1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00

[NFC][SCEV] Improve tests for ptrtoint modelling (D88806)

This commit is contained in:
Roman Lebedev 2020-10-09 13:35:34 +03:00
parent 725cbaf080
commit 87cbbfcf0e
2 changed files with 239 additions and 115 deletions

View File

@ -0,0 +1,239 @@
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt < %s --data-layout="e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128" -S -analyze -enable-new-pm=0 -scalar-evolution | FileCheck --check-prefixes=ALL,X64 %s
; RUN: opt < %s--data-layout="e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128" -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck --check-prefixes=ALL,X64 %s
; RUN: opt < %s --data-layout="e-m:e-p:32:32-p270:32:32-p271:32:32-p272:64:64-f64:32:64-f80:32-n8:16:32-S128" -S -analyze -enable-new-pm=0 -scalar-evolution | FileCheck --check-prefixes=ALL,X32 %s
; RUN: opt < %s--data-layout="e-m:e-p:32:32-p270:32:32-p271:32:32-p272:64:64-f64:32:64-f80:32-n8:16:32-S128" -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck --check-prefixes=ALL,X32 %s
; While we can't treat inttoptr/ptrtoint casts as fully transparent,
; for ptrtoint cast, instead of modelling it as fully opaque (unknown),
; we can at least model it as zext/trunc/self of an unknown,
; iff it it's argument would be modelled as unknown anyways.
declare void @useptr(i8*)
; Simple ptrtoint of an argument, with casts to potentially different bit widths.
define void @ptrtoint(i8* %in, i64* %out0, i32* %out1, i16* %out2, i128* %out3) {
; X64-LABEL: 'ptrtoint'
; X64-NEXT: Classifying expressions for: @ptrtoint
; X64-NEXT: %p0 = ptrtoint i8* %in to i64
; X64-NEXT: --> %p0 U: full-set S: full-set
; X64-NEXT: %p1 = ptrtoint i8* %in to i32
; X64-NEXT: --> %p1 U: full-set S: full-set
; X64-NEXT: %p2 = ptrtoint i8* %in to i16
; X64-NEXT: --> %p2 U: full-set S: full-set
; X64-NEXT: %p3 = ptrtoint i8* %in to i128
; X64-NEXT: --> %p3 U: [0,18446744073709551616) S: [-18446744073709551616,18446744073709551616)
; X64-NEXT: Determining loop execution counts for: @ptrtoint
;
; X32-LABEL: 'ptrtoint'
; X32-NEXT: Classifying expressions for: @ptrtoint
; X32-NEXT: %p0 = ptrtoint i8* %in to i64
; X32-NEXT: --> %p0 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: %p1 = ptrtoint i8* %in to i32
; X32-NEXT: --> %p1 U: full-set S: full-set
; X32-NEXT: %p2 = ptrtoint i8* %in to i16
; X32-NEXT: --> %p2 U: full-set S: full-set
; X32-NEXT: %p3 = ptrtoint i8* %in to i128
; X32-NEXT: --> %p3 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint
;
%p0 = ptrtoint i8* %in to i64
%p1 = ptrtoint i8* %in to i32
%p2 = ptrtoint i8* %in to i16
%p3 = ptrtoint i8* %in to i128
store i64 %p0, i64* %out0
store i32 %p1, i32* %out1
store i16 %p2, i16* %out2
store i128 %p3, i128* %out3
ret void
}
; Same, but from non-zero/non-default address space.
