1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00

Correct lowering of memmove in NVPTX

This fixes https://llvm.org/bugs/show_bug.cgi?id=24056

Also a bit of refactoring along the way.

Differential Revision: http://reviews.llvm.org/D11220

llvm-svn: 242413
This commit is contained in:
Eli Bendersky 2015-07-16 16:27:19 +00:00
parent d16c446389
commit 901c8f80fc
3 changed files with 263 additions and 82 deletions

View File

@ -6,6 +6,7 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Lower aggregate copies, memset, memcpy, memmov intrinsics into loops when
// the size is large or is not a compile-time constant.
//
@ -25,12 +26,14 @@
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "nvptx"
using namespace llvm;
namespace {
// actual analysis class, which is a functionpass
struct NVPTXLowerAggrCopies : public FunctionPass {
static char ID;
@ -50,14 +53,13 @@ struct NVPTXLowerAggrCopies : public FunctionPass {
return "Lower aggregate copies/intrinsics into loops";
}
};
} // namespace
char NVPTXLowerAggrCopies::ID = 0;
// Lower MemTransferInst or load-store pair to loop
static void convertTransferToLoop(
Instruction *splitAt, Value *srcAddr, Value *dstAddr, Value *len,
bool srcVolatile, bool dstVolatile, LLVMContext &Context, Function &F) {
// Lower memcpy to loop.
void convertMemCpyToLoop(Instruction *splitAt, Value *srcAddr, Value *dstAddr,
Value *len, bool srcVolatile, bool dstVolatile,
LLVMContext &Context, Function &F) {
Type *indType = len->getType();
BasicBlock *origBB = splitAt->getParent();
@ -98,10 +100,105 @@ static void convertTransferToLoop(
loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB);
}
// Lower MemSetInst to loop
static void convertMemSetToLoop(Instruction *splitAt, Value *dstAddr,
Value *len, Value *val, LLVMContext &Context,
Function &F) {
// Lower memmove to IR. memmove is required to correctly copy overlapping memory
// regions; therefore, it has to check the relative positions of the source and
// destination pointers and choose the copy direction accordingly.
//
// The code below is an IR rendition of this C function:
//
// void* memmove(void* dst, const void* src, size_t n) {
// unsigned char* d = dst;
// const unsigned char* s = src;
// if (s < d) {
// // copy backwards
// while (n--) {
// d[n] = s[n];
// }
// } else {
// // copy forward
// for (size_t i = 0; i < n; ++i) {
// d[i] = s[i];
// }
// }
// return dst;
// }
void convertMemMoveToLoop(Instruction *splitAt, Value *srcAddr, Value *dstAddr,
Value *len, bool srcVolatile, bool dstVolatile,
LLVMContext &Context, Function &F) {
Type *TypeOfLen = len->getType();
BasicBlock *OrigBB = splitAt->getParent();
// Create the a comparison of src and dst, based on which we jump to either
// the forward-copy part of the function (if src >= dst) or the backwards-copy
// part (if src < dst).
// SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
// structure. Its block terminators (unconditional branches) are replaced by
// the appropriate conditional branches when the loop is built.
ICmpInst *PtrCompare = new ICmpInst(splitAt, ICmpInst::ICMP_ULT, srcAddr,
dstAddr, "compare_src_dst");
TerminatorInst *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(PtrCompare, splitAt, &ThenTerm, &ElseTerm);
// Each part of the function consists of two blocks:
// copy_backwards: used to skip the loop when n == 0
// copy_backwards_loop: the actual backwards loop BB
// copy_forward: used to skip the loop when n == 0
