insertelement <1 x double> undef, double [[TMP14]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT16:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT15]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP15:%.*]] = fmul <1 x double> [[SPLAT_SPLAT16]], [[BLOCK14]]
|
||||
; RM-NEXT: [[BLOCK17:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP16:%.*]] = extractelement <2 x double> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT18:%.*]] = insertelement <1 x double> undef, double [[TMP16]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT19:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT18]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP17:%.*]] = fmul <1 x double> [[SPLAT_SPLAT19]], [[BLOCK17]]
|
||||
; RM-NEXT: [[TMP18:%.*]] = fadd <1 x double> [[TMP15]], [[TMP17]]
|
||||
; RM-NEXT: [[TMP19:%.*]] = shufflevector <1 x double> [[TMP18]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP20:%.*]] = shufflevector <3 x double> [[TMP13]], <3 x double> [[TMP19]], <3 x i32> <i32 0, i32 1, i32 3>
|
||||
; RM-NEXT: [[BLOCK20:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP21:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT21:%.*]] = insertelement <1 x double> undef, double [[TMP21]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT22:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT21]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP22:%.*]] = fmul <1 x double> [[SPLAT_SPLAT22]], [[BLOCK20]]
|
||||
; RM-NEXT: [[BLOCK23:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP23:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT24:%.*]] = insertelement <1 x double> undef, double [[TMP23]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT25:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT24]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP24:%.*]] = fmul <1 x double> [[SPLAT_SPLAT25]], [[BLOCK23]]
|
||||
; RM-NEXT: [[TMP25:%.*]] = fadd <1 x double> [[TMP22]], [[TMP24]]
|
||||
; RM-NEXT: [[TMP26:%.*]] = shufflevector <1 x double> [[TMP25]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP27:%.*]] = shufflevector <3 x double> undef, <3 x double> [[TMP26]], <3 x i32> <i32 3, i32 1, i32 2>
|
||||
; RM-NEXT: [[BLOCK26:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP28:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT27:%.*]] = insertelement <1 x double> undef, double [[TMP28]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT28:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT27]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP29:%.*]] = fmul <1 x double> [[SPLAT_SPLAT28]], [[BLOCK26]]
|
||||
; RM-NEXT: [[BLOCK29:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP30:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT30:%.*]] = insertelement <1 x double> undef, double [[TMP30]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT31:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT30]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP31:%.*]] = fmul <1 x double> [[SPLAT_SPLAT31]], [[BLOCK29]]
|
||||
; RM-NEXT: [[TMP32:%.*]] = fadd <1 x double> [[TMP29]], [[TMP31]]
|
||||
; RM-NEXT: [[TMP33:%.*]] = shufflevector <1 x double> [[TMP32]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP34:%.*]] = shufflevector <3 x double> [[TMP27]], <3 x double> [[TMP33]], <3 x i32> <i32 0, i32 3, i32 2>
|
||||
; RM-NEXT: [[BLOCK32:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP35:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT33:%.*]] = insertelement <1 x double> undef, double [[TMP35]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT34:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT33]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP36:%.*]] = fmul <1 x double> [[SPLAT_SPLAT34]], [[BLOCK32]]
|
||||
; RM-NEXT: [[BLOCK35:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP37:%.*]] = extractelement <2 x double> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT36:%.*]] = insertelement <1 x double> undef, double [[TMP37]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT37:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT36]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP38:%.*]] = fmul <1 x double> [[SPLAT_SPLAT37]], [[BLOCK35]]
