1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00

[InstCombine, ARM] Convert vld1 to llvm load

Convert a vector load intrinsic into an llvm load instruction.
This is beneficial when the underlying object being addressed
comes from a constant, since we get constant-folding for free.

Differential Revision: https://reviews.llvm.org/D46273

llvm-svn: 333643
This commit is contained in:
Alexandros Lamprineas 2018-05-31 12:19:18 +00:00
parent 99716a5b0e
commit 832288a5c9
2 changed files with 148 additions and 1 deletions

View File

@ -1427,6 +1427,28 @@ static Value *simplifyNeonTbl1(const IntrinsicInst &II,
return Builder.CreateShuffleVector(V1, V2, ShuffleMask); return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
} }
/// Convert a vector load intrinsic into a simple llvm load instruction.
/// This is beneficial when the underlying object being addressed comes
/// from a constant, since we get constant-folding for free.
static Value *simplifyNeonVld1(const IntrinsicInst &II,
unsigned MemAlign,
InstCombiner::BuilderTy &Builder) {
auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
if (!IntrAlign)
return nullptr;
unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
MemAlign : IntrAlign->getLimitedValue();
if (!isPowerOf2_32(Alignment))
return nullptr;
auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
PointerType::get(II.getType(), 0));
return Builder.CreateAlignedLoad(BCastInst, Alignment);
}
// Returns true iff the 2 intrinsics have the same operands, limiting the // Returns true iff the 2 intrinsics have the same operands, limiting the
// comparison to the first NumOperands. // comparison to the first NumOperands.
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
@ -2941,7 +2963,14 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
} }
break; break;
case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld1: {
unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
DL, II, &AC, &DT);
if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
return replaceInstUsesWith(*II, V);
break;
}
case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld2:
case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld3:
case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld4:

