1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 12:41:49 +01:00

[IR] Redefine Freeze instruction

Summary:
This patch redefines freeze instruction from being UnaryOperator to a subclass of UnaryInstruction.

ConstantExpr freeze is removed, as discussed in the previous review.
FreezeOperator is not added because there's no ConstantExpr freeze.
`freeze i8* null` test is added to `test/Bindings/llvm-c/freeze.ll` as well, because the null pointer-related bug in `tools/llvm-c/echo.cpp` is now fixed.
InstVisitor has visitFreeze now because freeze is not unaryop anymore.

Reviewers: whitequark, deadalnix, craig.topper, jdoerfert, lebedev.ri

Reviewed By: craig.topper, lebedev.ri

Subscribers: regehr, nlopes, mehdi_amini, hiraditya, steven_wu, dexonsmith, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69932
This commit is contained in:
aqjune 2019-11-07 01:17:49 +09:00
parent 167dae6eb8
commit 8a733b9297
26 changed files with 300 additions and 201 deletions

View File

@ -69,7 +69,6 @@ typedef enum {
/* Standard Unary Operators */
LLVMFNeg = 66,
LLVMFreeze = 68,
/* Standard Binary Operators */
LLVMAdd = 8,
@ -128,6 +127,7 @@ typedef enum {
LLVMShuffleVector = 52,
LLVMExtractValue = 53,
LLVMInsertValue = 54,
LLVMFreeze = 68,
/* Atomic operators */
LLVMFence = 55,
@ -1601,6 +1601,7 @@ LLVMTypeRef LLVMX86MMXType(void);
macro(ExtractValueInst) \
macro(LoadInst) \
macro(VAArgInst) \
macro(FreezeInst) \
macro(AtomicCmpXchgInst) \
macro(AtomicRMWInst) \
macro(FenceInst)
@ -3748,7 +3749,6 @@ LLVMValueRef LLVMBuildNUWNeg(LLVMBuilderRef B, LLVMValueRef V,
const char *Name);
LLVMValueRef LLVMBuildFNeg(LLVMBuilderRef, LLVMValueRef V, const char *Name);
LLVMValueRef LLVMBuildNot(LLVMBuilderRef, LLVMValueRef V, const char *Name);
LLVMValueRef LLVMBuildFreeze(LLVMBuilderRef, LLVMValueRef V, const char *Name);
/* Memory */
LLVMValueRef LLVMBuildMalloc(LLVMBuilderRef, LLVMTypeRef Ty, const char *Name);
@ -3909,6 +3909,8 @@ LLVMValueRef LLVMBuildExtractValue(LLVMBuilderRef, LLVMValueRef AggVal,
LLVMValueRef LLVMBuildInsertValue(LLVMBuilderRef, LLVMValueRef AggVal,
LLVMValueRef EltVal, unsigned Index,
const char *Name);
LLVMValueRef LLVMBuildFreeze(LLVMBuilderRef, LLVMValueRef Val,
const char *Name);
LLVMValueRef LLVMBuildIsNull(LLVMBuilderRef, LLVMValueRef Val,
const char *Name);

View File

@ -391,8 +391,7 @@ enum CastOpcodes {
/// have no fixed relation to the LLVM IR enum values. Changing these will
/// break compatibility with old files.
enum UnaryOpcodes {
UNOP_FNEG = 0,
UNOP_FREEZE = 1
UNOP_FNEG = 0
};
/// BinaryOpcodes - These are values used in the bitcode files to encode which
@ -560,6 +559,7 @@ enum FunctionCodes {
FUNC_CODE_INST_UNOP = 56, // UNOP: [opcode, ty, opval]
FUNC_CODE_INST_CALLBR = 57, // CALLBR: [attr, cc, norm, transfs,
// fnty, fnid, args...]
FUNC_CODE_INST_FREEZE = 58, // FREEZE: [opty, opval]
};
enum UseListCodes {

View File

@ -2393,7 +2393,7 @@ public:
}
Value *CreateFreeze(Value *V, const Twine &Name = "") {
return Insert(UnaryOperator::CreateFreeze(V, Name));
return Insert(new FreezeInst(V), Name);
}
//===--------------------------------------------------------------------===//

View File

@ -199,6 +199,7 @@ public:
RetTy visitFuncletPadInst(FuncletPadInst &I) { DELEGATE(Instruction); }
RetTy visitCleanupPadInst(CleanupPadInst &I) { DELEGATE(FuncletPadInst); }
RetTy visitCatchPadInst(CatchPadInst &I) { DELEGATE(FuncletPadInst); }
RetTy visitFreezeInst(FreezeInst &I) { DELEGATE(Instruction); }
// Handle the special instrinsic instruction classes.
RetTy visitDbgDeclareInst(DbgDeclareInst &I) { DELEGATE(DbgVariableIntrinsic);}

