mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
[doc] improve the doc for CUDA
1. Mentioned that CUDA support works best with trunk. 2. Simplified the example by removing its dependency on the CUDA samples. 3. Explain the --cuda-gpu-arch flag. llvm-svn: 259307
This commit is contained in:
parent
2f77371cea
commit
8437a2db93
@ -18,9 +18,11 @@ familiarity with CUDA. Information about CUDA programming can be found in the
|
||||
How to Build LLVM with CUDA Support
|
||||
===================================
|
||||
|
||||
Below is a quick summary of downloading and building LLVM. Consult the `Getting
|
||||
Started <http://llvm.org/docs/GettingStarted.html>`_ page for more details on
|
||||
setting up LLVM.
|
||||
CUDA support is still in development and works the best in the trunk version
|
||||
of LLVM. Below is a quick summary of downloading and building the trunk
|
||||
version. Consult the `Getting Started
|
||||
<http://llvm.org/docs/GettingStarted.html>`_ page for more details on setting
|
||||
up LLVM.
|
||||
|
||||
#. Checkout LLVM
|
||||
|
||||
@ -60,8 +62,6 @@ which multiplies a ``float`` array by a ``float`` scalar (AXPY).
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
#include <helper_cuda.h> // for checkCudaErrors
|
||||
|
||||
#include <iostream>
|
||||
|
||||
__global__ void axpy(float a, float* x, float* y) {
|
||||
@ -78,25 +78,25 @@ which multiplies a ``float`` array by a ``float`` scalar (AXPY).
|
||||
// Copy input data to device.
|
||||
float* device_x;
|
||||
float* device_y;
|
||||
checkCudaErrors(cudaMalloc(&device_x, kDataLen * sizeof(float)));
|
||||
checkCudaErrors(cudaMalloc(&device_y, kDataLen * sizeof(float)));
|
||||
checkCudaErrors(cudaMemcpy(device_x, host_x, kDataLen * sizeof(float),
|
||||
cudaMemcpyHostToDevice));
|
||||
cudaMalloc(&device_x, kDataLen * sizeof(float));
|
||||
cudaMalloc(&device_y, kDataLen * sizeof(float));
|
||||
cudaMemcpy(device_x, host_x, kDataLen * sizeof(float),
|
||||
cudaMemcpyHostToDevice);
|
||||
|
||||
// Launch the kernel.
|
||||
axpy<<<1, kDataLen>>>(a, device_x, device_y);
|
||||
|
||||
// Copy output data to host.
|
||||
checkCudaErrors(cudaDeviceSynchronize());
|
||||
checkCudaErrors(cudaMemcpy(host_y, device_y, kDataLen * sizeof(float),
|
||||
cudaMemcpyDeviceToHost));
|
||||
cudaDeviceSynchronize();
|
||||
cudaMemcpy(host_y, device_y, kDataLen * sizeof(float),
|
||||
cudaMemcpyDeviceToHost);
|
||||
|
||||
// Print the results.
|
||||
for (int i = 0; i < kDataLen; ++i) {
|
||||
std::cout << "y[" << i << "] = " << host_y[i] << "\n";
|
||||
}
|
||||
|
||||
checkCudaErrors(cudaDeviceReset());
|
||||
cudaDeviceReset();
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -104,16 +104,20 @@ The command line for compilation is similar to what you would use for C++.
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ clang++ -o axpy -I<CUDA install path>/samples/common/inc -L<CUDA install path>/<lib64 or lib> axpy.cu -lcudart_static -lcuda -ldl -lrt -pthread
|
||||
$ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch> \
|
||||
-L<CUDA install path>/<lib64 or lib> \
|
||||
-lcudart_static -ldl -lrt -pthread
|
||||
$ ./axpy
|
||||
y[0] = 2
|
||||
y[1] = 4
|
||||
y[2] = 6
|
||||
y[3] = 8
|
||||
|
||||
Note that ``helper_cuda.h`` comes from the CUDA samples, so you need the
|
||||
samples installed for this example. ``<CUDA install path>`` is the root
|
||||
directory where you installed CUDA SDK, typically ``/usr/local/cuda``.
|
||||
``<CUDA install path>`` is the root directory where you installed CUDA SDK,
|
||||
typically ``/usr/local/cuda``. ``<GPU arch>`` is `the compute capability of
|
||||
your GPU <https://developer.nvidia.com/cuda-gpus>`_. For example, if you want
|
||||
to run your program on a GPU with compute capability of 3.5, you should specify
|
||||
``--cuda-gpu-arch=sm_35``.
|
||||
|
||||
Optimizations
|
||||
=============
|
||||
|
Loading…
Reference in New Issue
Block a user