// copy_forward_loop: the actual forward loop BB
BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
CopyBackwardsBB->setName("copy_backwards");
BasicBlock *CopyForwardBB = ElseTerm->getParent();
CopyForwardBB->setName("copy_forward");
BasicBlock *ExitBB = splitAt->getParent();
ExitBB->setName("memmove_done");
// Initial comparison of n == 0 that lets us skip the loops altogether. Shared
// between both backwards and forward copy clauses.
ICmpInst *CompareN =
new ICmpInst(OrigBB->getTerminator(), ICmpInst::ICMP_EQ, len,
ConstantInt::get(TypeOfLen, 0), "compare_n_to_0");
// Copying backwards.
BasicBlock *LoopBB =
BasicBlock::Create(Context, "copy_backwards_loop", &F, CopyForwardBB);
IRBuilder<> LoopBuilder(LoopBB);
PHINode *LoopPhi = LoopBuilder.CreatePHI(TypeOfLen, 0);
Value *IndexPtr = LoopBuilder.CreateSub(
LoopPhi, ConstantInt::get(TypeOfLen, 1), "index_ptr");
Value *Element = LoopBuilder.CreateLoad(
LoopBuilder.CreateInBoundsGEP(srcAddr, IndexPtr), "element");
LoopBuilder.CreateStore(Element,
LoopBuilder.CreateInBoundsGEP(dstAddr, IndexPtr));
LoopBuilder.CreateCondBr(
LoopBuilder.CreateICmpEQ(IndexPtr, ConstantInt::get(TypeOfLen, 0)),
ExitBB, LoopBB);
LoopPhi->addIncoming(IndexPtr, LoopBB);
LoopPhi->addIncoming(len, CopyBackwardsBB);
BranchInst::Create(ExitBB, LoopBB, CompareN, ThenTerm);
ThenTerm->removeFromParent();
// Copying forward.
BasicBlock *FwdLoopBB =
BasicBlock::Create(Context, "copy_forward_loop", &F, ExitBB);
IRBuilder<> FwdLoopBuilder(FwdLoopBB);
PHINode *FwdCopyPhi = FwdLoopBuilder.CreatePHI(TypeOfLen, 0, "index_ptr");
Value *FwdElement = FwdLoopBuilder.CreateLoad(
FwdLoopBuilder.CreateInBoundsGEP(srcAddr, FwdCopyPhi), "element");
FwdLoopBuilder.CreateStore(
FwdElement, FwdLoopBuilder.CreateInBoundsGEP(dstAddr, FwdCopyPhi));
Value *FwdIndexPtr = FwdLoopBuilder.CreateAdd(
FwdCopyPhi, ConstantInt::get(TypeOfLen, 1), "index_increment");
FwdLoopBuilder.CreateCondBr(FwdLoopBuilder.CreateICmpEQ(FwdIndexPtr, len),
ExitBB, FwdLoopBB);
FwdCopyPhi->addIncoming(FwdIndexPtr, FwdLoopBB);
FwdCopyPhi->addIncoming(ConstantInt::get(TypeOfLen, 0), CopyForwardBB);
BranchInst::Create(ExitBB, FwdLoopBB, CompareN, ElseTerm);
ElseTerm->removeFromParent();
}
// Lower memset to loop.
void convertMemSetToLoop(Instruction *splitAt, Value *dstAddr, Value *len,
Value *val, LLVMContext &Context, Function &F) {
BasicBlock *origBB = splitAt->getParent();
BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split");
BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB);
@ -129,15 +226,12 @@ static void convertMemSetToLoop(Instruction *splitAt, Value *dstAddr,
bool NVPTXLowerAggrCopies::runOnFunction(Function &F) {
SmallVector<LoadInst *, 4> aggrLoads;
SmallVector<MemTransferInst *, 4> aggrMemcpys;
SmallVector<MemSetInst *, 4> aggrMemsets;
SmallVector<MemIntrinsic *, 4> MemCalls;
const DataLayout &DL = F.getParent()->getDataLayout();
LLVMContext &Context = F.getParent()->getContext();
//
// Collect all the aggrLoads, aggrMemcpys and addrMemsets.
//
// Collect all aggregate loads and mem* calls.
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
++II) {
@ -154,34 +248,23 @@ bool NVPTXLowerAggrCopies::runOnFunction(Function &F) {
continue;
aggrLoads.push_back(load);
}
} else if (MemTransferInst *intr = dyn_cast<MemTransferInst>(II)) {
Value *len = intr->getLength();
// If the number of elements being copied is greater
// than MaxAggrCopySize, lower it to a loop
if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) {