View File

@ -140,84 +140,84 @@ HANDLE_TERM_INST (11, CallBr , CallBrInst) // A call-site terminator
// Standard unary operators...
FIRST_UNARY_INST(12)
HANDLE_UNARY_INST(12, FNeg , UnaryOperator)
HANDLE_UNARY_INST(13, Freeze, UnaryOperator)
LAST_UNARY_INST(13)
LAST_UNARY_INST(12)
// Standard binary operators...
FIRST_BINARY_INST(14)
HANDLE_BINARY_INST(14, Add , BinaryOperator)
HANDLE_BINARY_INST(15, FAdd , BinaryOperator)
HANDLE_BINARY_INST(16, Sub , BinaryOperator)
HANDLE_BINARY_INST(17, FSub , BinaryOperator)
HANDLE_BINARY_INST(18, Mul , BinaryOperator)
HANDLE_BINARY_INST(19, FMul , BinaryOperator)
HANDLE_BINARY_INST(20, UDiv , BinaryOperator)
HANDLE_BINARY_INST(21, SDiv , BinaryOperator)
HANDLE_BINARY_INST(22, FDiv , BinaryOperator)
HANDLE_BINARY_INST(23, URem , BinaryOperator)
HANDLE_BINARY_INST(24, SRem , BinaryOperator)
HANDLE_BINARY_INST(25, FRem , BinaryOperator)
FIRST_BINARY_INST(13)
HANDLE_BINARY_INST(13, Add , BinaryOperator)
HANDLE_BINARY_INST(14, FAdd , BinaryOperator)
HANDLE_BINARY_INST(15, Sub , BinaryOperator)
HANDLE_BINARY_INST(16, FSub , BinaryOperator)
HANDLE_BINARY_INST(17, Mul , BinaryOperator)
HANDLE_BINARY_INST(18, FMul , BinaryOperator)
HANDLE_BINARY_INST(19, UDiv , BinaryOperator)
HANDLE_BINARY_INST(20, SDiv , BinaryOperator)
HANDLE_BINARY_INST(21, FDiv , BinaryOperator)
HANDLE_BINARY_INST(22, URem , BinaryOperator)
HANDLE_BINARY_INST(23, SRem , BinaryOperator)
HANDLE_BINARY_INST(24, FRem , BinaryOperator)
// Logical operators (integer operands)
HANDLE_BINARY_INST(26, Shl , BinaryOperator) // Shift left (logical)
HANDLE_BINARY_INST(27, LShr , BinaryOperator) // Shift right (logical)
HANDLE_BINARY_INST(28, AShr , BinaryOperator) // Shift right (arithmetic)
HANDLE_BINARY_INST(29, And , BinaryOperator)
HANDLE_BINARY_INST(30, Or , BinaryOperator)
HANDLE_BINARY_INST(31, Xor , BinaryOperator)
LAST_BINARY_INST(31)
HANDLE_BINARY_INST(25, Shl , BinaryOperator) // Shift left (logical)
HANDLE_BINARY_INST(26, LShr , BinaryOperator) // Shift right (logical)
HANDLE_BINARY_INST(27, AShr , BinaryOperator) // Shift right (arithmetic)
HANDLE_BINARY_INST(28, And , BinaryOperator)
HANDLE_BINARY_INST(29, Or , BinaryOperator)
HANDLE_BINARY_INST(30, Xor , BinaryOperator)
LAST_BINARY_INST(30)
// Memory operators...
FIRST_MEMORY_INST(32)
HANDLE_MEMORY_INST(32, Alloca, AllocaInst) // Stack management
HANDLE_MEMORY_INST(33, Load , LoadInst ) // Memory manipulation instrs
HANDLE_MEMORY_INST(34, Store , StoreInst )
HANDLE_MEMORY_INST(35, GetElementPtr, GetElementPtrInst)
HANDLE_MEMORY_INST(36, Fence , FenceInst )
HANDLE_MEMORY_INST(37, AtomicCmpXchg , AtomicCmpXchgInst )
HANDLE_MEMORY_INST(38, AtomicRMW , AtomicRMWInst )
LAST_MEMORY_INST(38)
FIRST_MEMORY_INST(31)
HANDLE_MEMORY_INST(31, Alloca, AllocaInst) // Stack management
HANDLE_MEMORY_INST(32, Load , LoadInst ) // Memory manipulation instrs
HANDLE_MEMORY_INST(33, Store , StoreInst )
HANDLE_MEMORY_INST(34, GetElementPtr, GetElementPtrInst)
HANDLE_MEMORY_INST(35, Fence , FenceInst )
HANDLE_MEMORY_INST(36, AtomicCmpXchg , AtomicCmpXchgInst )
HANDLE_MEMORY_INST(37, AtomicRMW , AtomicRMWInst )
LAST_MEMORY_INST(37)
// Cast operators ...
// NOTE: The order matters here because CastInst::isEliminableCastPair
// NOTE: (see Instructions.cpp) encodes a table based on this ordering.
FIRST_CAST_INST(39)
HANDLE_CAST_INST(39, Trunc , TruncInst ) // Truncate integers
HANDLE_CAST_INST(40, ZExt , ZExtInst ) // Zero extend integers
HANDLE_CAST_INST(41, SExt , SExtInst ) // Sign extend integers
HANDLE_CAST_INST(42, FPToUI , FPToUIInst ) // floating point -> UInt
HANDLE_CAST_INST(43, FPToSI , FPToSIInst ) // floating point -> SInt
HANDLE_CAST_INST(44, UIToFP , UIToFPInst ) // UInt -> floating point
HANDLE_CAST_INST(45, SIToFP , SIToFPInst ) // SInt -> floating point
HANDLE_CAST_INST(46, FPTrunc , FPTruncInst ) // Truncate floating point