|
||||
; RM-NEXT: [[TMP39:%.*]] = fadd <1 x double> [[TMP36]], [[TMP38]]
|
||||
; RM-NEXT: [[TMP40:%.*]] = shufflevector <1 x double> [[TMP39]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP41:%.*]] = shufflevector <3 x double> [[TMP34]], <3 x double> [[TMP40]], <3 x i32> <i32 0, i32 1, i32 3>
|
||||
; RM-NEXT: [[BLOCK38:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP42:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT39:%.*]] = insertelement <1 x double> undef, double [[TMP42]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT40:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT39]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP43:%.*]] = fmul <1 x double> [[SPLAT_SPLAT40]], [[BLOCK38]]
|
||||
; RM-NEXT: [[BLOCK41:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP44:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT42:%.*]] = insertelement <1 x double> undef, double [[TMP44]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT43:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT42]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP45:%.*]] = fmul <1 x double> [[SPLAT_SPLAT43]], [[BLOCK41]]
|
||||
; RM-NEXT: [[TMP46:%.*]] = fadd <1 x double> [[TMP43]], [[TMP45]]
|
||||
; RM-NEXT: [[TMP47:%.*]] = shufflevector <1 x double> [[TMP46]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP48:%.*]] = shufflevector <3 x double> undef, <3 x double> [[TMP47]], <3 x i32> <i32 3, i32 1, i32 2>
|
||||
; RM-NEXT: [[BLOCK44:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP49:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT45:%.*]] = insertelement <1 x double> undef, double [[TMP49]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT46:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT45]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP50:%.*]] = fmul <1 x double> [[SPLAT_SPLAT46]], [[BLOCK44]]
|
||||
; RM-NEXT: [[BLOCK47:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP51:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT48:%.*]] = insertelement <1 x double> undef, double [[TMP51]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT49:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT48]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP52:%.*]] = fmul <1 x double> [[SPLAT_SPLAT49]], [[BLOCK47]]
|
||||
; RM-NEXT: [[TMP53:%.*]] = fadd <1 x double> [[TMP50]], [[TMP52]]
|
||||
; RM-NEXT: [[TMP54:%.*]] = shufflevector <1 x double> [[TMP53]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP55:%.*]] = shufflevector <3 x double> [[TMP48]], <3 x double> [[TMP54]], <3 x i32> <i32 0, i32 3, i32 2>
|
||||
; RM-NEXT: [[BLOCK50:%.*]] = shufflevector <3 x double> [[SPLIT3]], <3 x double> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP56:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT51:%.*]] = insertelement <1 x double> undef, double [[TMP56]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT52:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT51]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP57:%.*]] = fmul <1 x double> [[SPLAT_SPLAT52]], [[BLOCK50]]
|
||||
; RM-NEXT: [[BLOCK53:%.*]] = shufflevector <3 x double> [[SPLIT4]], <3 x double> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP58:%.*]] = extractelement <2 x double> [[SPLIT2]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT54:%.*]] = insertelement <1 x double> undef, double [[TMP58]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT55:%.*]] = shufflevector <1 x double> [[SPLAT_SPLATINSERT54]], <1 x double> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP59:%.*]] = fmul <1 x double> [[SPLAT_SPLAT55]], [[BLOCK53]]
|
||||
; RM-NEXT: [[TMP60:%.*]] = fadd <1 x double> [[TMP57]], [[TMP59]]
|
||||
; RM-NEXT: [[TMP61:%.*]] = shufflevector <1 x double> [[TMP60]], <1 x double> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP62:%.*]] = shufflevector <3 x double> [[TMP55]], <3 x double> [[TMP61]], <3 x i32> <i32 0, i32 1, i32 3>
|
||||