if (len_int->getZExtValue() >= MaxAggrCopySize) {
aggrMemcpys.push_back(intr);
} else if (MemIntrinsic *IntrCall = dyn_cast<MemIntrinsic>(II)) {
// Convert intrinsic calls with variable size or with constant size
// larger than the MaxAggrCopySize threshold.
if (ConstantInt *LenCI = dyn_cast<ConstantInt>(IntrCall->getLength())) {
if (LenCI->getZExtValue() >= MaxAggrCopySize) {
MemCalls.push_back(IntrCall);
}
} else {
// turn variable length memcpy/memmov into loop
aggrMemcpys.push_back(intr);
}
} else if (MemSetInst *memsetintr = dyn_cast<MemSetInst>(II)) {
Value *len = memsetintr->getLength();
if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) {
if (len_int->getZExtValue() >= MaxAggrCopySize) {
aggrMemsets.push_back(memsetintr);
}
} else {
// turn variable length memset into loop
aggrMemsets.push_back(memsetintr);
MemCalls.push_back(IntrCall);
}
}
}
}
if ((aggrLoads.size() == 0) && (aggrMemcpys.size() == 0) &&
(aggrMemsets.size() == 0))
if (aggrLoads.size() == 0 && MemCalls.size() == 0) {
return false;
}
//
// Do the transformation of an aggr load/copy/set to a loop
@ -193,36 +276,58 @@ bool NVPTXLowerAggrCopies::runOnFunction(Function &F) {
unsigned numLoads = DL.getTypeStoreSize(load->getType());
Value *len = ConstantInt::get(Type::getInt32Ty(Context), numLoads);
convertTransferToLoop(store, srcAddr, dstAddr, len, load->isVolatile(),
store->isVolatile(), Context, F);
convertMemCpyToLoop(store, srcAddr, dstAddr, len, load->isVolatile(),
store->isVolatile(), Context, F);
store->eraseFromParent();
load->eraseFromParent();
}
for (MemTransferInst *cpy : aggrMemcpys) {
convertTransferToLoop(/* splitAt */ cpy,
/* srcAddr */ cpy->getSource(),
/* dstAddr */ cpy->getDest(),
/* len */ cpy->getLength(),
/* srcVolatile */ cpy->isVolatile(),
/* dstVolatile */ cpy->isVolatile(),
// Transform mem* intrinsic calls.
for (MemIntrinsic *MemCall : MemCalls) {
if (MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(MemCall)) {
convertMemCpyToLoop(/* splitAt */ Memcpy,
/* srcAddr */ Memcpy->getRawSource(),
/* dstAddr */ Memcpy->getRawDest(),
/* len */ Memcpy->getLength(),
/* srcVolatile */ Memcpy->isVolatile(),
/* dstVolatile */ Memcpy->isVolatile(),
/* Context */ Context,
/* Function F */ F);
cpy->eraseFromParent();
}
} else if (MemMoveInst *Memmove = dyn_cast<MemMoveInst>(MemCall)) {
convertMemMoveToLoop(/* splitAt */ Memmove,
/* srcAddr */ Memmove->getRawSource(),
/* dstAddr */ Memmove->getRawDest(),
/* len */ Memmove->getLength(),
/* srcVolatile */ Memmove->isVolatile(),
/* dstVolatile */ Memmove->isVolatile(),
/* Context */ Context,
/* Function F */ F);
for (MemSetInst *memsetinst : aggrMemsets) {
Value *len = memsetinst->getLength();
Value *val = memsetinst->getValue();
convertMemSetToLoop(memsetinst, memsetinst->getDest(), len, val, Context,
F);
memsetinst->eraseFromParent();
} else if (MemSetInst *Memset = dyn_cast<MemSetInst>(MemCall)) {
convertMemSetToLoop(/* splitAt */ Memset,
/* dstAddr */ Memset->getRawDest(),
/* len */ Memset->getLength(),
/* val */ Memset->getValue(),
/* Context */ Context,
/* F */ F);
}
MemCall->eraseFromParent();
}
return true;
}
} // namespace
namespace llvm {
void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
}
INITIALIZE_PASS(NVPTXLowerAggrCopies, "nvptx-lower-aggr-copies",
"Lower aggregate copies, and llvm.mem* intrinsics into loops",
false, false)
FunctionPass *llvm::createLowerAggrCopies() {
return new NVPTXLowerAggrCopies();
}