HANDLE_CAST_INST(47, FPExt , FPExtInst ) // Extend floating point
HANDLE_CAST_INST(48, PtrToInt, PtrToIntInst) // Pointer -> Integer
HANDLE_CAST_INST(49, IntToPtr, IntToPtrInst) // Integer -> Pointer
HANDLE_CAST_INST(50, BitCast , BitCastInst ) // Type cast
HANDLE_CAST_INST(51, AddrSpaceCast, AddrSpaceCastInst) // addrspace cast
LAST_CAST_INST(51)
FIRST_CAST_INST(38)
HANDLE_CAST_INST(38, Trunc , TruncInst ) // Truncate integers
HANDLE_CAST_INST(39, ZExt , ZExtInst ) // Zero extend integers
HANDLE_CAST_INST(40, SExt , SExtInst ) // Sign extend integers
HANDLE_CAST_INST(41, FPToUI , FPToUIInst ) // floating point -> UInt
HANDLE_CAST_INST(42, FPToSI , FPToSIInst ) // floating point -> SInt
HANDLE_CAST_INST(43, UIToFP , UIToFPInst ) // UInt -> floating point
HANDLE_CAST_INST(44, SIToFP , SIToFPInst ) // SInt -> floating point
HANDLE_CAST_INST(45, FPTrunc , FPTruncInst ) // Truncate floating point
HANDLE_CAST_INST(46, FPExt , FPExtInst ) // Extend floating point
HANDLE_CAST_INST(47, PtrToInt, PtrToIntInst) // Pointer -> Integer
HANDLE_CAST_INST(48, IntToPtr, IntToPtrInst) // Integer -> Pointer
HANDLE_CAST_INST(49, BitCast , BitCastInst ) // Type cast
HANDLE_CAST_INST(50, AddrSpaceCast, AddrSpaceCastInst) // addrspace cast
LAST_CAST_INST(50)
FIRST_FUNCLETPAD_INST(52)
HANDLE_FUNCLETPAD_INST(52, CleanupPad, CleanupPadInst)
HANDLE_FUNCLETPAD_INST(53, CatchPad , CatchPadInst)
LAST_FUNCLETPAD_INST(53)
FIRST_FUNCLETPAD_INST(51)
HANDLE_FUNCLETPAD_INST(51, CleanupPad, CleanupPadInst)
HANDLE_FUNCLETPAD_INST(52, CatchPad , CatchPadInst)
LAST_FUNCLETPAD_INST(52)
// Other operators...
FIRST_OTHER_INST(54)
HANDLE_OTHER_INST(54, ICmp , ICmpInst ) // Integer comparison instruction
HANDLE_OTHER_INST(55, FCmp , FCmpInst ) // Floating point comparison instr.
HANDLE_OTHER_INST(56, PHI , PHINode ) // PHI node instruction
HANDLE_OTHER_INST(57, Call , CallInst ) // Call a function
HANDLE_OTHER_INST(58, Select , SelectInst ) // select instruction
HANDLE_USER_INST (59, UserOp1, Instruction) // May be used internally in a pass
HANDLE_USER_INST (60, UserOp2, Instruction) // Internal to passes only
HANDLE_OTHER_INST(61, VAArg , VAArgInst ) // vaarg instruction
HANDLE_OTHER_INST(62, ExtractElement, ExtractElementInst)// extract from vector
HANDLE_OTHER_INST(63, InsertElement, InsertElementInst) // insert into vector
HANDLE_OTHER_INST(64, ShuffleVector, ShuffleVectorInst) // shuffle two vectors.
HANDLE_OTHER_INST(65, ExtractValue, ExtractValueInst)// extract from aggregate
HANDLE_OTHER_INST(66, InsertValue, InsertValueInst) // insert into aggregate
HANDLE_OTHER_INST(67, LandingPad, LandingPadInst) // Landing pad instruction.
FIRST_OTHER_INST(53)
HANDLE_OTHER_INST(53, ICmp , ICmpInst ) // Integer comparison instruction
HANDLE_OTHER_INST(54, FCmp , FCmpInst ) // Floating point comparison instr.
HANDLE_OTHER_INST(55, PHI , PHINode ) // PHI node instruction
HANDLE_OTHER_INST(56, Call , CallInst ) // Call a function
HANDLE_OTHER_INST(57, Select , SelectInst ) // select instruction
HANDLE_USER_INST (58, UserOp1, Instruction) // May be used internally in a pass
HANDLE_USER_INST (59, UserOp2, Instruction) // Internal to passes only
HANDLE_OTHER_INST(60, VAArg , VAArgInst ) // vaarg instruction
HANDLE_OTHER_INST(61, ExtractElement, ExtractElementInst)// extract from vector
HANDLE_OTHER_INST(62, InsertElement, InsertElementInst) // insert into vector
HANDLE_OTHER_INST(63, ShuffleVector, ShuffleVectorInst) // shuffle two vectors.
HANDLE_OTHER_INST(64, ExtractValue, ExtractValueInst)// extract from aggregate
HANDLE_OTHER_INST(65, InsertValue, InsertValueInst) // insert into aggregate
HANDLE_OTHER_INST(66, LandingPad, LandingPadInst) // Landing pad instruction.
HANDLE_OTHER_INST(67, Freeze, FreezeInst) // Freeze instruction.
LAST_OTHER_INST(67)
#undef FIRST_TERM_INST