; RM-NEXT: [[TMP63:%.*]] = shufflevector <3 x double> [[TMP20]], <3 x double> [[TMP41]], <6 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5>
|
||||
; RM-NEXT: [[TMP64:%.*]] = shufflevector <3 x double> [[TMP62]], <3 x double> undef, <6 x i32> <i32 0, i32 1, i32 2, i32 undef, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP65:%.*]] = shufflevector <6 x double> [[TMP63]], <6 x double> [[TMP64]], <9 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7, i32 8>
|
||||
; RM-NEXT: ret <9 x double> [[TMP65]]
|
||||
;
|
||||
entry:
|
||||
%c = call <9 x double> @llvm.matrix.multiply.v6f64.v6f64.v6f64(<6 x double> %a, <6 x double> %b, i32 3, i32 2, i32 3)
|
||||
ret <9 x double> %c
|
||||
}
|
||||
|
||||
declare <9 x double> @llvm.matrix.multiply.v6f64.v6f64.v6f64(<6 x double>, <6 x double>, i32, i32, i32)
|
@ -164,34 +164,34 @@ define void @test(<6 x double> * %A, <6 x double> * %B, <9 x double>* %C, i1 %co
|
||||
; CHECK-NEXT: [[LD_B97:%.*]] = ptrtoint <6 x double>* [[A]] to i64
|
||||
; CHECK-NEXT: [[TMP36:%.*]] = icmp ugt i64 [[ST_E93]], [[LD_B97]]
|
||||
; CHECK-NEXT: br i1 [[TMP36]], label [[ALIAS_CONT94:%.*]], label [[NO_ALIAS96:%.*]]
|
||||
; CHECK: alias_cont92:
|
||||
; CHECK: alias_cont91:
|
||||
; CHECK-NEXT: [[LD_E98:%.*]] = add nuw nsw i64 [[LD_B97]], 48
|
||||
; CHECK-NEXT: [[TMP37:%.*]] = icmp ugt i64 [[LD_E98]], [[ST_B92]]
|
||||
; CHECK-NEXT: br i1 [[TMP37]], label [[COPY95:%.*]], label [[NO_ALIAS96]]
|
||||
; CHECK: copy93:
|
||||
; CHECK: copy92:
|
||||
; CHECK-NEXT: [[TMP38:%.*]] = alloca <6 x double>, align 64
|
||||
; CHECK-NEXT: [[TMP39:%.*]] = bitcast <6 x double>* [[TMP38]] to i8*
|
||||
; CHECK-NEXT: [[TMP40:%.*]] = bitcast <6 x double>* [[A]] to i8*
|
||||
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* nonnull align 64 dereferenceable(48) [[TMP39]], i8* nonnull align 16 dereferenceable(48) [[TMP40]], i64 48, i1 false)
|
||||
; CHECK-NEXT: br label [[NO_ALIAS96]]
|
||||
; CHECK: no_alias94:
|
||||
; CHECK: no_alias93:
|
||||
; CHECK-NEXT: [[TMP41:%.*]] = phi <6 x double>* [ [[A]], [[END]] ], [ [[A]], [[ALIAS_CONT94]] ], [ [[TMP38]], [[COPY95]] ]
|
||||
; CHECK-NEXT: [[ST_B99:%.*]] = ptrtoint <9 x double>* [[C]] to i64
|
||||
; CHECK-NEXT: [[ST_E100:%.*]] = add nuw nsw i64 [[ST_B99]], 72
|
||||
; CHECK-NEXT: [[LD_B104:%.*]] = ptrtoint <6 x double>* [[B]] to i64
|
||||
; CHECK-NEXT: [[TMP42:%.*]] = icmp ugt i64 [[ST_E100]], [[LD_B104]]
|
||||
; CHECK-NEXT: br i1 [[TMP42]], label [[ALIAS_CONT101:%.*]], label [[NO_ALIAS103:%.*]]
|
||||
; CHECK: alias_cont99:
|
||||
; CHECK: alias_cont98:
|
||||
; CHECK-NEXT: [[LD_E105:%.*]] = add nuw nsw i64 [[LD_B104]], 48
|
||||
; CHECK-NEXT: [[TMP43:%.*]] = icmp ugt i64 [[LD_E105]], [[ST_B99]]
|
||||
; CHECK-NEXT: br i1 [[TMP43]], label [[COPY102:%.*]], label [[NO_ALIAS103]]
|
||||
; CHECK: copy100:
|
||||
; CHECK: copy99:
|
||||
; CHECK-NEXT: [[TMP44:%.*]] = alloca <6 x double>, align 64
|
||||
; CHECK-NEXT: [[TMP45:%.*]] = bitcast <6 x double>* [[TMP44]] to i8*
|
||||
; CHECK-NEXT: [[TMP46:%.*]] = bitcast <6 x double>* [[B]] to i8*
|
||||
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* nonnull align 64 dereferenceable(48) [[TMP45]], i8* nonnull align 16 dereferenceable(48) [[TMP46]], i64 48, i1 false)
|
||||
; CHECK-NEXT: br label [[NO_ALIAS103]]
|
||||
; CHECK: no_alias101:
|
||||
; CHECK: no_alias100:
|
||||
; CHECK-NEXT: [[TMP47:%.*]] = phi <6 x double>* [ [[B]], [[NO_ALIAS96]] ], [ [[B]], [[ALIAS_CONT101]] ], [ [[TMP44]], [[COPY102]] ]
|
||||
; CHECK-NEXT: [[COL_CAST107:%.*]] = bitcast <6 x double>* [[TMP41]] to <2 x double>*
|
||||
; CHECK-NEXT: [[COL_LOAD108:%.*]] = load <2 x double>, <2 x double>* [[COL_CAST107]], align 8
|
||||
|
256
test/Transforms/LowerMatrixIntrinsics/multiply-i32-row-major.ll
Normal file
256
test/Transforms/LowerMatrixIntrinsics/multiply-i32-row-major.ll
Normal file
@ -0,0 +1,256 @@
|
||||
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --verbose
|
||||
|
||||
; RUN: opt -lower-matrix-intrinsics -matrix-default-layout=row-major -S < %s | FileCheck --check-prefix=RM %s
|
||||
|
||||
|
||||
|
||||
define <4 x i32> @multiply_2x2(<4 x i32> %a, <4 x i32> %b) {
|
||||