define void @ptrtoint_as1(i8 addrspace(1)* %in, i64* %out0, i32* %out1, i16* %out2, i128* %out3) {
; X64-LABEL: 'ptrtoint_as1'
; X64-NEXT: Classifying expressions for: @ptrtoint_as1
; X64-NEXT: %p0 = ptrtoint i8 addrspace(1)* %in to i64
; X64-NEXT: --> %p0 U: full-set S: full-set
; X64-NEXT: %p1 = ptrtoint i8 addrspace(1)* %in to i32
; X64-NEXT: --> %p1 U: full-set S: full-set
; X64-NEXT: %p2 = ptrtoint i8 addrspace(1)* %in to i16
; X64-NEXT: --> %p2 U: full-set S: full-set
; X64-NEXT: %p3 = ptrtoint i8 addrspace(1)* %in to i128
; X64-NEXT: --> %p3 U: [0,18446744073709551616) S: [-18446744073709551616,18446744073709551616)
; X64-NEXT: Determining loop execution counts for: @ptrtoint_as1
;
; X32-LABEL: 'ptrtoint_as1'
; X32-NEXT: Classifying expressions for: @ptrtoint_as1
; X32-NEXT: %p0 = ptrtoint i8 addrspace(1)* %in to i64
; X32-NEXT: --> %p0 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: %p1 = ptrtoint i8 addrspace(1)* %in to i32
; X32-NEXT: --> %p1 U: full-set S: full-set
; X32-NEXT: %p2 = ptrtoint i8 addrspace(1)* %in to i16
; X32-NEXT: --> %p2 U: full-set S: full-set
; X32-NEXT: %p3 = ptrtoint i8 addrspace(1)* %in to i128
; X32-NEXT: --> %p3 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_as1
;
%p0 = ptrtoint i8 addrspace(1)* %in to i64
%p1 = ptrtoint i8 addrspace(1)* %in to i32
%p2 = ptrtoint i8 addrspace(1)* %in to i16
%p3 = ptrtoint i8 addrspace(1)* %in to i128
store i64 %p0, i64* %out0
store i32 %p1, i32* %out1
store i16 %p2, i16* %out2
store i128 %p3, i128* %out3
ret void
}
; Likewise, ptrtoint of a bitcast is fine, we simply skip it.
define void @ptrtoint_of_bitcast(i8* %in, i64* %out0) {
; X64-LABEL: 'ptrtoint_of_bitcast'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_bitcast
; X64-NEXT: %in_casted = bitcast i8* %in to float*
; X64-NEXT: --> %in U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint float* %in_casted to i64
; X64-NEXT: --> %p0 U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_bitcast
;
; X32-LABEL: 'ptrtoint_of_bitcast'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_bitcast
; X32-NEXT: %in_casted = bitcast i8* %in to float*
; X32-NEXT: --> %in U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint float* %in_casted to i64
; X32-NEXT: --> %p0 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_bitcast
;
%in_casted = bitcast i8* %in to float*
%p0 = ptrtoint float* %in_casted to i64
store i64 %p0, i64* %out0
ret void
}
; addrspacecast is fine too, but We don't model addrspacecast, so we stop there.
define void @ptrtoint_of_addrspacecast(i8* %in, i64* %out0) {
; X64-LABEL: 'ptrtoint_of_addrspacecast'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_addrspacecast
; X64-NEXT: %in_casted = addrspacecast i8* %in to i8 addrspace(1)*
; X64-NEXT: --> %in_casted U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint i8 addrspace(1)* %in_casted to i64
; X64-NEXT: --> %p0 U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_addrspacecast
;
; X32-LABEL: 'ptrtoint_of_addrspacecast'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_addrspacecast
; X32-NEXT: %in_casted = addrspacecast i8* %in to i8 addrspace(1)*
; X32-NEXT: --> %in_casted U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint i8 addrspace(1)* %in_casted to i64
; X32-NEXT: --> %p0 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_addrspacecast
;
%in_casted = addrspacecast i8* %in to i8 addrspace(1)*
%p0 = ptrtoint i8 addrspace(1)* %in_casted to i64
store i64 %p0, i64* %out0
ret void
}
; inttoptr is fine too, but we don't (and can't) model inttoptr, so we stop there.