View File

@ -5290,6 +5290,35 @@ inline unsigned getLoadStoreAddressSpace(Value *I) {
return cast<StoreInst>(I)->getPointerAddressSpace();
}
//===----------------------------------------------------------------------===//
// FreezeInst Class
//===----------------------------------------------------------------------===//
/// This class represents a freeze function that returns random concrete
/// value if an operand is either a poison value or an undef value
class FreezeInst : public UnaryInstruction {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical FreezeInst
FreezeInst *cloneImpl() const;
public:
explicit FreezeInst(Value *S,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Freeze;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
} // end namespace llvm
#endif // LLVM_IR_INSTRUCTIONS_H

View File

@ -598,9 +598,6 @@ public:
}
};
class FreezeOperator : public ConcreteOperator<Operator, Instruction::Freeze>
{};
} // end namespace llvm
#endif // LLVM_IR_OPERATOR_H

View File

@ -825,28 +825,6 @@ m_FNegNSZ(const RHS &X) {
return m_FSub(m_AnyZeroFP(), X);
}
template <typename Op_t> struct Freeze_match {
Op_t X;
Freeze_match(const Op_t &Op) : X(Op) {}
template <typename OpTy> bool match(OpTy *V) {
auto *I = dyn_cast<UnaryOperator>(V);
if (!I) return false;
if (isa<FreezeOperator>(I))
return X.match(I->getOperand(0));
return false;
}
};
/// Matches freeze.
template <typename OpTy>
inline Freeze_match<OpTy>
m_Freeze(const OpTy &X) {
return Freeze_match<OpTy>(X);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
const RHS &R) {
@ -1255,6 +1233,12 @@ m_SelectCst(const Cond &C) {
return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
}
/// Matches FreezeInst.
template <typename OpTy>
inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
return OneOps_match<OpTy, Instruction::Freeze>(Op);
}
/// Matches InsertElementInst.
template <typename Val_t, typename Elt_t, typename Idx_t>
inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>

View File

@ -839,7 +839,6 @@ lltok::Kind LLLexer::LexIdentifier() {
} while (false)
INSTKEYWORD(fneg, FNeg);
INSTKEYWORD(freeze, Freeze);
INSTKEYWORD(add, Add); INSTKEYWORD(fadd, FAdd);
INSTKEYWORD(sub, Sub); INSTKEYWORD(fsub, FSub);
@ -896,6 +895,8 @@ lltok::Kind LLLexer::LexIdentifier() {
INSTKEYWORD(catchpad, CatchPad);
INSTKEYWORD(cleanuppad, CleanupPad);
INSTKEYWORD(freeze, Freeze);
#undef INSTKEYWORD
#define DWKEYWORD(TYPE, TOKEN) \