View File

@ -53,6 +53,7 @@ void initializeGenericToNVVMPass(PassRegistry&);
void initializeNVPTXAllocaHoistingPass(PassRegistry &);
void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
void initializeNVPTXLowerKernelArgsPass(PassRegistry &);
void initializeNVPTXLowerAllocaPass(PassRegistry &);
}
@ -64,14 +65,15 @@ extern "C" void LLVMInitializeNVPTXTarget() {
// FIXME: This pass is really intended to be invoked during IR optimization,
// but it's very NVPTX-specific.
initializeNVVMReflectPass(*PassRegistry::getPassRegistry());
initializeGenericToNVVMPass(*PassRegistry::getPassRegistry());
initializeNVPTXAllocaHoistingPass(*PassRegistry::getPassRegistry());
initializeNVPTXAssignValidGlobalNamesPass(*PassRegistry::getPassRegistry());
initializeNVPTXFavorNonGenericAddrSpacesPass(
*PassRegistry::getPassRegistry());
initializeNVPTXLowerKernelArgsPass(*PassRegistry::getPassRegistry());
initializeNVPTXLowerAllocaPass(*PassRegistry::getPassRegistry());
PassRegistry &PR = *PassRegistry::getPassRegistry();
initializeNVVMReflectPass(PR);
initializeGenericToNVVMPass(PR);
initializeNVPTXAllocaHoistingPass(PR);
initializeNVPTXAssignValidGlobalNamesPass(PR);
initializeNVPTXFavorNonGenericAddrSpacesPass(PR);
initializeNVPTXLowerKernelArgsPass(PR);
initializeNVPTXLowerAllocaPass(PR);
initializeNVPTXLowerAggrCopiesPass(PR);
}
static std::string computeDataLayout(bool is64Bit) {