define void @ptrtoint_of_inttoptr(i64 %in, i64* %out0) {
; X64-LABEL: 'ptrtoint_of_inttoptr'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_inttoptr
; X64-NEXT: %in_casted = inttoptr i64 %in to i8*
; X64-NEXT: --> %in_casted U: full-set S: full-set
; X64-NEXT: %p0 = ptrtoint i8* %in_casted to i64
; X64-NEXT: --> %p0 U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_inttoptr
;
; X32-LABEL: 'ptrtoint_of_inttoptr'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_inttoptr
; X32-NEXT: %in_casted = inttoptr i64 %in to i8*
; X32-NEXT: --> %in_casted U: full-set S: full-set
; X32-NEXT: %p0 = ptrtoint i8* %in_casted to i64
; X32-NEXT: --> %p0 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_inttoptr
;
%in_casted = inttoptr i64 %in to i8*
%p0 = ptrtoint i8* %in_casted to i64
store i64 %p0, i64* %out0
ret void
}
; However, GEP is something SCEV knows how to model, so in this case ptrtoint
; can't be modelled as a cast, only as an unknown.
define void @ptrtoint_of_gep(i8* %in, i64* %out0) {
; X64-LABEL: 'ptrtoint_of_gep'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_gep
; X64-NEXT: %in_adj = getelementptr inbounds i8, i8* %in, i64 42
; X64-NEXT: --> (42 + %in)<nsw> U: [-9223372036854775766,-9223372036854775808) S: [-9223372036854775766,-9223372036854775808)
; X64-NEXT: %p0 = ptrtoint i8* %in_adj to i64
; X64-NEXT: --> %p0 U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_gep
;
; X32-LABEL: 'ptrtoint_of_gep'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_gep
; X32-NEXT: %in_adj = getelementptr inbounds i8, i8* %in, i64 42
; X32-NEXT: --> (42 + %in)<nsw> U: [-2147483606,-2147483648) S: [-2147483606,-2147483648)
; X32-NEXT: %p0 = ptrtoint i8* %in_adj to i64
; X32-NEXT: --> %p0 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_gep
;
%in_adj = getelementptr inbounds i8, i8* %in, i64 42
%p0 = ptrtoint i8* %in_adj to i64
store i64 %p0, i64* %out0
ret void
}
; A constant pointer is fine
define void @ptrtoint_of_nullptr(i64* %out0) {
; ALL-LABEL: 'ptrtoint_of_nullptr'
; ALL-NEXT: Classifying expressions for: @ptrtoint_of_nullptr
; ALL-NEXT: %p0 = ptrtoint i8* null to i64
; ALL-NEXT: --> %p0 U: [0,1) S: [-1,1)
; ALL-NEXT: Determining loop execution counts for: @ptrtoint_of_nullptr
;
%p0 = ptrtoint i8* null to i64
store i64 %p0, i64* %out0
ret void
}
; A constant inttoptr argument of an ptrtoint is still bad.
define void @ptrtoint_of_constantexpr_inttoptr(i64* %out0) {
; ALL-LABEL: 'ptrtoint_of_constantexpr_inttoptr'
; ALL-NEXT: Classifying expressions for: @ptrtoint_of_constantexpr_inttoptr
; ALL-NEXT: %p0 = ptrtoint i8* inttoptr (i64 42 to i8*) to i64
; ALL-NEXT: --> %p0 U: [42,43) S: [-64,64)
; ALL-NEXT: Determining loop execution counts for: @ptrtoint_of_constantexpr_inttoptr
;
%p0 = ptrtoint i8* inttoptr (i64 42 to i8*) to i64
store i64 %p0, i64* %out0
ret void
}
; However, while bitcast would be fine, GEP we can model, so we are back
; to modelling the whole cast as unknown..