View File

@ -3418,8 +3418,7 @@ bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
}
// Unary Operators.
case lltok::kw_fneg:
case lltok::kw_freeze: {
case lltok::kw_fneg: {
unsigned Opc = Lex.getUIntVal();
Constant *Val;
Lex.Lex();
@ -3434,8 +3433,6 @@ bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
if (!Val->getType()->isFPOrFPVectorTy())
return Error(ID.Loc, "constexpr requires fp operands");
break;
case Instruction::Freeze:
break;
default: llvm_unreachable("Unknown unary operator!");
}
unsigned Flags = 0;
@ -5729,7 +5726,6 @@ int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
Inst->setFastMathFlags(FMF);
return false;
}
case lltok::kw_freeze: return ParseUnaryOp(Inst, PFS, KeywordVal, false);
// Binary Operators.
case lltok::kw_add:
case lltok::kw_sub:
@ -5833,6 +5829,7 @@ int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
return 0;
}
case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
case lltok::kw_freeze: return ParseFreeze(Inst, PFS);
// Call.
case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
@ -6333,14 +6330,16 @@ bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
/// ParseUnaryOp
/// ::= UnaryOp TypeAndValue ',' Value
///
/// If IsFP is true, then fp operand is only allowed.
/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
/// operand is allowed.
bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc, bool IsFP) {
LocTy Loc; Value *LHS;
if (ParseTypeAndValue(LHS, Loc, PFS))
return true;
bool Valid = !IsFP || LHS->getType()->isFPOrFPVectorTy();
bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
: LHS->getType()->isIntOrIntVectorTy();
if (!Valid)
return Error(Loc, "invalid operand type for instruction");
@ -6754,6 +6753,18 @@ bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
return false;
}
/// ParseFreeze
/// ::= 'freeze' Type Value
bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op;
if (ParseTypeAndValue(Op, Loc, PFS))
return true;
Inst = new FreezeInst(Op);
return false;
}
/// ParseCall
/// ::= 'call' OptionalFastMathFlags OptionalCallingConv
/// OptionalAttrs Type Value ParameterList OptionalAttrs

View File

@ -600,6 +600,7 @@ namespace llvm {
int ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS);
int ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS);
int ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS);
bool ParseFreeze(Instruction *&I, PerFunctionState &PFS);
// Use-list order directives.
bool ParseUseListOrder(PerFunctionState *PFS = nullptr);

View File

@ -280,7 +280,6 @@ enum Kind {
// Instruction Opcodes (Opcode in UIntVal).
kw_fneg,
kw_freeze,
kw_add,
kw_fadd,
kw_sub,
@ -355,6 +354,8 @@ enum Kind {
kw_insertvalue,
kw_blockaddress,
kw_freeze,
// Metadata types.
kw_distinct,

View File

@ -1056,13 +1056,16 @@ static int getDecodedCastOpcode(unsigned Val) {
}
static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
bool IsFP = Ty->isFPOrFPVectorTy();
// UnOps are only valid for int/fp or vector of int/fp types
if (!IsFP && !Ty->isIntOrIntVectorTy())
return -1;
switch (Val) {
default:
return -1;
case bitc::UNOP_FNEG:
return Ty->isFPOrFPVectorTy() ? Instruction::FNeg : -1;
case bitc::UNOP_FREEZE:
return Instruction::Freeze;
return IsFP ? Instruction::FNeg : -1;
}
}
@ -3863,7 +3866,7 @@ Error BitcodeReader::parseFunctionBody(Function *F) {
case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
unsigned OpNum = 0;
Value *LHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS, &FullTy) ||
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
OpNum+1 > Record.size())
return error("Invalid record");
@ -5116,6 +5119,19 @@ Error BitcodeReader::parseFunctionBody(Function *F) {
OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
continue;
}
case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
unsigned OpNum = 0;
Value *Op = nullptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
return error("Invalid record");
if (OpNum != Record.size())
return error("Invalid record");
I = new FreezeInst(Op);
InstructionList.push_back(I);
break;
}
}
// Add instruction to end of current BB. If there is no current BB, reject

