mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
[LAA] Try to prove non-wrapping of pointers if SCEV cannot
Summary: Scalar evolution does not propagate the non-wrapping flags to values that are derived from a non-wrapping induction variable because the non-wrapping property could be flow-sensitive. This change is a first attempt to establish the non-wrapping property in some simple cases. The main idea is to look through the operations defining the pointer. As long as we arrive to a non-wrapping AddRec via a small chain of non-wrapping instruction, the pointer should not wrap either. I believe that this essentially is what Andy described in http://article.gmane.org/gmane.comp.compilers.llvm.cvs/220731 as the way forward. Reviewers: aschwaighofer, nadav, sanjoy, atrick Reviewed By: atrick Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D10472 llvm-svn: 240798
This commit is contained in:
parent
7cb3a3884a
commit
8912979930
@ -504,6 +504,54 @@ static bool isInBoundsGep(Value *Ptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
|
||||
/// i.e. monotonically increasing/decreasing.
|
||||
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
|
||||
ScalarEvolution *SE, const Loop *L) {
|
||||
// FIXME: This should probably only return true for NUW.
|
||||
if (AR->getNoWrapFlags(SCEV::NoWrapMask))
|
||||
return true;
|
||||
|
||||
// Scalar evolution does not propagate the non-wrapping flags to values that
|
||||
// are derived from a non-wrapping induction variable because non-wrapping
|
||||
// could be flow-sensitive.
|
||||
//
|
||||
// Look through the potentially overflowing instruction to try to prove
|
||||
// non-wrapping for the *specific* value of Ptr.
|
||||
|
||||
// The arithmetic implied by an inbounds GEP can't overflow.
|
||||
auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
|
||||
if (!GEP || !GEP->isInBounds())
|
||||
return false;
|
||||
|
||||
// Make sure there is only one non-const index and analyze that.
|
||||
Value *NonConstIndex = nullptr;
|
||||
for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
|
||||
if (!isa<ConstantInt>(*Index)) {
|
||||
if (NonConstIndex)
|
||||
return false;
|
||||
NonConstIndex = *Index;
|
||||
}
|
||||
if (!NonConstIndex)
|
||||
// The recurrence is on the pointer, ignore for now.
|
||||
return false;
|
||||
|
||||
// The index in GEP is signed. It is non-wrapping if it's derived from a NSW
|
||||
// AddRec using a NSW operation.
|
||||
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
|
||||
if (OBO->hasNoSignedWrap() &&
|
||||
// Assume constant for other the operand so that the AddRec can be
|
||||
// easily found.
|
||||
isa<ConstantInt>(OBO->getOperand(1))) {
|
||||
auto *OpScev = SE->getSCEV(OBO->getOperand(0));
|
||||
|
||||
if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
|
||||
return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Check whether the access through \p Ptr has a constant stride.
|
||||
int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
|
||||
const ValueToValueMap &StridesMap) {
|
||||
@ -541,7 +589,7 @@ int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
|
||||
// to access the pointer value "0" which is undefined behavior in address
|
||||
// space 0, therefore we can also vectorize this case.
|
||||
bool IsInBoundsGEP = isInBoundsGep(Ptr);
|
||||
bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
|
||||
bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
|
||||
bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
|
||||
if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
|
||||
DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
|
||||
|
41
test/Analysis/LoopAccessAnalysis/non-wrapping-pointer.ll
Normal file
41
test/Analysis/LoopAccessAnalysis/non-wrapping-pointer.ll
Normal file
@ -0,0 +1,41 @@
|
||||
; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s
|
||||
|
||||
; For this loop:
|
||||
; for (int i = 0; i < n; i++)
|
||||
; A[2 * i] = A[2 * i] + B[i];
|
||||
;
|
||||
; , SCEV is unable to prove that A[2 * i] does not overflow. However,
|
||||
; analyzing the IR helps us to conclude it and in turn allow dependence
|
||||
; analysis.
|
||||
|
||||
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
|
||||
|
||||
; CHECK: Memory dependences are safe{{$}}
|
||||
|
||||
define void @f(i16* noalias %a,
|
||||
i16* noalias %b, i64 %N) {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %for.body, %entry
|
||||
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
||||
|
||||
%mul = mul nuw nsw i64 %ind, 2
|
||||
|
||||
%arrayidxA = getelementptr inbounds i16, i16* %a, i64 %mul
|
||||
%loadA = load i16, i16* %arrayidxA, align 2
|
||||
|
||||
%arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind
|
||||
%loadB = load i16, i16* %arrayidxB, align 2
|
||||
|
||||
%add = mul i16 %loadA, %loadB
|
||||
|
||||
store i16 %add, i16* %arrayidxA, align 2
|
||||
|
||||
%inc = add nuw nsw i64 %ind, 1
|
||||
%exitcond = icmp eq i64 %inc, %N
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body
|
||||
ret void
|
||||
}
|
Loading…
Reference in New Issue
Block a user