define void @ptrtoint_of_bitcast_of_gep(i8* %in, i64* %out0) {
; X64-LABEL: 'ptrtoint_of_bitcast_of_gep'
; X64-NEXT: Classifying expressions for: @ptrtoint_of_bitcast_of_gep
; X64-NEXT: %in_adj = getelementptr inbounds i8, i8* %in, i64 42
; X64-NEXT: --> (42 + %in)<nsw> U: [-9223372036854775766,-9223372036854775808) S: [-9223372036854775766,-9223372036854775808)
; X64-NEXT: %in_adj_casted = bitcast i8* %in_adj to float*
; X64-NEXT: --> (42 + %in)<nsw> U: [-9223372036854775766,-9223372036854775808) S: [-9223372036854775766,-9223372036854775808)
; X64-NEXT: %p0 = ptrtoint float* %in_adj_casted to i64
; X64-NEXT: --> %p0 U: full-set S: full-set
; X64-NEXT: Determining loop execution counts for: @ptrtoint_of_bitcast_of_gep
;
; X32-LABEL: 'ptrtoint_of_bitcast_of_gep'
; X32-NEXT: Classifying expressions for: @ptrtoint_of_bitcast_of_gep
; X32-NEXT: %in_adj = getelementptr inbounds i8, i8* %in, i64 42
; X32-NEXT: --> (42 + %in)<nsw> U: [-2147483606,-2147483648) S: [-2147483606,-2147483648)
; X32-NEXT: %in_adj_casted = bitcast i8* %in_adj to float*
; X32-NEXT: --> (42 + %in)<nsw> U: [-2147483606,-2147483648) S: [-2147483606,-2147483648)
; X32-NEXT: %p0 = ptrtoint float* %in_adj_casted to i64
; X32-NEXT: --> %p0 U: [0,4294967296) S: [-4294967296,4294967296)
; X32-NEXT: Determining loop execution counts for: @ptrtoint_of_bitcast_of_gep
;
%in_adj = getelementptr inbounds i8, i8* %in, i64 42
%in_adj_casted = bitcast i8* %in_adj to float*
%p0 = ptrtoint float* %in_adj_casted to i64
store i64 %p0, i64* %out0
ret void
}

View File

@ -1,115 +0,0 @@
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt < %s -S -analyze -enable-new-pm=0 -scalar-evolution | FileCheck %s
; RUN: opt < %s -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
; While we can't treat inttoptr/ptrtoint casts as fully transparent,
; instead of modelling them as fully opaque (unknown), we can at least model
; their source values are opaque (unknown). Which, given e.g.:
; %x = ???
; %y = inttoptr %x
; %z = inttoptr %x
; at least allows us to tell that %y and %z are identical.
; Note that we must stop at that, we can not further analyze %x itself.
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
define dso_local void @ptrtoint(i8* %in, i64* %out0, i64* %out1, i32* %out2, i128* %out3) {
; CHECK-LABEL: 'ptrtoint'
; CHECK-NEXT: Classifying expressions for: @ptrtoint
; CHECK-NEXT: %in_adj = getelementptr inbounds i8, i8* %in, i64 42
; CHECK-NEXT: --> (42 + %in)<nsw> U: [-9223372036854775766,-9223372036854775808) S: [-9223372036854775766,-9223372036854775808)
; CHECK-NEXT: %p0 = ptrtoint i8* %in_adj to i64
; CHECK-NEXT: --> %p0 U: full-set S: full-set
; CHECK-NEXT: %p1 = ptrtoint i8* %in_adj to i64
; CHECK-NEXT: --> %p1 U: full-set S: full-set
; CHECK-NEXT: %p2 = ptrtoint i8* %in_adj to i32
; CHECK-NEXT: --> %p2 U: full-set S: full-set
; CHECK-NEXT: %p3 = ptrtoint i8* %in_adj to i128
; CHECK-NEXT: --> %p3 U: [0,18446744073709551616) S: [-18446744073709551616,18446744073709551616)
; CHECK-NEXT: Determining loop execution counts for: @ptrtoint