View File

@ -521,7 +521,6 @@ static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unknown binary instruction!");
case Instruction::FNeg: return bitc::UNOP_FNEG;
case Instruction::Freeze: return bitc::UNOP_FREEZE;
}
}
@ -2435,17 +2434,6 @@ void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
} else if (Instruction::isUnaryOp(CE->getOpcode())) {
assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_UNOP;
Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
uint64_t Flags = getOptimizationFlags(CE);
if (Flags != 0) {
assert(CE->getOpcode() == Instruction::FNeg);
Record.push_back(Flags);
}
break;
} else {
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_BINOP;
@ -2457,6 +2445,16 @@ void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
Record.push_back(Flags);
}
break;
case Instruction::FNeg: {
assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_UNOP;
Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
uint64_t Flags = getOptimizationFlags(CE);
if (Flags != 0)
Record.push_back(Flags);
break;
}
case Instruction::GetElementPtr: {
Code = bitc::CST_CODE_CE_GEP;
const auto *GO = cast<GEPOperator>(C);
@ -2614,17 +2612,6 @@ void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
} else if (isa<UnaryOperator>(I)) {
Code = bitc::FUNC_CODE_INST_UNOP;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0) {
if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
Vals.push_back(Flags);
}
} else {
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
Code = bitc::FUNC_CODE_INST_BINOP;
@ -2640,6 +2627,19 @@ void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
}
}
break;
case Instruction::FNeg: {
Code = bitc::FUNC_CODE_INST_UNOP;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0) {
if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
Vals.push_back(Flags);
}
break;
}
case Instruction::GetElementPtr: {
Code = bitc::FUNC_CODE_INST_GEP;
AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
@ -3034,6 +3034,10 @@ void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
pushValue(I.getOperand(0), InstID, Vals); // valist.
Vals.push_back(VE.getTypeID(I.getType())); // restype.
break;
case Instruction::Freeze:
Code = bitc::FUNC_CODE_INST_FREEZE;
pushValueAndType(I.getOperand(0), InstID, Vals);
break;
}
Stream.EmitRecord(Code, Vals, AbbrevToUse);

View File

@ -10593,7 +10593,7 @@ void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
}
}
void SelectionDAGBuilder::visitFreeze(const User &I) {
void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
SDValue N = getValue(I.getOperand(0));
setValue(&I, N);
}

View File

@ -668,7 +668,6 @@ private:
void visitUnary(const User &I, unsigned Opcode);
void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); }
void visitFreeze(const User &I);
void visitBinary(const User &I, unsigned Opcode);
void visitShift(const User &I, unsigned Opcode);
@ -743,6 +742,7 @@ private:
void visitAtomicStore(const StoreInst &I);
void visitLoadFromSwiftError(const LoadInst &I);
void visitStoreToSwiftError(const StoreInst &I);
void visitFreeze(const FreezeInst &I);
void visitInlineAsm(ImmutableCallSite CS);
void visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);

View File

@ -941,50 +941,43 @@ Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
switch (static_cast<Instruction::UnaryOps>(Opcode)) {
case Instruction::FNeg: {
// Handle scalar UndefValue. Vectors are always evaluated per element.
bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C);
// Handle scalar UndefValue. Vectors are always evaluated per element.
bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C);
if (HasScalarUndef) {
if (HasScalarUndef) {
switch (static_cast<Instruction::UnaryOps>(Opcode)) {
case Instruction::FNeg:
return C; // -undef -> undef
case Instruction::UnaryOpsEnd:
llvm_unreachable("Invalid UnaryOp");
}
}
// Constant should not be UndefValue, unless these are vector constants.
assert(!HasScalarUndef && "Unexpected UndefValue");
assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
// Constant should not be UndefValue, unless these are vector constants.
assert(!HasScalarUndef && "Unexpected UndefValue");
// We only have FP UnaryOps right now.
assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
const APFloat &CV = CFP->getValueAPF();
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
const APFloat &CV = CFP->getValueAPF();
switch (Opcode) {
default:
break;
case Instruction::FNeg:
return ConstantFP::get(C->getContext(), neg(CV));
} else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) {
// Fold each element and create a vector constant from those constants.
SmallVector<Constant*, 16> Result;
Type *Ty = IntegerType::get(VTy->getContext(), 32);
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *ExtractIdx = ConstantInt::get(Ty, i);
Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
Result.push_back(ConstantExpr::get(Opcode, Elt));
}
return ConstantVector::get(Result);
}
break;
}
case Instruction::Freeze: {
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
return CFP;
} else if (ConstantInt *CINT = dyn_cast<ConstantInt>(C)) {
return CINT;
} else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
// A global variable is neither undef nor poison.
return GV;
} else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) {
// Fold each element and create a vector constant from those constants.
SmallVector<Constant*, 16> Result;
Type *Ty = IntegerType::get(VTy->getContext(), 32);
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *ExtractIdx = ConstantInt::get(Ty, i);
Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
Result.push_back(ConstantExpr::get(Opcode, Elt));
}
break;
}
case Instruction::UnaryOpsEnd:
llvm_unreachable("Invalid UnaryOp");
return ConstantVector::get(Result);
}
// We don't know how to fold this.

