1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00

Almost a complete rewrite of FunctionResolution to now resolve functions

and global variables.

This fixes bug: FuncResolve/2002-08-19-ResolveGlobalVarsEasier.ll
And bug: SingleSource/UnitTests/2002-10-09-ArrayResolution.c

Note that this does not fix bug:
FunctionResolve/2002-08-19-ResolveGlobalVars.ll because replaceAllUsesWith
breaks when a constantexpr is pointing to the thing being replaced.  This
is more of an infrastructure problem than anything.

llvm-svn: 4099
This commit is contained in:
Chris Lattner 2002-10-09 21:10:06 +00:00
parent 8081455368
commit 83d105d986

View File

@ -17,7 +17,7 @@
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "llvm/Pass.h" #include "llvm/Pass.h"
#include "llvm/iOther.h" #include "llvm/iOther.h"
#include "llvm/Constant.h" #include "llvm/Constants.h"
#include "Support/Statistic.h" #include "Support/Statistic.h"
#include <algorithm> #include <algorithm>
@ -27,6 +27,7 @@ using std::cerr;
namespace { namespace {
Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved"); Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved");
Statistic<> NumGlobals("funcresolve", "Number of global variables resolved");
struct FunctionResolvingPass : public Pass { struct FunctionResolvingPass : public Pass {
bool run(Module &M); bool run(Module &M);
@ -111,90 +112,14 @@ static void ConvertCallTo(CallInst *CI, Function *Dest) {
} }
bool FunctionResolvingPass::run(Module &M) { static bool ResolveFunctions(Module &M, vector<GlobalValue*> &Globals,
SymbolTable *ST = M.getSymbolTable(); Function *Concrete) {
if (!ST) return false;
std::map<string, vector<Function*> > Functions;
// Loop over the entries in the symbol table. If an entry is a func pointer,
// then add it to the Functions map. We do a two pass algorithm here to avoid
// problems with iterators getting invalidated if we did a one pass scheme.
//
for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
if (const PointerType *PT = dyn_cast<PointerType>(I->first))
if (isa<FunctionType>(PT->getElementType())) {
SymbolTable::VarMap &Plane = I->second;
for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
PI != PE; ++PI) {
Function *F = cast<Function>(PI->second);
assert(PI->first == F->getName() &&
"Function name and symbol table do not agree!");
if (F->hasExternalLinkage()) // Only resolve decls to external fns
Functions[PI->first].push_back(F);
}
}
bool Changed = false; bool Changed = false;
for (unsigned i = 0; i != Globals.size(); ++i)
// Now we have a list of all functions with a particular name. If there is if (Globals[i] != Concrete) {
// more than one entry in a list, merge the functions together. Function *Old = cast<Function>(Globals[i]);
//
for (std::map<string, vector<Function*> >::iterator I = Functions.begin(),
E = Functions.end(); I != E; ++I) {
vector<Function*> &Functions = I->second;
Function *Implementation = 0; // Find the implementation
Function *Concrete = 0;
for (unsigned i = 0; i < Functions.size(); ) {
if (!Functions[i]->isExternal()) { // Found an implementation
if (Implementation != 0)
assert(Implementation == 0 && "Multiple definitions of the same"
" function. Case not handled yet!");
Implementation = Functions[i];
} else {
// Ignore functions that are never used so they don't cause spurious
// warnings... here we will actually DCE the function so that it isn't
// used later.
//
if (Functions[i]->use_empty()) {
M.getFunctionList().erase(Functions[i]);
Functions.erase(Functions.begin()+i);
Changed = true;
++NumResolved;
continue;
}
}
if (Functions[i] && (!Functions[i]->getFunctionType()->isVarArg())) {
if (Concrete) { // Found two different functions types. Can't choose
Concrete = 0;
break;
}
Concrete = Functions[i];
}
++i;
}