; RM-LABEL: @multiply_2x2(
|
||||
; RM-NEXT: entry:
|
||||
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <4 x i32> [[A:%.*]], <4 x i32> undef, <2 x i32> <i32 0, i32 1>
|
||||
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <4 x i32> [[A]], <4 x i32> undef, <2 x i32> <i32 2, i32 3>
|
||||
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <4 x i32> [[B:%.*]], <4 x i32> undef, <2 x i32> <i32 0, i32 1>
|
||||
; RM-NEXT: [[SPLIT3:%.*]] = shufflevector <4 x i32> [[B]], <4 x i32> undef, <2 x i32> <i32 2, i32 3>
|
||||
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP0:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x i32> undef, i32 [[TMP0]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP1:%.*]] = mul <1 x i32> [[SPLAT_SPLAT]], [[BLOCK]]
|
||||
; RM-NEXT: [[BLOCK4:%.*]] = shufflevector <2 x i32> [[SPLIT3]], <2 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP2:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT5:%.*]] = insertelement <1 x i32> undef, i32 [[TMP2]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT6:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT5]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP3:%.*]] = mul <1 x i32> [[SPLAT_SPLAT6]], [[BLOCK4]]
|
||||
; RM-NEXT: [[TMP4:%.*]] = add <1 x i32> [[TMP1]], [[TMP3]]
|
||||
; RM-NEXT: [[TMP5:%.*]] = shufflevector <1 x i32> [[TMP4]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP6:%.*]] = shufflevector <2 x i32> undef, <2 x i32> [[TMP5]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK7:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP7:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT8:%.*]] = insertelement <1 x i32> undef, i32 [[TMP7]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT9:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT8]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP8:%.*]] = mul <1 x i32> [[SPLAT_SPLAT9]], [[BLOCK7]]
|
||||
; RM-NEXT: [[BLOCK10:%.*]] = shufflevector <2 x i32> [[SPLIT3]], <2 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP9:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT11:%.*]] = insertelement <1 x i32> undef, i32 [[TMP9]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT12:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT11]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP10:%.*]] = mul <1 x i32> [[SPLAT_SPLAT12]], [[BLOCK10]]
|
||||
; RM-NEXT: [[TMP11:%.*]] = add <1 x i32> [[TMP8]], [[TMP10]]
|
||||
; RM-NEXT: [[TMP12:%.*]] = shufflevector <1 x i32> [[TMP11]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP13:%.*]] = shufflevector <2 x i32> [[TMP6]], <2 x i32> [[TMP12]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[BLOCK13:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP14:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT14:%.*]] = insertelement <1 x i32> undef, i32 [[TMP14]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT15:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT14]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP15:%.*]] = mul <1 x i32> [[SPLAT_SPLAT15]], [[BLOCK13]]
|
||||
; RM-NEXT: [[BLOCK16:%.*]] = shufflevector <2 x i32> [[SPLIT3]], <2 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP16:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT17:%.*]] = insertelement <1 x i32> undef, i32 [[TMP16]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT18:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT17]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP17:%.*]] = mul <1 x i32> [[SPLAT_SPLAT18]], [[BLOCK16]]
|
||||
; RM-NEXT: [[TMP18:%.*]] = add <1 x i32> [[TMP15]], [[TMP17]]
|
||||
; RM-NEXT: [[TMP19:%.*]] = shufflevector <1 x i32> [[TMP18]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP20:%.*]] = shufflevector <2 x i32> undef, <2 x i32> [[TMP19]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK19:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP21:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT20:%.*]] = insertelement <1 x i32> undef, i32 [[TMP21]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT21:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT20]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP22:%.*]] = mul <1 x i32> [[SPLAT_SPLAT21]], [[BLOCK19]]