View File

@ -1,35 +1,68 @@
; RUN: llc < %s -march=nvptx -mcpu=sm_35 | FileCheck %s
; RUN: llc < %s -march=nvptx64 -mcpu=sm_35 | FileCheck %s --check-prefix PTX
; RUN: opt < %s -S -nvptx-lower-aggr-copies | FileCheck %s --check-prefix IR
; Verify that the NVPTXLowerAggrCopies pass works as expected - calls to
; llvm.mem* intrinsics get lowered to loops.
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "nvptx64-unknown-unknown"
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i32, i1) #1
declare void @llvm.memmove.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i32, i1) #1
declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) #1
define i8* @memcpy_caller(i8* %dst, i8* %src, i64 %n) #0 {
entry:
tail call void @llvm.memcpy.p0i8.p0i8.i64(i8* %dst, i8* %src, i64 %n, i32 1, i1 false)
ret i8* %dst
; CHECK-LABEL: .visible .func (.param .b32 func_retval0) memcpy_caller
; CHECK: LBB[[LABEL:[_0-9]+]]:
; CHECK: ld.u8 %rs[[REG:[0-9]+]]
; CHECK: st.u8 [%r{{[0-9]+}}], %rs[[REG]]
; CHECK: add.s64 %rd[[COUNTER:[0-9]+]], %rd[[COUNTER]], 1
; CHECK-NEXT: setp.lt.u64 %p[[PRED:[0-9]+]], %rd[[COUNTER]], %rd
; CHECK-NEXT: @%p[[PRED]] bra LBB[[LABEL]]
; IR-LABEL: @memcpy_caller
; IR: loadstoreloop:
; IR: [[LOADPTR:%[0-9]+]] = getelementptr i8, i8* %src, i64
; IR-NEXT: [[VAL:%[0-9]+]] = load i8, i8* [[LOADPTR]]
; IR-NEXT: [[STOREPTR:%[0-9]+]] = getelementptr i8, i8* %dst, i64
; IR-NEXT: store i8 [[VAL]], i8* [[STOREPTR]]
; PTX-LABEL: .visible .func (.param .b64 func_retval0) memcpy_caller
; PTX: LBB[[LABEL:[_0-9]+]]:
; PTX: ld.u8 %rs[[REG:[0-9]+]]
; PTX: st.u8 [%rd{{[0-9]+}}], %rs[[REG]]
; PTX: add.s64 %rd[[COUNTER:[0-9]+]], %rd[[COUNTER]], 1
; PTX-NEXT: setp.lt.u64 %p[[PRED:[0-9]+]], %rd[[COUNTER]], %rd
; PTX-NEXT: @%p[[PRED]] bra LBB[[LABEL]]
}
define i8* @memcpy_volatile_caller(i8* %dst, i8* %src, i64 %n) #0 {
entry:
tail call void @llvm.memcpy.p0i8.p0i8.i64(i8* %dst, i8* %src, i64 %n, i32 1, i1 true)
ret i8* %dst
; CHECK-LABEL: .visible .func (.param .b32 func_retval0) memcpy_volatile_caller
; CHECK: LBB[[LABEL:[_0-9]+]]:
; CHECK: ld.volatile.u8 %rs[[REG:[0-9]+]]
; CHECK: st.volatile.u8 [%r{{[0-9]+}}], %rs[[REG]]
; CHECK: add.s64 %rd[[COUNTER:[0-9]+]], %rd[[COUNTER]], 1
; CHECK-NEXT: setp.lt.u64 %p[[PRED:[0-9]+]], %rd[[COUNTER]], %rd
; CHECK-NEXT: @%p[[PRED]] bra LBB[[LABEL]]
; IR-LABEL: @memcpy_volatile_caller
; IR: load volatile
; IR: store volatile
; PTX-LABEL: .visible .func (.param .b64 func_retval0) memcpy_volatile_caller
; PTX: LBB[[LABEL:[_0-9]+]]:
; PTX: ld.volatile.u8 %rs[[REG:[0-9]+]]
; PTX: st.volatile.u8 [%rd{{[0-9]+}}], %rs[[REG]]
; PTX: add.s64 %rd[[COUNTER:[0-9]+]], %rd[[COUNTER]], 1
; PTX-NEXT: setp.lt.u64 %p[[PRED:[0-9]+]], %rd[[COUNTER]], %rd
; PTX-NEXT: @%p[[PRED]] bra LBB[[LABEL]]
}
define i8* @memcpy_casting_caller(i32* %dst, i32* %src, i64 %n) #0 {