if (Functions.size() > 1) { // Found a multiply defined function...
// We should find exactly one non-vararg function definition, which is
// probably the implementation. Change all of the function definitions
// and uses to use it instead.
//
if (!Concrete) {
cerr << "Warning: Found functions types that are not compatible:\n";
for (unsigned i = 0; i < Functions.size(); ++i) {
cerr << "\t" << Functions[i]->getType()->getDescription() << " %"
<< Functions[i]->getName() << "\n";
}
cerr << " No linkage of functions named '" << Functions[0]->getName()
<< "' performed!\n";
} else {
for (unsigned i = 0; i < Functions.size(); ++i)
if (Functions[i] != Concrete) {
Function *Old = Functions[i];
const FunctionType *OldMT = Old->getFunctionType(); const FunctionType *OldMT = Old->getFunctionType();
const FunctionType *ConcreteMT = Concrete->getFunctionType(); const FunctionType *ConcreteMT = Concrete->getFunctionType();
bool Broken = false;
assert(OldMT->getParamTypes().size() <= assert(OldMT->getParamTypes().size() <=
ConcreteMT->getParamTypes().size() && ConcreteMT->getParamTypes().size() &&
@ -207,10 +132,8 @@ bool FunctionResolvingPass::run(Module &M) {
if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) { if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
cerr << "Parameter types conflict for" << OldMT cerr << "Parameter types conflict for" << OldMT
<< " and " << ConcreteMT; << " and " << ConcreteMT;
Broken = true; return Changed;
} }
if (Broken) break; // Can't process this one!
// Attempt to convert all of the uses of the old function to the // Attempt to convert all of the uses of the old function to the
// concrete form of the function. If there is a use of the fn that // concrete form of the function. If there is a use of the fn that
@ -246,9 +169,177 @@ bool FunctionResolvingPass::run(Module &M) {
} }
} }
} }
return Changed;
}
static bool ResolveGlobalVariables(Module &M, vector<GlobalValue*> &Globals,
GlobalVariable *Concrete) {
bool Changed = false;
assert(isa<ArrayType>(Concrete->getType()->getElementType()) &&
"Concrete version should be an array type!");
// Get the type of the things that may be resolved to us...
const Type *AETy =
cast<ArrayType>(Concrete->getType()->getElementType())->getElementType();
std::vector<Constant*> Args;
Args.push_back(Constant::getNullValue(Type::LongTy));
Args.push_back(Constant::getNullValue(Type::LongTy));
ConstantExpr *Replacement =
ConstantExpr::getGetElementPtr(ConstantPointerRef::get(Concrete), Args);
for (unsigned i = 0; i != Globals.size(); ++i)
if (Globals[i] != Concrete) {
GlobalVariable *Old = cast<GlobalVariable>(Globals[i]);
if (Old->getType()->getElementType() != AETy) {
std::cerr << "WARNING: Two global variables exist with the same name "
<< "that cannot be resolved!\n";
return false;
} }
// In this case, Old is a pointer to T, Concrete is a pointer to array of
// T. Because of this, replace all uses of Old with a constantexpr
// getelementptr that returns the address of the first element of the
// array.
//
Old->replaceAllUsesWith(Replacement);
// Since there are no uses of Old anymore, remove it from the module.
M.getGlobalList().erase(Old);
++NumGlobals;
Changed = true;
}
return Changed;
}
static bool ProcessGlobalsWithSameName(Module &M,
vector<GlobalValue*> &Globals) {
assert(!Globals.empty() && "Globals list shouldn't be empty here!");
bool isFunction = isa<Function>(Globals[0]); // Is this group all functions?
bool Changed = false;
GlobalValue *Concrete = 0; // The most concrete implementation to resolve to
assert((isFunction ^ isa<GlobalVariable>(Globals[0])) &&
"Should either be function or gvar!");
for (unsigned i = 0; i != Globals.size(); ) {
if (isa<Function>(Globals[i]) != isFunction) {
std::cerr << "WARNING: Found function and global variable with the "