|
||||
; RM-NEXT: [[BLOCK22:%.*]] = shufflevector <2 x i32> [[SPLIT3]], <2 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP23:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT23:%.*]] = insertelement <1 x i32> undef, i32 [[TMP23]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT24:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT23]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP24:%.*]] = mul <1 x i32> [[SPLAT_SPLAT24]], [[BLOCK22]]
|
||||
; RM-NEXT: [[TMP25:%.*]] = add <1 x i32> [[TMP22]], [[TMP24]]
|
||||
; RM-NEXT: [[TMP26:%.*]] = shufflevector <1 x i32> [[TMP25]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP27:%.*]] = shufflevector <2 x i32> [[TMP20]], <2 x i32> [[TMP26]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[TMP28:%.*]] = shufflevector <2 x i32> [[TMP13]], <2 x i32> [[TMP27]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
||||
; RM-NEXT: ret <4 x i32> [[TMP28]]
|
||||
;
|
||||
entry:
|
||||
%c = call <4 x i32> @llvm.matrix.multiply.v4f64.v4f64.v4f64(<4 x i32> %a, <4 x i32> %b, i32 2, i32 2, i32 2)
|
||||
ret <4 x i32> %c
|
||||
}
|
||||
|
||||
declare <4 x i32> @llvm.matrix.multiply.v4f64.v4f64.v4f64(<4 x i32>, <4 x i32>, i32, i32, i32)
|
||||
|
||||
define <4 x i32> @multiply_1x2(<2 x i32> %a, <2 x i32> %b) {
|
||||
|
||||
; RM-LABEL: @multiply_1x2(
|
||||
; RM-NEXT: entry:
|
||||
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <2 x i32> [[A:%.*]], <2 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <2 x i32> [[A]], <2 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <2 x i32> [[B:%.*]], <2 x i32> undef, <2 x i32> <i32 0, i32 1>
|
||||
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP0:%.*]] = extractelement <1 x i32> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x i32> undef, i32 [[TMP0]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP1:%.*]] = mul <1 x i32> [[SPLAT_SPLAT]], [[BLOCK]]
|
||||
; RM-NEXT: [[TMP2:%.*]] = shufflevector <1 x i32> [[TMP1]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP3:%.*]] = shufflevector <2 x i32> undef, <2 x i32> [[TMP2]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK3:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP4:%.*]] = extractelement <1 x i32> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT4:%.*]] = insertelement <1 x i32> undef, i32 [[TMP4]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT5:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT4]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP5:%.*]] = mul <1 x i32> [[SPLAT_SPLAT5]], [[BLOCK3]]
|
||||
; RM-NEXT: [[TMP6:%.*]] = shufflevector <1 x i32> [[TMP5]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP7:%.*]] = shufflevector <2 x i32> [[TMP3]], <2 x i32> [[TMP6]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[BLOCK6:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP8:%.*]] = extractelement <1 x i32> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT7:%.*]] = insertelement <1 x i32> undef, i32 [[TMP8]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT8:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT7]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP9:%.*]] = mul <1 x i32> [[SPLAT_SPLAT8]], [[BLOCK6]]
|
||||
; RM-NEXT: [[TMP10:%.*]] = shufflevector <1 x i32> [[TMP9]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP11:%.*]] = shufflevector <2 x i32> undef, <2 x i32> [[TMP10]], <2 x i32> <i32 2, i32 1>
|
||||
; RM-NEXT: [[BLOCK9:%.*]] = shufflevector <2 x i32> [[SPLIT2]], <2 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP12:%.*]] = extractelement <1 x i32> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT10:%.*]] = insertelement <1 x i32> undef, i32 [[TMP12]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT11:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT10]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP13:%.*]] = mul <1 x i32> [[SPLAT_SPLAT11]], [[BLOCK9]]
|
||||
; RM-NEXT: [[TMP14:%.*]] = shufflevector <1 x i32> [[TMP13]], <1 x i32> undef, <2 x i32> <i32 0, i32 undef>
|
||||