View File

@ -3410,11 +3410,6 @@ LLVMValueRef LLVMBuildFNeg(LLVMBuilderRef B, LLVMValueRef V, const char *Name) {
return wrap(unwrap(B)->CreateFNeg(unwrap(V), Name));
}
LLVMValueRef LLVMBuildFreeze(LLVMBuilderRef B, LLVMValueRef V,
const char *Name) {
return wrap(unwrap(B)->CreateFreeze(unwrap(V), Name));
}
LLVMValueRef LLVMBuildNot(LLVMBuilderRef B, LLVMValueRef V, const char *Name) {
return wrap(unwrap(B)->CreateNot(unwrap(V), Name));
}
@ -3902,6 +3897,11 @@ LLVMValueRef LLVMBuildInsertValue(LLVMBuilderRef B, LLVMValueRef AggVal,
Index, Name));
}
LLVMValueRef LLVMBuildFreeze(LLVMBuilderRef B, LLVMValueRef Val,
const char *Name) {
return wrap(unwrap(B)->CreateFreeze(unwrap(Val), Name));
}
LLVMValueRef LLVMBuildIsNull(LLVMBuilderRef B, LLVMValueRef Val,
const char *Name) {
return wrap(unwrap(B)->CreateIsNull(unwrap(Val), Name));

View File

@ -307,7 +307,6 @@ const char *Instruction::getOpcodeName(unsigned OpCode) {
// Standard unary operators...
case FNeg: return "fneg";
case Freeze: return "freeze";
// Standard binary operators...
case Add: return "add";
@ -369,6 +368,7 @@ const char *Instruction::getOpcodeName(unsigned OpCode) {
case InsertValue: return "insertvalue";
case LandingPad: return "landingpad";
case CleanupPad: return "cleanuppad";
case Freeze: return "freeze";
default: return "<Invalid operator> ";
}

View File

@ -2232,9 +2232,6 @@ void UnaryOperator::AssertOK() {
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case Freeze:
// Freeze can take any type as an argument.
break;
default: llvm_unreachable("Invalid opcode provided");
}
#endif
@ -4094,6 +4091,22 @@ void IndirectBrInst::removeDestination(unsigned idx) {
setNumHungOffUseOperands(NumOps-1);
}
//===----------------------------------------------------------------------===//
// FreezeInst Implementation
//===----------------------------------------------------------------------===//
FreezeInst::FreezeInst(Value *S,
const Twine &Name, Instruction *InsertBefore)
: UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
setName(Name);
}
FreezeInst::FreezeInst(Value *S,
const Twine &Name, BasicBlock *InsertAtEnd)
: UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
setName(Name);
}
//===----------------------------------------------------------------------===//
// cloneImpl() implementations
//===----------------------------------------------------------------------===//
@ -4310,3 +4323,7 @@ UnreachableInst *UnreachableInst::cloneImpl() const {
LLVMContext &Context = getContext();
return new UnreachableInst(Context);
}
FreezeInst *FreezeInst::cloneImpl() const {
return new FreezeInst(getOperand(0));
}

View File

@ -3145,9 +3145,6 @@ void Verifier::visitUnaryOperator(UnaryOperator &U) {
Assert(U.getType()->isFPOrFPVectorTy(),
"FNeg operator only works with float types!", &U);
break;
case Instruction::Freeze:
// Freeze can take all kinds of types.
break;
default:
llvm_unreachable("Unknown UnaryOperator opcode!");
}

View File

@ -267,7 +267,6 @@ let test_constants () =
* CHECK: @const_nsw_neg = global i64 sub nsw
* CHECK: @const_nuw_neg = global i64 sub nuw
* CHECK: @const_fneg = global double fneg
* CHECK: @const_freeze = global i64 freeze
* CHECK: @const_not = global i64 xor
* CHECK: @const_add = global i64 add
* CHECK: @const_nsw_add = global i64 add nsw
@ -304,7 +303,6 @@ let test_constants () =
ignore (define_global "const_nsw_neg" (const_nsw_neg foldbomb) m);
ignore (define_global "const_nuw_neg" (const_nuw_neg foldbomb) m);
ignore (define_global "const_fneg" (const_fneg ffoldbomb) m);
ignore (define_global "const_freeze" (const_freeze foldbomb) m);
ignore (define_global "const_not" (const_not foldbomb) m);
ignore (define_global "const_add" (const_add foldbomb five) m);
ignore (define_global "const_nsw_add" (const_nsw_add foldbomb five) m);
@ -1402,8 +1400,8 @@ let test_builder () =
ignore (build_nsw_neg p1 "build_nsw_neg" b);
ignore (build_nuw_neg p1 "build_nuw_neg" b);
ignore (build_fneg f1 "build_fneg" b);
ignore (build_freeze f1 "build_freeze" b);
ignore (build_not p1 "build_not" b);
ignore (build_freeze p1 "build_freeze" b);
ignore (build_unreachable b)
end;