;
%in_adj = getelementptr inbounds i8, i8* %in, i64 42
%p0 = ptrtoint i8* %in_adj to i64
%p1 = ptrtoint i8* %in_adj to i64
%p2 = ptrtoint i8* %in_adj to i32
%p3 = ptrtoint i8* %in_adj to i128
store i64 %p0, i64* %out0
store i64 %p1, i64* %out1
store i32 %p2, i32* %out2
store i128 %p3, i128* %out3
ret void
}
define dso_local void @inttoptr(i64 %in0, i8** %out0, i8** %out1) {
; CHECK-LABEL: 'inttoptr'
; CHECK-NEXT: Classifying expressions for: @inttoptr
; CHECK-NEXT: %in_adj = add i64 %in0, 42
; CHECK-NEXT: --> (42 + %in0) U: full-set S: full-set
; CHECK-NEXT: %i0 = inttoptr i64 %in_adj to i8*
; CHECK-NEXT: --> %i0 U: full-set S: full-set
; CHECK-NEXT: %i1 = inttoptr i64 %in_adj to i8*
; CHECK-NEXT: --> %i1 U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @inttoptr
;
%in_adj = add i64 %in0, 42
%i0 = inttoptr i64 %in_adj to i8*
%i1 = inttoptr i64 %in_adj to i8*
store i8* %i0, i8** %out0
store i8* %i1, i8** %out1
ret void
}
define dso_local void @inttoptr_widening(i32 %in1, i8** %out2) {
; CHECK-LABEL: 'inttoptr_widening'
; CHECK-NEXT: Classifying expressions for: @inttoptr_widening
; CHECK-NEXT: %in_adj = add i32 %in1, 42
; CHECK-NEXT: --> (42 + %in1) U: full-set S: full-set
; CHECK-NEXT: %i0 = inttoptr i32 %in_adj to i8*
; CHECK-NEXT: --> %i0 U: [0,4294967296) S: [-4294967296,4294967296)
; CHECK-NEXT: Determining loop execution counts for: @inttoptr_widening
;
%in_adj = add i32 %in1, 42
%i0 = inttoptr i32 %in_adj to i8*
store i8* %i0, i8** %out2
ret void
}
define dso_local void @inttoptr_narrowing(i128 %in2, i8** %out3) {
; CHECK-LABEL: 'inttoptr_narrowing'
; CHECK-NEXT: Classifying expressions for: @inttoptr_narrowing
; CHECK-NEXT: %in_adj = add i128 %in2, 42
; CHECK-NEXT: --> (42 + %in2) U: full-set S: full-set
; CHECK-NEXT: %i0 = inttoptr i128 %in_adj to i8*
; CHECK-NEXT: --> %i0 U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @inttoptr_narrowing
;
%in_adj = add i128 %in2, 42
%i0 = inttoptr i128 %in_adj to i8*
store i8* %i0, i8** %out3
ret void
}
; Note that we never try to analyze the value of the ptrtoint/inttoptr!
define i8* @onlysemitransparency(i8* %in) {
; CHECK-LABEL: 'onlysemitransparency'
; CHECK-NEXT: Classifying expressions for: @onlysemitransparency
; CHECK-NEXT: %i0 = ptrtoint i8* %in to i64
; CHECK-NEXT: --> %i0 U: full-set S: full-set
; CHECK-NEXT: %i1 = inttoptr i64 %i0 to i8*
; CHECK-NEXT: --> %i1 U: full-set S: full-set
; CHECK-NEXT: %i2 = ptrtoint i8* %i1 to i64
; CHECK-NEXT: --> %i2 U: full-set S: full-set
; CHECK-NEXT: %i3 = inttoptr i64 %i2 to i8*
; CHECK-NEXT: --> %i3 U: full-set S: full-set
; CHECK-NEXT: %i4 = ptrtoint i8* %i3 to i64
; CHECK-NEXT: --> %i4 U: full-set S: full-set
; CHECK-NEXT: %i5 = inttoptr i64 %i4 to i8*
; CHECK-NEXT: --> %i5 U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @onlysemitransparency
;
%i0 = ptrtoint i8* %in to i64
%i1 = inttoptr i64 %i0 to i8*
%i2 = ptrtoint i8* %i1 to i64
%i3 = inttoptr i64 %i2 to i8*
%i4 = ptrtoint i8* %i3 to i64
%i5 = inttoptr i64 %i4 to i8*
ret i8* %i5
}