; RM-NEXT: [[TMP15:%.*]] = shufflevector <2 x i32> [[TMP11]], <2 x i32> [[TMP14]], <2 x i32> <i32 0, i32 2>
|
||||
; RM-NEXT: [[TMP16:%.*]] = shufflevector <2 x i32> [[TMP7]], <2 x i32> [[TMP15]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
|
||||
; RM-NEXT: ret <4 x i32> [[TMP16]]
|
||||
;
|
||||
entry:
|
||||
%c = call <4 x i32> @llvm.matrix.multiply.v4f64.v2f64.v2f64(<2 x i32> %a, <2 x i32> %b, i32 2, i32 1, i32 2)
|
||||
ret <4 x i32> %c
|
||||
}
|
||||
|
||||
declare <4 x i32> @llvm.matrix.multiply.v4f64.v2f64.v2f64(<2 x i32>, <2 x i32>, i32, i32, i32)
|
||||
|
||||
define <9 x i32> @multiply_2x3(<6 x i32> %a, <6 x i32> %b) {
|
||||
; RM-LABEL: @multiply_2x3(
|
||||
; RM-NEXT: entry:
|
||||
; RM-NEXT: [[SPLIT:%.*]] = shufflevector <6 x i32> [[A:%.*]], <6 x i32> undef, <2 x i32> <i32 0, i32 1>
|
||||
; RM-NEXT: [[SPLIT1:%.*]] = shufflevector <6 x i32> [[A]], <6 x i32> undef, <2 x i32> <i32 2, i32 3>
|
||||
; RM-NEXT: [[SPLIT2:%.*]] = shufflevector <6 x i32> [[A]], <6 x i32> undef, <2 x i32> <i32 4, i32 5>
|
||||
; RM-NEXT: [[SPLIT3:%.*]] = shufflevector <6 x i32> [[B:%.*]], <6 x i32> undef, <3 x i32> <i32 0, i32 1, i32 2>
|
||||
; RM-NEXT: [[SPLIT4:%.*]] = shufflevector <6 x i32> [[B]], <6 x i32> undef, <3 x i32> <i32 3, i32 4, i32 5>
|
||||
; RM-NEXT: [[BLOCK:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP0:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT:%.*]] = insertelement <1 x i32> undef, i32 [[TMP0]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP1:%.*]] = mul <1 x i32> [[SPLAT_SPLAT]], [[BLOCK]]
|
||||
; RM-NEXT: [[BLOCK5:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP2:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT6:%.*]] = insertelement <1 x i32> undef, i32 [[TMP2]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT7:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT6]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP3:%.*]] = mul <1 x i32> [[SPLAT_SPLAT7]], [[BLOCK5]]
|
||||
; RM-NEXT: [[TMP4:%.*]] = add <1 x i32> [[TMP1]], [[TMP3]]
|
||||
; RM-NEXT: [[TMP5:%.*]] = shufflevector <1 x i32> [[TMP4]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP6:%.*]] = shufflevector <3 x i32> undef, <3 x i32> [[TMP5]], <3 x i32> <i32 3, i32 1, i32 2>
|
||||
; RM-NEXT: [[BLOCK8:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP7:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT9:%.*]] = insertelement <1 x i32> undef, i32 [[TMP7]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT10:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT9]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP8:%.*]] = mul <1 x i32> [[SPLAT_SPLAT10]], [[BLOCK8]]
|
||||
; RM-NEXT: [[BLOCK11:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP9:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT12:%.*]] = insertelement <1 x i32> undef, i32 [[TMP9]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT13:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT12]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP10:%.*]] = mul <1 x i32> [[SPLAT_SPLAT13]], [[BLOCK11]]
|
||||
; RM-NEXT: [[TMP11:%.*]] = add <1 x i32> [[TMP8]], [[TMP10]]
|
||||
; RM-NEXT: [[TMP12:%.*]] = shufflevector <1 x i32> [[TMP11]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP13:%.*]] = shufflevector <3 x i32> [[TMP6]], <3 x i32> [[TMP12]], <3 x i32> <i32 0, i32 3, i32 2>
|
||||
; RM-NEXT: [[BLOCK14:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP14:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT15:%.*]] = insertelement <1 x i32> undef, i32 [[TMP14]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT16:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT15]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP15:%.*]] = mul <1 x i32> [[SPLAT_SPLAT16]], [[BLOCK14]]
|
||||
; RM-NEXT: [[BLOCK17:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP16:%.*]] = extractelement <2 x i32> [[SPLIT]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT18:%.*]] = insertelement <1 x i32> undef, i32 [[TMP16]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT19:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT18]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP17:%.*]] = mul <1 x i32> [[SPLAT_SPLAT19]], [[BLOCK17]]