View File

@ -18,5 +18,6 @@ define i32 @f(i32 %arg, <2 x i32> %arg2, float %arg3, <2 x float> %arg4,
%10 = freeze %struct.T %arg6
%11 = freeze [2 x i32] %arg7
%12 = freeze { i32, i32 } %arg8
%13 = freeze i8* null
ret i32 %1
}

View File

@ -1172,17 +1172,9 @@ continue:
}
; Instructions -- Unary Operations
define void @instructions.unops(double %op1, i32 %op2, <2 x i32> %op3, i8* %op4) {
define void @instructions.unops(double %op1) {
fneg double %op1
; CHECK: fneg double %op1
freeze i32 %op2
; CHECK: freeze i32 %op2
freeze double %op1
; CHECK: freeze double %op1
freeze <2 x i32> %op3
; CHECK: freeze <2 x i32> %op3
freeze i8* %op4
; CHECK: freeze i8* %op4
ret void
}
@ -1377,7 +1369,7 @@ define void @instructions.conversions() {
}
; Instructions -- Other Operations
define void @instructions.other(i32 %op1, i32 %op2, half %fop1, half %fop2) {
define void @instructions.other(i32 %op1, i32 %op2, half %fop1, half %fop2, <2 x i32> %vop, i8* %pop) {
entry:
icmp eq i32 %op1, %op2
; CHECK: icmp eq i32 %op1, %op2
@ -1457,6 +1449,16 @@ exit:
tail call ghccc nonnull i32* @f.nonnull() minsize
; CHECK: tail call ghccc nonnull i32* @f.nonnull() #7
freeze i32 %op1
; CHECK: freeze i32 %op1
freeze i32 10
; CHECK: freeze i32 10
freeze half %fop1
; CHECK: freeze half %fop1
freeze <2 x i32> %vop
; CHECK: freeze <2 x i32> %vop
freeze i8* %pop
; CHECK: freeze i8* %pop
ret void
}
@ -1834,10 +1836,6 @@ define void @instructions.strictfp() strictfp {
ret void
}
define i64 @constexpr_freeze() {
ret i64 freeze (i64 32)
}
; immarg attribute
declare void @llvm.test.immarg.intrinsic(i32 immarg)
; CHECK: declare void @llvm.test.immarg.intrinsic(i32 immarg)

View File

@ -3,13 +3,13 @@
; CHECK-LABEL: @int_ptr_arg_different
; CHECK-NEXT: call void asm
; CHECK-LABEL: @int_ptr_null
; CHECK-NEXT: tail call void @float_ptr_null()
; CHECK-LABEL: @int_ptr_arg_same
; CHECK-NEXT: %2 = bitcast i32* %0 to float*
; CHECK-NEXT: tail call void @float_ptr_arg_same(float* %2)
; CHECK-LABEL: @int_ptr_null
; CHECK-NEXT: tail call void @float_ptr_null()
; Used to satisfy minimum size limit
declare void @stuff()

View File

@ -45,6 +45,54 @@ TEST(VerifierTest, Branch_i1) {
EXPECT_TRUE(verifyFunction(*F));
}
TEST(VerifierTest, Freeze) {
LLVMContext C;
Module M("M", C);
FunctionType *FTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg=*/false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", M);
BasicBlock *Entry = BasicBlock::Create(C, "entry", F);
ReturnInst *RI = ReturnInst::Create(C, Entry);
IntegerType *ITy = IntegerType::get(C, 32);
ConstantInt *CI = ConstantInt::get(ITy, 0);
// Valid type : freeze(<2 x i32>)
Constant *CV = ConstantVector::getSplat(2, CI);
FreezeInst *FI_vec = new FreezeInst(CV);
FI_vec->insertBefore(RI);
EXPECT_FALSE(verifyFunction(*F));
FI_vec->eraseFromParent();
// Valid type : freeze(float)
Constant *CFP = ConstantFP::get(Type::getDoubleTy(C), 0.0);
FreezeInst *FI_dbl = new FreezeInst(CFP);
FI_dbl->insertBefore(RI);
EXPECT_FALSE(verifyFunction(*F));
FI_dbl->eraseFromParent();
// Valid type : freeze(i32*)
PointerType *PT = PointerType::get(ITy, 0);
ConstantPointerNull *CPN = ConstantPointerNull::get(PT);
FreezeInst *FI_ptr = new FreezeInst(CPN);
FI_ptr->insertBefore(RI);
EXPECT_FALSE(verifyFunction(*F));
FI_ptr->eraseFromParent();
// Valid type : freeze(int)
FreezeInst *FI = new FreezeInst(CI);
FI->insertBefore(RI);
EXPECT_FALSE(verifyFunction(*F));
FI_ptr->eraseFromParent();
}
TEST(VerifierTest, InvalidRetAttribute) {
LLVMContext C;
Module M("M", C);