View File

@ -0,0 +1,118 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
target triple = "armv8-arm-none-eabi"
; Turning a vld1 intrinsic into an llvm load is beneficial
; when the underlying object being addressed comes from a
; constant, since we get constant-folding for free.
; Bail the optimization if the alignment is not a constant.
define <2 x i64> @vld1_align(i8* %ptr, i32 %align) {
; CHECK-LABEL: @vld1_align(
; CHECK-NEXT: [[VLD1:%.*]] = call <2 x i64> @llvm.arm.neon.vld1.v2i64.p0i8(i8* [[PTR:%.*]], i32 [[ALIGN:%.*]])
; CHECK-NEXT: ret <2 x i64> [[VLD1]]
;
%vld1 = call <2 x i64> @llvm.arm.neon.vld1.v2i64.p0i8(i8* %ptr, i32 %align)
ret <2 x i64> %vld1
}
; Bail the optimization if the alignment is not power of 2.
define <2 x i64> @vld1_align_pow2(i8* %ptr) {
; CHECK-LABEL: @vld1_align_pow2(
; CHECK-NEXT: [[VLD1:%.*]] = call <2 x i64> @llvm.arm.neon.vld1.v2i64.p0i8(i8* [[PTR:%.*]], i32 3)
; CHECK-NEXT: ret <2 x i64> [[VLD1]]
;
%vld1 = call <2 x i64> @llvm.arm.neon.vld1.v2i64.p0i8(i8* %ptr, i32 3)
ret <2 x i64> %vld1
}
define <8 x i8> @vld1_8x8(i8* %ptr) {
; CHECK-LABEL: @vld1_8x8(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i8* [[PTR:%.*]] to <8 x i8>*
; CHECK-NEXT: [[TMP2:%.*]] = load <8 x i8>, <8 x i8>* [[TMP1]], align 1
; CHECK-NEXT: ret <8 x i8> [[TMP2]]
;
%vld1 = call <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8* %ptr, i32 1)
ret <8 x i8> %vld1
}
define <4 x i16> @vld1_4x16(i8* %ptr) {
; CHECK-LABEL: @vld1_4x16(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i8* [[PTR:%.*]] to <4 x i16>*
; CHECK-NEXT: [[TMP2:%.*]] = load <4 x i16>, <4 x i16>* [[TMP1]], align 2
; CHECK-NEXT: ret <4 x i16> [[TMP2]]
;
%vld1 = call <4 x i16> @llvm.arm.neon.vld1.v4i16.p0i8(i8* %ptr, i32 2)
ret <4 x i16> %vld1
}
define <2 x i32> @vld1_2x32(i8* %ptr) {
; CHECK-LABEL: @vld1_2x32(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i8* [[PTR:%.*]] to <2 x i32>*
; CHECK-NEXT: [[TMP2:%.*]] = load <2 x i32>, <2 x i32>* [[TMP1]], align 4
; CHECK-NEXT: ret <2 x i32> [[TMP2]]
;
%vld1 = call <2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8* %ptr, i32 4)
ret <2 x i32> %vld1
}
define <1 x i64> @vld1_1x64(i8* %ptr) {
; CHECK-LABEL: @vld1_1x64(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i8* [[PTR:%.*]] to <1 x i64>*
; CHECK-NEXT: [[TMP2:%.*]] = load <1 x i64>, <1 x i64>* [[TMP1]], align 8
; CHECK-NEXT: ret <1 x i64> [[TMP2]]
;
%vld1 = call <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8* %ptr, i32 8)
ret <1 x i64> %vld1
}
define <8 x i16> @vld1_8x16(i8* %ptr) {
; CHECK-LABEL: @vld1_8x16(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i8* [[PTR:%.*]] to <8 x i16>*
; CHECK-NEXT: [[TMP2:%.*]] = load <8 x i16>, <8 x i16>* [[TMP1]], align 2
; CHECK-NEXT: ret <8 x i16> [[TMP2]]
;
%vld1 = call <8 x i16> @llvm.arm.neon.vld1.v8i16.p0i8(i8* %ptr, i32 2)
ret <8 x i16> %vld1
}
define <16 x i8> @vld1_16x8(i8* %ptr) {
; CHECK-LABEL: @vld1_16x8(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i8* [[PTR:%.*]] to <16 x i8>*
; CHECK-NEXT: [[TMP2:%.*]] = load <16 x i8>, <16 x i8>* [[TMP1]], align 1
; CHECK-NEXT: ret <16 x i8> [[TMP2]]
;
%vld1 = call <16 x i8> @llvm.arm.neon.vld1.v16i8.p0i8(i8* %ptr, i32 1)
ret <16 x i8> %vld1
}
define <4 x i32> @vld1_4x32(i8* %ptr) {
; CHECK-LABEL: @vld1_4x32(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i8* [[PTR:%.*]] to <4 x i32>*
; CHECK-NEXT: [[TMP2:%.*]] = load <4 x i32>, <4 x i32>* [[TMP1]], align 4
; CHECK-NEXT: ret <4 x i32> [[TMP2]]
;
%vld1 = call <4 x i32> @llvm.arm.neon.vld1.v4i32.p0i8(i8* %ptr, i32 4)
ret <4 x i32> %vld1
}
define <2 x i64> @vld1_2x64(i8* %ptr) {
; CHECK-LABEL: @vld1_2x64(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i8* [[PTR:%.*]] to <2 x i64>*
; CHECK-NEXT: [[TMP2:%.*]] = load <2 x i64>, <2 x i64>* [[TMP1]], align 8
; CHECK-NEXT: ret <2 x i64> [[TMP2]]
;
%vld1 = call <2 x i64> @llvm.arm.neon.vld1.v2i64.p0i8(i8* %ptr, i32 8)
ret <2 x i64> %vld1
}
declare <8 x i8> @llvm.arm.neon.vld1.v8i8.p0i8(i8*, i32)
declare <4 x i16> @llvm.arm.neon.vld1.v4i16.p0i8(i8*, i32)
declare <2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
declare <1 x i64> @llvm.arm.neon.vld1.v1i64.p0i8(i8*, i32)
declare <8 x i16> @llvm.arm.neon.vld1.v8i16.p0i8(i8*, i32)
declare <16 x i8> @llvm.arm.neon.vld1.v16i8.p0i8(i8*, i32)
declare <4 x i32> @llvm.arm.neon.vld1.v4i32.p0i8(i8*, i32)
declare <2 x i64> @llvm.arm.neon.vld1.v2i64.p0i8(i8*, i32)