<< "same name: '" << Globals[i]->getName() << "'.\n";
return false; // Don't know how to handle this, bail out!
}
// Ignore globals that are never used so they don't cause spurious
// warnings... here we will actually DCE the function so that it isn't used
// later.
//
if (Globals[i]->isExternal() && Globals[i]->use_empty()) {
if (isFunction)
M.getFunctionList().erase(cast<Function>(Globals[i]));
else
M.getGlobalList().erase(cast<GlobalVariable>(Globals[i]));
Globals.erase(Globals.begin()+i);
Changed = true;
++NumResolved;
} else if (isFunction) {
// For functions, we look to merge functions definitions of "int (...)"
// to 'int (int)' or 'int ()' or whatever else is not completely generic.
//
Function *F = cast<Function>(Globals[i]);
if (!F->getFunctionType()->isVarArg() ||
F->getFunctionType()->getNumParams()) {
if (Concrete)
return false; // Found two different functions types. Can't choose!
Concrete = Globals[i];
}
++i;
} else {
// For global variables, we have to merge C definitions int A[][4] with
// int[6][4]
GlobalVariable *GV = cast<GlobalVariable>(Globals[i]);
if (Concrete == 0) {
if (isa<ArrayType>(GV->getType()->getElementType()))
Concrete = GV;
} else { // Must have different types... one is an array of the other?
const ArrayType *AT =
dyn_cast<ArrayType>(GV->getType()->getElementType());
// If GV is an array of Concrete, then GV is the array.
if (AT && AT->getElementType() == Concrete->getType()->getElementType())
Concrete = GV;
else {
// Concrete must be an array type, check to see if the element type of
// concrete is already GV.
AT = cast<ArrayType>(Concrete->getType()->getElementType());
if (AT->getElementType() != GV->getType()->getElementType())
Concrete = 0; // Don't know how to handle it!
} }
} }
++i;
}
}
if (Globals.size() > 1) { // Found a multiply defined global...
// We should find exactly one concrete function definition, which is
// probably the implementation. Change all of the function definitions and
// uses to use it instead.
//
if (!Concrete) {
cerr << "WARNING: Found function types that are not compatible:\n";
for (unsigned i = 0; i < Globals.size(); ++i) {
cerr << "\t" << Globals[i]->getType()->getDescription() << " %"
<< Globals[i]->getName() << "\n";
}
cerr << " No linkage of globals named '" << Globals[0]->getName()
<< "' performed!\n";
return Changed;
}
if (isFunction)
return Changed | ResolveFunctions(M, Globals, cast<Function>(Concrete));
else
return Changed | ResolveGlobalVariables(M, Globals,
cast<GlobalVariable>(Concrete));
}
return Changed;
}
bool FunctionResolvingPass::run(Module &M) {
SymbolTable *ST = M.getSymbolTable();
if (!ST) return false;
std::map<string, vector<GlobalValue*> > Globals;
// Loop over the entries in the symbol table. If an entry is a func pointer,
// then add it to the Functions map. We do a two pass algorithm here to avoid
// problems with iterators getting invalidated if we did a one pass scheme.
//
for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
if (const PointerType *PT = dyn_cast<PointerType>(I->first)) {
SymbolTable::VarMap &Plane = I->second;
for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
PI != PE; ++PI) {
GlobalValue *GV = cast<GlobalValue>(PI->second);
assert(PI->first == GV->getName() &&
"Global name and symbol table do not agree!");
if (GV->hasExternalLinkage()) // Only resolve decls to external fns
Globals[PI->first].push_back(GV);
}
}
bool Changed = false;
// Now we have a list of all functions with a particular name. If there is
// more than one entry in a list, merge the functions together.
//
for (std::map<string, vector<GlobalValue*> >::iterator I = Globals.begin(),
E = Globals.end(); I != E; ++I)
Changed |= ProcessGlobalsWithSameName(M, I->second);
return Changed; return Changed;
} }