1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00

[doc] improve the doc for CUDA

1. Mentioned that CUDA support works best with trunk.
2. Simplified the example by removing its dependency on the CUDA samples.
3. Explain the --cuda-gpu-arch flag.

llvm-svn: 259307
This commit is contained in:
Jingyue Wu 2016-01-30 23:48:47 +00:00
parent 2f77371cea
commit 8437a2db93

View File

@ -18,9 +18,11 @@ familiarity with CUDA. Information about CUDA programming can be found in the
How to Build LLVM with CUDA Support
===================================
Below is a quick summary of downloading and building LLVM. Consult the `Getting
Started <http://llvm.org/docs/GettingStarted.html>`_ page for more details on
setting up LLVM.
CUDA support is still in development and works the best in the trunk version
of LLVM. Below is a quick summary of downloading and building the trunk
version. Consult the `Getting Started
<http://llvm.org/docs/GettingStarted.html>`_ page for more details on setting
up LLVM.
#. Checkout LLVM
@ -60,8 +62,6 @@ which multiplies a ``float`` array by a ``float`` scalar (AXPY).
.. code-block:: c++
#include <helper_cuda.h> // for checkCudaErrors
#include <iostream>
__global__ void axpy(float a, float* x, float* y) {
@ -78,25 +78,25 @@ which multiplies a ``float`` array by a ``float`` scalar (AXPY).
// Copy input data to device.
float* device_x;
float* device_y;
checkCudaErrors(cudaMalloc(&device_x, kDataLen * sizeof(float)));
checkCudaErrors(cudaMalloc(&device_y, kDataLen * sizeof(float)));
checkCudaErrors(cudaMemcpy(device_x, host_x, kDataLen * sizeof(float),
cudaMemcpyHostToDevice));
cudaMalloc(&device_x, kDataLen * sizeof(float));
cudaMalloc(&device_y, kDataLen * sizeof(float));
cudaMemcpy(device_x, host_x, kDataLen * sizeof(float),
cudaMemcpyHostToDevice);
// Launch the kernel.
axpy<<<1, kDataLen>>>(a, device_x, device_y);
// Copy output data to host.
checkCudaErrors(cudaDeviceSynchronize());
checkCudaErrors(cudaMemcpy(host_y, device_y, kDataLen * sizeof(float),
cudaMemcpyDeviceToHost));
cudaDeviceSynchronize();
cudaMemcpy(host_y, device_y, kDataLen * sizeof(float),
cudaMemcpyDeviceToHost);
// Print the results.
for (int i = 0; i < kDataLen; ++i) {
std::cout << "y[" << i << "] = " << host_y[i] << "\n";
}
checkCudaErrors(cudaDeviceReset());
cudaDeviceReset();
return 0;
}
@ -104,16 +104,20 @@ The command line for compilation is similar to what you would use for C++.
.. code-block:: console
$ clang++ -o axpy -I<CUDA install path>/samples/common/inc -L<CUDA install path>/<lib64 or lib> axpy.cu -lcudart_static -lcuda -ldl -lrt -pthread
$ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch> \
-L<CUDA install path>/<lib64 or lib> \
-lcudart_static -ldl -lrt -pthread
$ ./axpy
y[0] = 2
y[1] = 4
y[2] = 6
y[3] = 8
Note that ``helper_cuda.h`` comes from the CUDA samples, so you need the
samples installed for this example. ``<CUDA install path>`` is the root
directory where you installed CUDA SDK, typically ``/usr/local/cuda``.
``<CUDA install path>`` is the root directory where you installed CUDA SDK,
typically ``/usr/local/cuda``. ``<GPU arch>`` is `the compute capability of
your GPU <https://developer.nvidia.com/cuda-gpus>`_. For example, if you want
to run your program on a GPU with compute capability of 3.5, you should specify
``--cuda-gpu-arch=sm_35``.
Optimizations
=============