|
||||
; RM-NEXT: [[TMP18:%.*]] = add <1 x i32> [[TMP15]], [[TMP17]]
|
||||
; RM-NEXT: [[TMP19:%.*]] = shufflevector <1 x i32> [[TMP18]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP20:%.*]] = shufflevector <3 x i32> [[TMP13]], <3 x i32> [[TMP19]], <3 x i32> <i32 0, i32 1, i32 3>
|
||||
; RM-NEXT: [[BLOCK20:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP21:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT21:%.*]] = insertelement <1 x i32> undef, i32 [[TMP21]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT22:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT21]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP22:%.*]] = mul <1 x i32> [[SPLAT_SPLAT22]], [[BLOCK20]]
|
||||
; RM-NEXT: [[BLOCK23:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP23:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT24:%.*]] = insertelement <1 x i32> undef, i32 [[TMP23]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT25:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT24]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP24:%.*]] = mul <1 x i32> [[SPLAT_SPLAT25]], [[BLOCK23]]
|
||||
; RM-NEXT: [[TMP25:%.*]] = add <1 x i32> [[TMP22]], [[TMP24]]
|
||||
; RM-NEXT: [[TMP26:%.*]] = shufflevector <1 x i32> [[TMP25]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP27:%.*]] = shufflevector <3 x i32> undef, <3 x i32> [[TMP26]], <3 x i32> <i32 3, i32 1, i32 2>
|
||||
; RM-NEXT: [[BLOCK26:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP28:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT27:%.*]] = insertelement <1 x i32> undef, i32 [[TMP28]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT28:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT27]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP29:%.*]] = mul <1 x i32> [[SPLAT_SPLAT28]], [[BLOCK26]]
|
||||
; RM-NEXT: [[BLOCK29:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP30:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT30:%.*]] = insertelement <1 x i32> undef, i32 [[TMP30]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT31:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT30]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP31:%.*]] = mul <1 x i32> [[SPLAT_SPLAT31]], [[BLOCK29]]
|
||||
; RM-NEXT: [[TMP32:%.*]] = add <1 x i32> [[TMP29]], [[TMP31]]
|
||||
; RM-NEXT: [[TMP33:%.*]] = shufflevector <1 x i32> [[TMP32]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP34:%.*]] = shufflevector <3 x i32> [[TMP27]], <3 x i32> [[TMP33]], <3 x i32> <i32 0, i32 3, i32 2>
|
||||
; RM-NEXT: [[BLOCK32:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP35:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT33:%.*]] = insertelement <1 x i32> undef, i32 [[TMP35]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT34:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT33]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP36:%.*]] = mul <1 x i32> [[SPLAT_SPLAT34]], [[BLOCK32]]
|
||||
; RM-NEXT: [[BLOCK35:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP37:%.*]] = extractelement <2 x i32> [[SPLIT1]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT36:%.*]] = insertelement <1 x i32> undef, i32 [[TMP37]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT37:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT36]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP38:%.*]] = mul <1 x i32> [[SPLAT_SPLAT37]], [[BLOCK35]]
|
||||
; RM-NEXT: [[TMP39:%.*]] = add <1 x i32> [[TMP36]], [[TMP38]]
|
||||
; RM-NEXT: [[TMP40:%.*]] = shufflevector <1 x i32> [[TMP39]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP41:%.*]] = shufflevector <3 x i32> [[TMP34]], <3 x i32> [[TMP40]], <3 x i32> <i32 0, i32 1, i32 3>
|
||||
; RM-NEXT: [[BLOCK38:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP42:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT39:%.*]] = insertelement <1 x i32> undef, i32 [[TMP42]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT40:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT39]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP43:%.*]] = mul <1 x i32> [[SPLAT_SPLAT40]], [[BLOCK38]]