entry:
%0 = bitcast i32* %dst to i8*
%1 = bitcast i32* %src to i8*
tail call void @llvm.memcpy.p0i8.p0i8.i64(i8* %0, i8* %1, i64 %n, i32 1, i1 false)
ret i8* %0
; Check that casts in calls to memcpy are handled properly
; IR-LABEL: @memcpy_casting_caller
; IR: [[DSTCAST:%[0-9]+]] = bitcast i32* %dst to i8*
; IR: [[SRCCAST:%[0-9]+]] = bitcast i32* %src to i8*
; IR: getelementptr i8, i8* [[SRCCAST]]
; IR: getelementptr i8, i8* [[DSTCAST]]
}
define i8* @memset_caller(i8* %dst, i32 %c, i64 %n) #0 {
@ -37,11 +70,52 @@ entry:
%0 = trunc i32 %c to i8
tail call void @llvm.memset.p0i8.i64(i8* %dst, i8 %0, i64 %n, i32 1, i1 false)
ret i8* %dst
; CHECK-LABEL: .visible .func (.param .b32 func_retval0) memset_caller(
; CHECK: ld.param.u8 %rs[[REG:[0-9]+]]
; CHECK: LBB[[LABEL:[_0-9]+]]:
; CHECK: st.u8 [%r{{[0-9]+}}], %rs[[REG]]
; CHECK: add.s64 %rd[[COUNTER:[0-9]+]], %rd[[COUNTER]], 1
; CHECK-NEXT: setp.lt.u64 %p[[PRED:[0-9]+]], %rd[[COUNTER]], %rd
; CHECK-NEXT: @%p[[PRED]] bra LBB[[LABEL]]
; IR-LABEL: @memset_caller
; IR: [[VAL:%[0-9]+]] = trunc i32 %c to i8
; IR: loadstoreloop:
; IR: [[STOREPTR:%[0-9]+]] = getelementptr i8, i8* %dst, i64
; IR-NEXT: store i8 [[VAL]], i8* [[STOREPTR]]
; PTX-LABEL: .visible .func (.param .b64 func_retval0) memset_caller(
; PTX: ld.param.u8 %rs[[REG:[0-9]+]]
; PTX: LBB[[LABEL:[_0-9]+]]:
; PTX: st.u8 [%rd{{[0-9]+}}], %rs[[REG]]
; PTX: add.s64 %rd[[COUNTER:[0-9]+]], %rd[[COUNTER]], 1
; PTX-NEXT: setp.lt.u64 %p[[PRED:[0-9]+]], %rd[[COUNTER]], %rd
; PTX-NEXT: @%p[[PRED]] bra LBB[[LABEL]]
}
define i8* @memmove_caller(i8* %dst, i8* %src, i64 %n) #0 {
entry:
tail call void @llvm.memmove.p0i8.p0i8.i64(i8* %dst, i8* %src, i64 %n, i32 1, i1 false)
ret i8* %dst
; IR-LABEL: @memmove_caller
; IR: icmp ult i8* %src, %dst
; IR: [[PHIVAL:%[0-9a-zA-Z_]+]] = phi i64
; IR-NEXT: %index_ptr = sub i64 [[PHIVAL]], 1
; IR: [[FWDPHIVAL:%[0-9a-zA-Z_]+]] = phi i64
; IR: {{%[0-9a-zA-Z_]+}} = add i64 [[FWDPHIVAL]], 1
; PTX-LABEL: .visible .func (.param .b64 func_retval0) memmove_caller(
; PTX: ld.param.u64 %rd[[N:[0-9]+]]
; PTX: setp.eq.s64 %p[[NEQ0:[0-9]+]], %rd[[N]], 0
; PTX: setp.ge.u64 %p[[SRC_GT_THAN_DST:[0-9]+]], %rd{{[0-9]+}}, %rd{{[0-9]+}}
; PTX-NEXT: @%p[[SRC_GT_THAN_DST]] bra LBB[[FORWARD_BB:[0-9_]+]]
; -- this is the backwards copying BB
; PTX: @%p[[NEQ0]] bra LBB[[EXIT:[0-9_]+]]
; PTX: add.s64 %rd[[N]], %rd[[N]], -1
; PTX: ld.u8 %rs[[ELEMENT:[0-9]+]]
; PTX: st.u8 [%rd{{[0-9]+}}], %rs[[ELEMENT]]
; -- this is the forwards copying BB
; PTX: LBB[[FORWARD_BB]]:
; PTX: @%p[[NEQ0]] bra LBB[[EXIT]]
; PTX: ld.u8 %rs[[ELEMENT2:[0-9]+]]
; PTX: st.u8 [%rd{{[0-9]+}}], %rs[[ELEMENT2]]
; PTX: add.s64 %rd[[INDEX:[0-9]+]], %rd[[INDEX]], 1
; -- exit block
; PTX: LBB[[EXIT]]:
; PTX-NEXT: st.param.b64 [func_retval0
; PTX-NEXT: ret
}