|
||||
; RM-NEXT: [[BLOCK41:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP44:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT42:%.*]] = insertelement <1 x i32> undef, i32 [[TMP44]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT43:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT42]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP45:%.*]] = mul <1 x i32> [[SPLAT_SPLAT43]], [[BLOCK41]]
|
||||
; RM-NEXT: [[TMP46:%.*]] = add <1 x i32> [[TMP43]], [[TMP45]]
|
||||
; RM-NEXT: [[TMP47:%.*]] = shufflevector <1 x i32> [[TMP46]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP48:%.*]] = shufflevector <3 x i32> undef, <3 x i32> [[TMP47]], <3 x i32> <i32 3, i32 1, i32 2>
|
||||
; RM-NEXT: [[BLOCK44:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP49:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT45:%.*]] = insertelement <1 x i32> undef, i32 [[TMP49]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT46:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT45]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP50:%.*]] = mul <1 x i32> [[SPLAT_SPLAT46]], [[BLOCK44]]
|
||||
; RM-NEXT: [[BLOCK47:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 1>
|
||||
; RM-NEXT: [[TMP51:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT48:%.*]] = insertelement <1 x i32> undef, i32 [[TMP51]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT49:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT48]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP52:%.*]] = mul <1 x i32> [[SPLAT_SPLAT49]], [[BLOCK47]]
|
||||
; RM-NEXT: [[TMP53:%.*]] = add <1 x i32> [[TMP50]], [[TMP52]]
|
||||
; RM-NEXT: [[TMP54:%.*]] = shufflevector <1 x i32> [[TMP53]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP55:%.*]] = shufflevector <3 x i32> [[TMP48]], <3 x i32> [[TMP54]], <3 x i32> <i32 0, i32 3, i32 2>
|
||||
; RM-NEXT: [[BLOCK50:%.*]] = shufflevector <3 x i32> [[SPLIT3]], <3 x i32> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP56:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 0
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT51:%.*]] = insertelement <1 x i32> undef, i32 [[TMP56]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT52:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT51]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP57:%.*]] = mul <1 x i32> [[SPLAT_SPLAT52]], [[BLOCK50]]
|
||||
; RM-NEXT: [[BLOCK53:%.*]] = shufflevector <3 x i32> [[SPLIT4]], <3 x i32> undef, <1 x i32> <i32 2>
|
||||
; RM-NEXT: [[TMP58:%.*]] = extractelement <2 x i32> [[SPLIT2]], i64 1
|
||||
; RM-NEXT: [[SPLAT_SPLATINSERT54:%.*]] = insertelement <1 x i32> undef, i32 [[TMP58]], i32 0
|
||||
; RM-NEXT: [[SPLAT_SPLAT55:%.*]] = shufflevector <1 x i32> [[SPLAT_SPLATINSERT54]], <1 x i32> undef, <1 x i32> zeroinitializer
|
||||
; RM-NEXT: [[TMP59:%.*]] = mul <1 x i32> [[SPLAT_SPLAT55]], [[BLOCK53]]
|
||||
; RM-NEXT: [[TMP60:%.*]] = add <1 x i32> [[TMP57]], [[TMP59]]
|
||||
; RM-NEXT: [[TMP61:%.*]] = shufflevector <1 x i32> [[TMP60]], <1 x i32> undef, <3 x i32> <i32 0, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP62:%.*]] = shufflevector <3 x i32> [[TMP55]], <3 x i32> [[TMP61]], <3 x i32> <i32 0, i32 1, i32 3>
|
||||
; RM-NEXT: [[TMP63:%.*]] = shufflevector <3 x i32> [[TMP20]], <3 x i32> [[TMP41]], <6 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5>
|
||||
; RM-NEXT: [[TMP64:%.*]] = shufflevector <3 x i32> [[TMP62]], <3 x i32> undef, <6 x i32> <i32 0, i32 1, i32 2, i32 undef, i32 undef, i32 undef>
|
||||
; RM-NEXT: [[TMP65:%.*]] = shufflevector <6 x i32> [[TMP63]], <6 x i32> [[TMP64]], <9 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7, i32 8>
|
||||
; RM-NEXT: ret <9 x i32> [[TMP65]]
|
||||
;
|
||||
entry:
|
||||
%c = call <9 x i32> @llvm.matrix.multiply.v6f64.v6f64.v6f64(<6 x i32> %a, <6 x i32> %b, i32 3, i32 2, i32 3)
|
||||
ret <9 x i32> %c
|
||||
}
|
||||
|
||||
declare <9 x i32> @llvm.matrix.multiply.v6f64.v6f64.v6f64(<6 x i32>, <6 x i32>, i32, i32, i32)
|
Loading…
Reference in New Issue
Block a user